
DatabaseSystems

Database
Systems

15-445/645 FALL 2024 PROF. ANDY PAVLO15-445/645 FALL 2024

15-445/645 FALL 2024
PROF. ANDY PAVLO

PROF. ANDY PAVLO

Final Review &
Systems Potpourri

https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024
https://www.cs.cmu.edu/~pavlo/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

ADMINISTRIVIA

Project #4 is due Sunday Dec 8th @ 11:59pm

Homework #6 is due Monday Dec 9th @ 11:59pm

Final Project Submission Deadline:
Monday Dec 16th @ 11:59am

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SPRING 2025

Jignesh is recruiting impressionable TAs for 15-
445/645 in Spring 2025.
→ All BusTub projects will remain in C++.
→ If you want to work on fixing BusTub over the

winter break for money, please let us know.

Sign up here:

https://www.ugrad.cs.cmu.edu/ta/S25

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.ugrad.cs.cmu.edu/ta/S25

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

COURSE EVALS

Your feedback is strongly needed:
→ https://cmu.smartevals.com
→ https://www.ugrad.cs.cmu.edu/ta/F24/feedback/

Things that we want feedback on:
→ Homework Assignments
→ Projects
→ Reading Materials
→ Lectures

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://cmu.smartevals.com/
https://www.ugrad.cs.cmu.edu/ta/F24/feedback/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

OFFICE HOURS

Andy:
→ Wednesday Dec 11th @ 3:30-4:30pm (GHC 9019)
→ Thursday Dec 12th @ 3:00-4:00pm (GHC 9019)
→ Or email me for an appt

Will:
→ Wednesday Dec 11th @ 10:30-11:30am (GHC 5th Floor

Commons)

All other TAs will have their office hours up to and
including Saturday Dec 7th

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

FINAL EXAM

Who: You

What: Final Exam

Where: Baker Hall A51

When: Friday Dec 13th @ 8:30-11:30am

Why: https://youtu.be/8tuoIO4CxOw

Email instructors if you need special accommodations.

https://15445.courses.cs.cmu.edu/fall2024/final-guide.html

https://15445.courses.cs.cmu.edu/fall2024/final-guide.html

6

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://youtu.be/8tuoIO4CxOw
https://15445.courses.cs.cmu.edu/fall2022/final-guide.html
https://15445.courses.cs.cmu.edu/fall2024/final-guide.html

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

FINAL EXAM

Everyone should come to BH A51.

You will then be assigned a random location in
either A51 or A53.

There will be TAs stationed in each room to give
you the exam and to handle questions.

Andy will bounce around the rooms during the
exam time.

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

FINAL EXAM

What to bring:
→ CMU ID
→ Pencil + Eraser (!!!)
→ Calculator (cellphone is okay)
→ One 8.5x11" page of handwritten notes (double-sided)

8

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

STUFF BEFORE MID-TERM

SQL

Buffer Pool Management

Data Structures (Hash Tables, B+Trees)

Storage Models

Query Processing Models

Inter-Query Parallelism

Basic Understanding of BusTub Internals

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

QUERY OPTIMIZATION

Heuristics
→ Predicate Pushdown
→ Projection Pushdown
→ Nested Sub-Queries: Rewrite and Decompose

Statistics
→ Cardinality Estimation
→ Histograms

Cost-based search
→ Bottom-up vs. Top-Down

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TRANSACTIONS

ACID

Conflict Serializability:
→ How to check for correctness?
→ How to check for equivalence?

View Serializability
→ Difference with conflict serializability

Isolation Levels / Anomalies

11

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TRANSACTIONS

Two-Phase Locking
→ Strong Strict 2PL
→ Cascading Aborts Problem
→ Deadlock Detection & Prevention

Multiple Granularity Locking
→ Intention Locks
→ Understanding performance trade-offs
→ Lock Escalation (i.e., when is it allowed)

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TRANSACTIONS

Optimistic Concurrency Control
→ Read Phase
→ Validation Phase (Backwards vs. Forwards)
→ Write Phase

Multi-Version Concurrency Control
→ Version Storage / Ordering
→ Garbage Collection
→ Index Maintenance

13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CRASH RECOVERY

Buffer Pool Policies:
→ STEAL vs. NO-STEAL
→ FORCE vs. NO-FORCE

Shadow Paging

Write-Ahead Logging
→ How it relates to buffer pool management
→ Logging Schemes (Physical vs. Logical)

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CRASH RECOVERY

Checkpoints
→ Non-Fuzzy vs. Fuzzy

ARIES Recovery
→ Dirty Page Table (DPT)
→ Active Transaction Table (ATT)
→ Analyze, Redo, Undo phases
→ Log Sequence Numbers
→ CLRs

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DISTRIBUTED DATABASES

System Architectures

Replication

Partitioning Schemes

Two-Phase Commit

16

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TOPICS NOT ON EXAM!

