
Lecture #22: Introduction to Distributed Databases
15-445/645 Database Systems (Fall 2024)

https://15445.courses.cs.cmu.edu/fall2024/
Carnegie Mellon University

Andy Pavlo

1 Distributed DBMSs
A distributed DBMS divides a single logical database across multiple physical resources. �e application
is (usually) unaware that data is split across separated hardware. �e system relies on the techniques and
algorithms from single-nodeDBMSs to support transaction processing and query execution in a distributed
environment. An important goal in designing a distributed DBMS is fault tolerance (i.e., avoiding a single
one node failure taking down the entire system).
�e di�erences between parallel and distributed DBMSs are:
Parallel Database:

• Nodes are physically close to each other.
• Nodes are connected via high-speed LAN (fast, reliable communication fabric).
• �e communication cost between nodes is assumed to be small. As such, one does not need to worry
about nodes crashing or packets ge�ing dropped when designing internal protocols.

Distributed Database:

• Nodes can be far from each other.
• Nodes are potentially connected via a public network, which can be slow and unreliable.
• �e communication cost and connection problems cannot be ignored (i.e., nodes can crash, and
packets can get dropped).

2 System Architectures
A DBMS’s system architecture speci�es what shared resources are directly accessible to CPUs. It a�ects
how CPUs coordinate with each other and where they retrieve and store objects in the database.
A single-node DBMS uses what is called a shared everything architecture. �is single node executes work-
ers on a local CPU(s) with its own local memory address space and disk.

Shared Nothing
In a shared nothing environment, each node has its own CPU, memory, and disk. Nodes only communicate
with each other via network. Before the rise of cloud storage platforms, the shared nothing architecture
used to be considered the correct way to build distributed DBMSs.
It is more di�cult to increase capacity in this architecture because the DBMS has to physically move data
to new nodes. It is also di�cult to ensure consistency across all nodes in the DBMS, since the nodes must
coordinate with each other on the state of transactions. �e advantage, however, is that shared nothing
DBMSs can potentially achieve be�er performance and are more e�cient then other types of distributed
DBMS architectures.

https://15445.courses.cs.cmu.edu/fall2024/
https://15445.courses.cs.cmu.edu/fall2024/
https://www.cs.cmu.edu/~pavlo/


Fall 2024 – Lecture #22 Introduction to Distributed Databases

Figure 1: Database System Architectures – Four system architecture approaches
ranging from sharing everything (used by non distributed systems) to sharing mem-
ory, disk, or nothing.

Shared Disk
In a shared disk architecture, all CPUs can read andwrite to a single logical disk directly via an interconnect,
but each have their own private memories. �e local storage on each compute node can act as caches. �is
approach is more common in cloud-based DBMSs.
�e DBMS’s execution layer can scale independently from the storage layer. Adding new storage nodes or
execution nodes does not a�ect the layout or location of data in the other layer.
Nodes must send messages between them to learn about other node’s current state. �at is, since memory
is local, if data is modi�ed, changes must be communicated to other CPUs in the case that piece of data is
in main memory for the other CPUs.
Nodes have their own bu�er pool and are considered stateless. A node crash does not a�ect the state of
the database since that is stored separately on the shared disk. �e storage layer persists the state in the
case of crashes.

Shared Memory
An alternative to shared everything architecture in distributed systems is shared memory. CPUs have
access to common memory address space via a fast interconnect. CPUs also share the same disk.
Each processor has a global view of all the in-memory data structures. Each DBMS instance on a processor
has to “know” about the other instances.
In practice, most DBMSs do not use this architecture, as it is provided at the OS / kernel level. It also causes
problems, since each process’s scope of memory is the same memory address space, which can be modi�ed
by multiple processes.

15-445/645 Database Systems
Page 2 of 6

https://15445.courses.cs.cmu.edu/fall2024/


Fall 2024 – Lecture #22 Introduction to Distributed Databases

3 Design Issues
Distributed DBMSs aim to maintain data transparency, meaning that users should not be required to know
where data is physically located, or how tables are partitioned or replicated. �e details of how data is
being stored is hidden from the application. In other words, a SQL query that works on a single-node
DBMS should work the same on a distributed DBMS.
�e key design questions that distributed database systems must address are the following:

• How does the application �nd data?
• How should queries be executed on a distributed data? Should the query be pushed to where the
data is located? Or should the data be pooled into a common location to execute the query?

• How should the database be divided across resources?
• How does the DBMS ensure correctness?

4 Partitioning Schemes
Distributed system must partition the database across multiple resources, including disks, nodes, proces-
sors. �is process is sometimes called sharding in NoSQL systems. When the DBMS receives a query, it
�rst analyzes the data that the query plan needs to access. �e DBMS may potentially send fragments of
the query plan to di�erent nodes, then combines the results to produce a single answer.
�e goal of a partitioning scheme is to maximize single-node transactions, or transactions that only access
data contained on one partition. �is allows the DBMS to not need to coordinate the behavior of concurrent
transactions running on other nodes. On the other hand, a distributed transaction accesses data at one or
more partitions. �is requires expensive, di�cult coordination, discussed in the below section.