Flash Talks

Seminar Talks

Details of specific database systems (e.g., Postgres)

Andy's legal troubles

17

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CMU 15-721 (Spring 2024)

SPEED RUN

15721.courses.cs.cmu.edu/spring2024

15721.courses.cs.cmu.edu/spring2024

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://15721.courses.cs.cmu.edu/spring2024/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SEQUENTIAL SCAN: OPTIMIZATIONS

Data Encoding / Compression

Prefetching / Scan Sharing / Buffer Bypass

Task Parallelization / Multi-threading

Clustering / Sorting

Late Materialization

Materialized Views / Result Caching

Data Skipping

Data Parallelization / Vectorization

Code Specialization / Compilation

Lecture #06

Lecture #14

Lecture #14

Lecture #08

Lecture #12

Lecture #5

19

Lecture #13

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT * FROM table
 WHERE key > $(low)
 AND key < $(high)

SELECTION SCANS

20

Bogdan Raducanu

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://dl.acm.org/citation.cfm?id=2465292

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECTION SCANS

20

Scalar (Branching)

i = 0
for t in table:
 key = t.key
 if (key>low) && (key<high):
 copy(t, output[i])
 i = i + 1

Scalar (Branchless)

i = 0
for t in table:
 copy(t, output[i])
 key = t.key
 delta = (key>low ? 1 : 0) &
 ⮱(key<high ? 1 : 0)
 i = i + delta

Bogdan Raducanu

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://dl.acm.org/citation.cfm?id=2465292

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECTION SCANS

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://dl.acm.org/citation.cfm?id=2465292

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Scalar (Branchless)

i = 0
for t in table:
 copy(t, output[i])
 key = t.key
 m = (key≥low ? 1 : 0) &
 ⮱(key≤high ? 1 : 0)
 i = i + m

SELECT * FROM table
 WHERE key >= $low AND key <= $high

VECTORIZED SELECTION SCANS

22

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT * FROM table
 WHERE key >= $low AND key <= $high

VECTORIZED SELECTION SCANS

22

Vectorized

i = 0
for vt in table:
 simdLoad(vt.key, vk)
 vm = (vk≥low ? 1 : 0) &
 ⮱(vk≤high ? 1 : 0)
 simdStore(vt, vm, output[i])
 i = i + |vm≠false|

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT * FROM table
 WHERE key >= $low AND key <= $high

VECTORIZED SELECTION SCANS

22

Vectorized

i = 0
for vt in table:
 simdLoad(vt.key, vk)
 vm = (vk≥low ? 1 : 0) &
 ⮱(vk≤high ? 1 : 0)
 simdStore(vt, vm, output[i])
 i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= "N" AND key <= "U"

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TID
100

KEY
A

101 N
102 D
103 Y
104 P
105 I
106 S
107

SELECT * FROM table
 WHERE key >= $low AND key <= $high

VECTORIZED SELECTION SCANS

22

Vectorized

i = 0
for vt in table:
 simdLoad(vt.key, vk)
 vm = (vk≥low ? 1 : 0) &
 ⮱(vk≤high ? 1 : 0)
 simdStore(vt, vm, output[i])
 i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= "N" AND key <= "U"

Key Vector A N D Y P I S

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TID
100

KEY
A

101 N
102 D
103 Y
104 P
105 I
106 S
107

SELECT * FROM table
 WHERE key >= $low AND key <= $high

VECTORIZED SELECTION SCANS

22

Vectorized

i = 0
for vt in table:
 simdLoad(vt.key, vk)
 vm = (vk≥low ? 1 : 0) &
 ⮱(vk≤high ? 1 : 0)
 simdStore(vt, vm, output[i])
 i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= "N" AND key <= "U"

Key Vector A N D Y P I S

SIMD Compare

Mask #1 0 1 0 1 1 0 1 0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TID
100

KEY
A

101 N
102 D
103 Y
104 P
105 I
106 S
107

SELECT * FROM table
 WHERE key >= $low AND key <= $high

VECTORIZED SELECTION SCANS

22

Vectorized

i = 0
for vt in table:
 simdLoad(vt.key, vk)
 vm = (vk≥low ? 1 : 0) &
 ⮱(vk≤high ? 1 : 0)
 simdStore(vt, vm, output[i])
 i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= "N" AND key <= "U"

Key Vector A N D Y P I S

SIMD Compare

Mask #1 0 1 0 1 1 0 1 0

Mask #2 1 1 1 0 1 1 1 0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TID
100

KEY
A

101 N
102 D
103 Y
104 P
105 I
106 S
107

SELECT * FROM table
 WHERE key >= $low AND key <= $high

VECTORIZED SELECTION SCANS

22

Vectorized

i = 0
for vt in table:
 simdLoad(vt.key, vk)
 vm = (vk≥low ? 1 : 0) &
 ⮱(vk≤high ? 1 : 0)
 simdStore(vt, vm, output[i])
 i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= "N" AND key <= "U"

Key Vector A N D Y P I S

SIMD Compare

SIMD AND

Mask #3 0 1 0 0 1 0 1 0

Mask #1 0 1 0 1 1 0 1 0

Mask #2 1 1 1 0 1 1 1 0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TID
100

KEY
A

101 N
102 D
103 Y
104 P
105 I
106 S
107

SELECT * FROM table
 WHERE key >= $low AND key <= $high

VECTORIZED SELECTION SCANS

22

Vectorized

i = 0
for vt in table:
 simdLoad(vt.key, vk)
 vm = (vk≥low ? 1 : 0) &
 ⮱(vk≤high ? 1 : 0)
 simdStore(vt, vm, output[i])
 i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= "N" AND key <= "U"

Key Vector A N D Y P I S

All Offsets 0 1 2 3 4 5 6 7

SIMD Compare

SIMD AND

Mask #3 0 1 0 0 1 0 1 0

Mask #1 0 1 0 1 1 0 1 0

Mask #2 1 1 1 0 1 1 1 0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TID
100

KEY
A

101 N
102 D
103 Y
104 P
105 I
106 S
107

SELECT * FROM table
 WHERE key >= $low AND key <= $high

VECTORIZED SELECTION SCANS

22

Vectorized

i = 0
for vt in table:
 simdLoad(vt.key, vk)
 vm = (vk≥low ? 1 : 0) &
 ⮱(vk≤high ? 1 : 0)
 simdStore(vt, vm, output[i])
 i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= "N" AND key <= "U"

Key Vector A N D Y P I S

All Offsets 0 1 2 3 4 5 6 7

Matched Offsets 1 4 6

SIMD Compare

SIMD Compress

SIMD AND

Mask #3 0 1 0 0 1 0 1 0

Mask #1 0 1 0 1 1 0 1 0

Mask #2 1 1 1 0 1 1 1 0

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

HIQUE: HOLISTIC CODE GENERATION

For a given query plan, create a C/C++ program
that implements that query’s execution.
→ Bake in all the predicates and type conversions.

Use an off-shelf compiler to convert the code into a
shared object, link it to the DBMS process, and then
invoke the exec function.

23

Generating Code for Holistic Query EvaluationICDE 2010

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://doi.ieeecomputersociety.org/10.1109/ICDE.2010.5447892
https://doi.ieeecomputersociety.org/10.1109/ICDE.2010.5447892

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Interpreted Plan

HIQUE: OPERATOR TEMPLATES

24

for t in range(table.num_tuples):
 tuple = get_tuple(table, t)
 if eval(predicate, tuple, params):
 emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Interpreted Plan

HIQUE: OPERATOR TEMPLATES

24

for t in range(table.num_tuples):
 tuple = get_tuple(table, t)
 if eval(predicate, tuple, params):
 emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

Templated PlanInterpreted Plan

HIQUE: OPERATOR TEMPLATES

24

tuple_size = ###
predicate_offset = ###
parameter_value = ###

for t in range(table.num_tuples):
 tuple = table.data + t ∗ tuple_size
 val = (tuple+predicate_offset)
 if (val == parameter_value + 1):
 emit(tuple)

for t in range(table.num_tuples):
 tuple = get_tuple(table, t)
 if eval(predicate, tuple, params):
 emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTORWISE: PRECOMPILED PRIMITIVES

Pre-compiles thousands of "primitives" that
perform basic operations on typed data.
→ Using simple kernels for each primitive means that they

are easier to vectorize.