Implementation
�e simplest way to partition tables is naive data partitioning. Each node stores one table, assuming enough
storage space for a given node. �is is easy to implement because a query is just routed to a speci�c
partitioning. However, this does not scale and is suboptimal when queries join data across tables or when
there is non-uniform access pa�erns (some nodes are more utilized than others). See Figure 2 for an
example.

Figure 2: Naive Table Partitioning – Given two tables, place all the tuples in table
one into one partition and the tuples in table two into the other.

Another way of partitioning is vertical partitioning, which splits a table’s a�ributes into separate partitions.
Each partition must also store tuple information for reconstructing the original record.
More commonly, horizontal partitioning s used which splits a table’s tuples into disjoint subsets. Choose
column(s) that divides the database equally in terms of size, load or usage. �ese keys are called the

15-445/645 Database Systems
Page 3 of 6

https://15445.courses.cs.cmu.edu/fall2024/


Fall 2024 – Lecture #22 Introduction to Distributed Databases

partitioning key(s). �e DBMS can partition a database physically (shared nothing) or logically (shared
disk) based on hashing, data ranges or predicates. See Figure 3 for an example. �e problem of hash
partitioning is that when a node is added or removed, a lot of data has to be shu�ed around. �e solution
for this is Consistent Hashing.

Figure 3: Horizontal Table Partitioning – Use hash partitioning to decide where
to send the data. When the DBMS receives a query, it will use the table’s partitioning
key(s) to �nd out where the data is.

Consistent Hashing assigns every node to a location on some logical ring. �en the hash of every parti-
tion key maps to a location on the ring. �e node that is closest to the key in the clockwise direction is
responsible for that key. See Figure 4 for an example. When a node is added or removed, keys are only
moved between nodes adjacent to the new/removed node and so only 1/n fraction of the keys are moved.
A replication factor of k means that each key is replicated at the k closest nodes in the clockwise direction.

Figure 4: Consistent Hashing – All nodes are responsible for some portion of hash
ring. Here, node P1 is responsible for storing key1 and node P3 is responsible for
storing key2.

Logical Partitioning: A node is responsible for a set of keys, but it doesn’t actually store those keys. �is
is commonly used in a shared disk architecture.
Physical Partitioning: A node is responsible for a set of keys, and it physically stores those keys. �is is
commonly used in a shared nothing architecture.

15-445/645 Database Systems
Page 4 of 6

https://15445.courses.cs.cmu.edu/fall2024/


Fall 2024 – Lecture #22 Introduction to Distributed Databases

5 Distributed Concurrency Control
A distributed transaction accesses data at one or more partitions, which requires expensive coordination.

Centralized coordinator
�e centralized coordinator acts as a global “tra�c cop” that coordinates all the behavior. See Figure 5 for
a diagram.

Figure 5: Centralized Coordinator – �e client communicates with the coordina-
tor to acquire locks on the partitions that the client wants to access. Once it receives
an acknowledgement from the coordinator, the client sends its queries to those par-
titions. Once all queries for a given transaction are done, the client sends a commit
request to the coordinator. �e coordinator then communicates with the partitions
involved in the transaction to determine whether the transaction is allowed to com-
mit.

Middleware
Centralized coordinators can be used as middleware, which accepts query requests and routes queries to
correct partitions.

Decentralized coordinator
In a decentralized approach, nodes organize themselves. �e client directly sends queries to one of the
partitions. �is home partition will send results back to the client. �e home partition is in charge of
communicating with other partitions and commi�ing accordingly.
Centralized approaches give way to bo�lenecks in the case that multiple clients are trying to acquire locks
on the same partitions. However, it can be be�er for distributed 2PL as it has a central view of the locks
and can handle deadlocks more quickly. �is is non-trivial with decentralized approaches.

6 Federated Databases
�ese are distributed architectures that connect together multiple DBMSs into a single logical system. �is
is more popular in bigger companies. A query can access data at any location. �is is hard due to di�erent
data models, query languages, and limitations of each individual DBMS. Additionally, there is no easy way
to optimize queries. Lastly, there is a lot of data copying involved.
For example, say there is an application server which makes some queries. �ese queries then go through

15-445/645 Database Systems
Page 5 of 6

https://15445.courses.cs.cmu.edu/fall2024/


Fall 2024 – Lecture #22 Introduction to Distributed Databases

a middleware layer (which will convert the query into a readable format for a given DBMS used in the
bigger system) that via connectors, will go through the multiple back-end DBMSs that are deployed in the
system. �e middleware will then handle the results returned from the DBMSs.

15-445/645 Database Systems
Page 6 of 6

https://15445.courses.cs.cmu.edu/fall2024/

	Distributed DBMSs
	System Architectures
	Design Issues
	Partitioning Schemes
	Distributed Concurrency Control
	Federated Databases