The DBMS then executes a query plan that invokes
these primitives at runtime.
→ Function calls are amortized over multiple tuples.
→ The output of a primitive are the offsets of tuples that

25

Micro Adaptivity in VectorwiseSIGMOD 2013

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
http://dl.acm.org/citation.cfm?id=2465292
http://dl.acm.org/citation.cfm?id=2465292

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTORWISE: PRECOMPILED PRIMITIVES

26

SELECT * FROM foo
WHERE str_col = 'abc'
 AND int_col = 4;

foo

str_col='abc' &&
int_col=4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTORWISE: PRECOMPILED PRIMITIVES

26

SELECT * FROM foo
WHERE str_col = 'abc'
 AND int_col = 4;

foo

str_col='abc' &&
int_col=4

vec<offset> sel_eq_str(vec<string> col, string val) {
 vec<offset> positions;
 for (offset i = 0; i < col.size(); i++)
 if (col[i] == val) positions.append(i);
 return (positions);
}

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTORWISE: PRECOMPILED PRIMITIVES

26

SELECT * FROM foo
WHERE str_col = 'abc'
 AND int_col = 4;

foo

str_col='abc' &&
int_col=4

vec<offset> sel_eq_str(vec<string> col, string val) {
 vec<offset> positions;
 for (offset i = 0; i < col.size(); i++)
 if (col[i] == val) positions.append(i);
 return (positions);
}

vec<offset> sel_eq_int(vec<int> col, int val,
 vec<offset> positions) {
 vec<offset> res;
 for (offset i : positions)
 if (col[i] == val) res.append(i);
 return (res);
}

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SYSTEMS

Google BigQuery (2011)

Snowflake (2013)

Amazon Redshift (2014)

Yellowbrick (2014)

Databricks Photon (2022)

DuckDB (2019)

TabDB (2019)

27

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

GOOGLE BIGQUERY (2011)

Originally developed as "Dremel" in 2006 as a side-
project for analyzing data artifacts generated from
other tools.
→ The "interactive" goal means that they want to support ad

hoc queries on in-situ data files.
→ Did not support joins in the first version.

Rewritten in the late 2010s to shared-disk
architecture built on top of GFS.

Released as public commercial product (BigQuery)
in 2012.

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://cloud.google.com/bigquery

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BIGQUERY: OVERVIEW

Shared-Disk / Disaggregated Storage

Vectorized Query Processing

Shuffle-based Distributed Query Execution

Columnar Storage
→ Zone Maps / Filters
→ Dictionary + RLE Compression
→ Only Allows "Search" Inverted Indexes

Hash Joins Only

Heuristic Optimizer + Adaptive Optimizations

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BIGQUERY: OVERVIEW

Shared-Disk / Disaggregated Storage

Vectorized Query Processing

Shuffle-based Distributed Query Execution

Columnar Storage
→ Zone Maps / Filters
→ Dictionary + RLE Compression
→ Only Allows "Search" Inverted Indexes

Hash Joins Only

Heuristic Optimizer + Adaptive Optimizations

30

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BIGQUERY: IN-MEMORY SHUFFLE

The shuffle phases represent checkpoints in a
query's lifecycle where that the coordinator makes
sure that all tasks are completed.

Fault Tolerance / Straggler Avoidance:
→ If a worker does not produce a task's results within a

deadline, the coordinator speculatively executes a
redundant task.

Dynamic Resource Allocation:
→ Scale up / down the number of workers for the next stage

depending size of a stage's output.

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BIGQUERY: IN-MEMORY SHUFFLE

32

Stage n

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker
C

on
su

m
er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BIGQUERY: IN-MEMORY SHUFFLE

32

Stage n

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker
C

on
su

m
er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BIGQUERY: IN-MEMORY SHUFFLE

32

Stage n

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker
C

on
su

m
er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BIGQUERY: IN-MEMORY SHUFFLE

32

Stage n

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker
C

on
su

m
er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer
Statistics

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BIGQUERY: IN-MEMORY SHUFFLE

32

Stage n

Distributed
File System

Stage n+1

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

In-Memory
Storage

Worker

C
on

su
m

er

P
rodu

cer

Worker
C

on
su

m
er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer

Worker

C
on

su
m

er

P
rodu

cer
Statistics

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme.

33

WorkerWorker

Partition #1

Coordinator

H.Ahmadi + A.Surna

Partition #2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://youtu.be/Zk5_RcRg3nA

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme.

33

WorkerWorker

Partition #1

Coordinator

H.Ahmadi + A.Surna

Statistics

Partition #2

hash1(key)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://youtu.be/Zk5_RcRg3nA

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme.

33

WorkerWorker

Partition #1 Partition #3 Partition #4

Coordinator

H.Ahmadi + A.Surna

Statistics

Partition #2

hash1(key)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://youtu.be/Zk5_RcRg3nA

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme.

33

WorkerWorker

Partition #1 Partition #3 Partition #4

Coordinator

H.Ahmadi + A.Surna

Statistics

Partition #2

hash1(key)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://youtu.be/Zk5_RcRg3nA

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme.

33

WorkerWorker

Partition #1 Partition #3 Partition #4

Coordinator

H.Ahmadi + A.Surna

Statistics

Partition #2

hash1(key) hash2(key)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://youtu.be/Zk5_RcRg3nA

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme.

33

WorkerWorker

Partition #1 Partition #3 Partition #4

Coordinator

H.Ahmadi + A.Surna

Statistics

Partition #2

hash1(key) hash2(key)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://youtu.be/Zk5_RcRg3nA

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme.

33

WorkerWorker Repartition

Partition #1 Partition #3 Partition #4

Coordinator

H.Ahmadi + A.Surna

Statistics

Partition #2

hash1(key) hash2(key)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://youtu.be/Zk5_RcRg3nA

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme.

33

WorkerWorker Repartition

Partition #1 Partition #3 Partition #4

Coordinator

H.Ahmadi + A.Surna

Statistics

Partition #2

hash1(key) hash2(key)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://youtu.be/Zk5_RcRg3nA

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances
and adjusts intermediate result
partitioning to adapt to data skew.

DBMS detects whether shuffle
partition gets too full and then
instructs workers to adjust their
partitioning scheme.

33

WorkerWorker Repartition

Partition #1 Partition #3 Partition #4

Coordinator

H.Ahmadi + A.Surna

Statistics

hash1(key) hash2(key)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://youtu.be/Zk5_RcRg3nA

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SNOWFLAKE (2013)

Managed OLAP DBMS written in C++.
→ Shared-disk architecture with aggressive compute-side

local caching.
→ Written from scratch. Did not borrow components from

existing systems.
→ Custom SQL dialect and client-server network protocols.

The OG cloud-native data warehouse.

35

The Snowflake Elastic Data WarehouseSIGMOD 2016

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://dl.acm.org/doi/10.1145/2882903.2903741
https://dl.acm.org/doi/10.1145/2882903.2903741

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SNOWFLAKE: OVERVIEW

Cloud-native OLAP DBMS written in C++.

Shared-Disk / Disaggregated Storage

Push-based Vectorized Query Processing

Precompiled Operator Primitives

Separate Table Data from Meta-Data

No Buffer Pool

PAX Columnar Storage

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SNOWFLAKE: QUERY PROCESSING

Snowflake is a push-based vectorized engine that
uses precompiled primitives for operator kernels.
→ Pre-compile variants using C++ templates for different

vector data types.
→ Only uses codegen (via LLVM) for tuple

serialization/deserialization between workers.

Does not support partial query retries
→ If a worker fails, then the entire query has to restart.

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SNOWFLAKE: ADAPTIVE OPTIMIZATION

After determining join ordering,
Snowflake's optimizer identifies
aggregation operators to push down
into the plan below joins.

The optimizer adds the downstream
aggregations but then the DBMS only
enables them at runtime according to
statistics observed during execution.

38

Bowei Chen

Aggregation

TableScan(b)TableScan(a)

Join

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.linkedin.com/in/bowei-chen-9a2b54126/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SNOWFLAKE: ADAPTIVE OPTIMIZATION

After determining join ordering,
Snowflake's optimizer identifies
aggregation operators to push down
into the plan below joins.

The optimizer adds the downstream
aggregations but then the DBMS only
enables them at runtime according to
statistics observed during execution.

38

Bowei Chen

Aggregation

TableScan(b)

TableScan(a)

Join

AggChild

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.linkedin.com/in/bowei-chen-9a2b54126/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SNOWFLAKE: ADAPTIVE OPTIMIZATION

After determining join ordering,
Snowflake's optimizer identifies
aggregation operators to push down
into the plan below joins.

The optimizer adds the downstream
aggregations but then the DBMS only
enables them at runtime according to
statistics observed during execution.

38

Bowei Chen

Aggregation

TableScan(b)

TableScan(a)

Join

AggParent

AggChild

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.linkedin.com/in/bowei-chen-9a2b54126/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SNOWFLAKE: ADAPTIVE OPTIMIZATION

After determining join ordering,
Snowflake's optimizer identifies
aggregation operators to push down
into the plan below joins.

The optimizer adds the downstream
aggregations but then the DBMS only
enables them at runtime according to
statistics observed during execution.

38

Bowei Chen

Aggregation

TableScan(b)

TableScan(a)

Join

AggParent

AggChild

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.linkedin.com/in/bowei-chen-9a2b54126/
https://medium.com/snowflake/aggregation-placement-an-adaptive-query-optimization-for-snowflake-ab1e2c6af2e4

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SNOWFLAKE: FLEXIBLE COMPUTE

If a query plan fragment will process a
large amount of data, then the DBMS
can temporarily deploy additional
worker nodes to accelerate its
performance.

Flexible compute worker nodes write
results to storage as if it was a table.

39

Libo Wang

TableScan

Filter

HashJoinBuild

HashJoinProbe

Filter

JoinFilter

GroupBy

TableScan

Large
Scan

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://youtu.be/xnuv6vr8USE

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SNOWFLAKE: FLEXIBLE COMPUTE

If a query plan fragment will process a
large amount of data, then the DBMS
can temporarily deploy additional
worker nodes to accelerate its
performance.

Flexible compute worker nodes write
results to storage as if it was a table.

39

Libo Wang

Filter

JoinFilter

GroupBy

TableScan

Insert

TableScan

Filter

HashJoinBuild

HashJoinProbe

Filter

JoinFilter

GroupBy

TableScan

TableScan

GroupBy

UnionAll

Scale Out on
Flexible Compute

Materialize
Result to Storage

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://youtu.be/xnuv6vr8USE

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

AMAZON REDSHIFT (2014)

Amazon's flagship OLAP DBaaS.
→ Based on ParAccel's original shared-nothing architecture.
→ Switched to support disaggregated storage (S3) in 2017.
→ Added serverless deployments in 2022.

Redshift is a more traditional data warehouse
compared to BigQuery/Spark where it wants to
control all the data.

Overarching design goal is to remove as much
administration + configuration choices from users.

41

Amazon Redshift Re-InventedSIGMOD 2022

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://aws.amazon.com/about-aws/whats-new/2022/07/amazon-redshift-serverless-generally-available/
https://doi.org/10.1145/3514221.3526045
https://doi.org/10.1145/3514221.3526045

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

REDSHIFT: OVERVIEW

Shared-Disk / Disaggregated Storage

Push-based Vectorized Query Processing

Transpilation Query Codegen (C++)

Precompiled Primitives

Compute-side Caching

PAX Columnar Storage

Sort-Merge + Hash Joins

Hardware Acceleration (AQUA)

Stratified Query Optimizer

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

REDSHIFT: COMPILATION SERVICE

Separate nodes to compile query plans using GCC
and aggressive caching.
→ DBMS checks whether a compiled version of each

templated fragment already exists in customer's local cache.
→ If fragment does not exist in the local cache, then it checks

a global cache for the entire fleet of Redshift customers.

Background workers proactively recompile plans
when new version of DBMS is released.

43

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

REDSHIFT: HARDWARE ACCELERATION

AWS introduced the AQUA
(Advanced Query Accelerator) for
Redshift (Spectrum?) in 2021.

Separate compute/cache nodes that
use FPGAs to evaluate predicates.

AQUA was phased out and replaced
with Nitro cards on compute nodes

44

St
or

ag
e

W
or

ke
r

A
Q

U
A

W
or

ke
r

WHERE name LIKE '%abc%'

GET

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

YELLOWBRICK (2014)

OLAP DBMS written on C++ and derived from a
hardfork of PostgreSQL v9.5.
→ Uses PostgreSQL's front-end (networking, parser, catalog)

to handle incoming SQL requests.
→ They hate the OS as much as I do.

Originally started as an on-prem appliance with
FPGA acceleration. Switched to DBaaS in 2021.

Cloud-version uses Kubernetes for all components.

46

Yellowbrick: An Elastic Data Warehouse on KubernetesCIDR 2024

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.cidrdb.org/cidr2024/papers/p2-cusack.pdf
https://www.cidrdb.org/cidr2024/papers/p2-cusack.pdf

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

YELLOWBRICK

Shared-Disk / Disaggregated Storage

Push-based Vectorized Query Processing

Transpilation Query Codegen (C++)

Compute-side Caching

Separate Row + PAX Columnar Storage

Sort-Merge + Hash Joins

PostgreSQL Query Optimizer++

Insane Systems Engineering

47

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

YELLOWBRICK: ARCHITECTURE

48

Object Store

Mark Cusack

Worker Nodes

Compiler
Service

Bulk Loader Service

Custom S3 Client

Custom
UDP Protocol

Custom
NVMe Driver

Row-Store

Scheduler

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.linkedin.com/in/macusack

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

YELLOWBRICK: QUERY EXECUTION

Pushed-based vectorized query processing that
supports both row- and columnar-oriented data
with early materialization.
→ Introduces transpose operators to convert data back and

forth between row and columnar formats.

Holistic query compilation via source-to-source
transpilation.

Yellowbrick's architecture goal is for workers to
always process data residing in the CPU's L3 cache
and not memory.

49

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

YELLOWBRICK: MEMORY ALLOCATOR

Custom NUMA-aware, latch-free allocator that gets
all the memory needed upfront at start-up
→ Using mmap with mlock with huge pages.
→ Allocations are grouped by query to avoid fragmentation.
→ Claims their allocator is 100x faster than libc malloc.

Each worker also has a buffer pool manager that
uses MySQL-style approximate LRU-K to store
cached data files.

50

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://wiki.debian.org/Hugepages
https://15445.courses.cs.cmu.edu/fall2023/schedule.html#sep-18-2023

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

YELLOWBRICK: DEVICE DRIVERS

Custom NVMe / NIC drivers that run
in user-space to avoid memory copy
overheads.
→ Falls back to Linux drivers if necessary.

Custom reliable UDP network
protocol with kernel-bypass (DPDK)
for internal communication.
→ Each CPU has its own receive/transmit

queues that it polls asynchronously.
→ Only sends data to a "partner" CPU at

other workers.

51

2430

1626

1222

1976

1358

995

0

1000

2000

3000

2-Workers 3-Workers 4-Workers

T
P

C
-D

S
R

u
n

ti
m

e

Cluster Size

TCP DPDK

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATABRICKS PHOTON (2022)

JNI

Single-threaded C++ execution engine embedded
into Databricks Runtime (DBR) via JNI.
→ Overrides existing engine when appropriate.
→ Support both Spark's earlier SQL engine and Spark's

DataFrame API.
→ Seamlessly handle impedance mismatch between row-

oriented DBR and column-oriented Photon.

Accelerate execution of query plans over "raw /
uncurated" files in a data lake.

53

Photon: A Fast Query Engine for Lakehouse SystemsSIGMOD 2022

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Java_Native_Interface
https://dl.acm.org/doi/10.1145/3514221.3526054
https://dl.acm.org/doi/10.1145/3514221.3526054

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DATABRICKS PHOTON (2022)

JNI

Single-threaded C++ execution engine embedded
into Databricks Runtime (DBR) via JNI.
→ Overrides existing engine when appropriate.
→ Support both Spark's earlier SQL engine and Spark's

DataFrame API.
→ Seamlessly handle impedance mismatch between row-

oriented DBR and column-oriented Photon.

Accelerate execution of query plans over "raw /
uncurated" files in a data lake.

53

Photon: A Fast Query Engine for Lakehouse SystemsSIGMOD 2022

10

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://en.wikipedia.org/wiki/Java_Native_Interface
https://dl.acm.org/doi/10.1145/3514221.3526054
https://dl.acm.org/doi/10.1145/3514221.3526054
https://twitter.com/andy_pavlo/status/1536843474925981697

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PHOTON: OVERVIEW

Shared-Disk / Disaggregated Storage

Pull-based Vectorized Query Processing

Precompiled Primitives + Expression Fusion

Shuffle-based Distributed Query Execution

Sort-Merge + Hash Joins

Unified Query Optimizer + Adaptive Optimizations

54

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

PHOTON: VECTORIZED PROCESSING

Photon is a pull-based vectorized engine that uses
precompiled operator kernels (primitives).
→ Converts physical plan into a list of pointers to functions

that perform low-level operations on column batches.

Databricks: It is easier to build/maintain a
vectorized engine than a JIT engine.
→ Engineers spend more time creating specialized codepaths

to get closer to JIT performance.
→ With codegen, engineers write tooling and observability

hooks instead of writing the engine.

55

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT * FROM foo
 WHERE cdate BETWEEN '2024-01-01' AND '2024-04-01';

PHOTON: EXPRESSION FUSION

56

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT * FROM foo
 WHERE cdate >= '2024-01-01'
 AND cdate <= '2024-04-01';

PHOTON: EXPRESSION FUSION

56

foo

cdate >= '2024-01-01'
 AND
cdate <= '2024-04-01'



vec<offset> sel_geq_date(vec<date> batch, date val) {
 vec<offset> positions;
 for (offset i = 0; i < batch.size(); i++)
 if (batch[i] >= val) positions.append(i);
 return (positions);
}

vec<offset> sel_leq_date(vec<date> batch, date val) {
 vec<offset> positions;
 for (offset i = 0; i < batch.size(); i++)
 if (batch[i] <= val) positions.append(i);
 return (positions);
}

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT * FROM foo
 WHERE cdate >= '2024-01-01'
 AND cdate <= '2024-04-01';

PHOTON: EXPRESSION FUSION

56

foo

cdate >= '2024-01-01'
 AND
cdate <= '2024-04-01'



vec<offset> sel_between_dates(vec<date> batch,
 date low, date high) {
 vec<offset> positions;
 for (offset i = 0; i < batch.size(); i++)
 if (batch[i] >= low && batch[i] <= high)
 positions.append(i);
 return (positions);
}

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid

one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines underutilized
partitions using heuristics.

57

Worker

Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://youtu.be/Xb2zm4-F1HI

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid

one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines underutilized
partitions using heuristics.

57

Worker

Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://youtu.be/Xb2zm4-F1HI

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid

one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines underutilized
partitions using heuristics.

57

Worker

Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5

Partition #1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://youtu.be/Xb2zm4-F1HI

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid

one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines underutilized
partitions using heuristics.

57

Worker

Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5

Partition #1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://youtu.be/Xb2zm4-F1HI

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SPARK: PARTITION COALESCING

Spark (over-)allocates a large number
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid

one partitioning from filling up too much.

After the shuffle completes, the
DBMS then combines underutilized
partitions using heuristics.

57

Worker

Maryann Xue

Partition #1 Partition #3 Partition #4Partition #2 Partition #5

Partition #1 Partition #2 Partition #5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://youtu.be/Xb2zm4-F1HI

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DUCKDB (2019)

Multi-threaded embedded (in-process, serverless)
DBMS that executes SQL over disparate data files.
→ PostgreSQL-like dialect with quality-of-life enhancements.
→ "SQLite for Analytics"

Provides zero-copy access to query results via
Arrow to client code running in same process.

The core DBMS is nearly all custom C++ code with
little to no third-party dependencies.
→ Relies on extensions ecosystem to expand capabilities.

59

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DUCKDB (2019)

Multi-threaded embedded (in-process, serverless)
DBMS that executes SQL over disparate data files.
→ PostgreSQL-like dialect with quality-of-life enhancements.
→ "SQLite for Analytics"

Provides zero-copy access to query results via
Arrow to client code running in same process.

The core DBMS is nearly all custom C++ code with
little to no third-party dependencies.
→ Relies on extensions ecosystem to expand capabilities.

59

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.fivetran.com/blog/how-do-people-use-snowflake-and-redshift

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DUCKDB: OVERVIEW

Shared-Everything

Push-based Vectorized Query Processing

Precompiled Primitives

Multi-Version Concurrency Control

Morsel Parallelism + Scheduling

PAX Columnar Storage

Sort-Merge + Hash Joins

Stratified Query Optimizer

60

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DUCKDB: PUSH-BASED PROCESSING

System originally used pull-based vectorized query
processing but found it unwieldly to expand to
support more complex parallelism.
→ Cannot invoke multiple pipelines simultaneously.

Switched to a push-based query processing model in
2021. Each operator determines whether it will
execute in parallel on its own instead of a
centralized executor.

61

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DUCKDB: PUSH-BASED PROCESSING

System originally used pull-based vectorized query
processing but found it unwieldly to expand to
support more complex parallelism.
→ Cannot invoke multiple pipelines simultaneously.

Switched to a push-based query processing model in
2021. Each operator determines whether it will
execute in parallel on its own instead of a
centralized executor.

61

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://github.com/duckdb/duckdb/pull/2393

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DUCKDB: VECTORS

Custom internal vector layout for intermediate
results that is compatible with Velox.

Supports multiple vector types:

62

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DUCKDB: VECTORS

DuckDB uses a unified format to process all vector
types without needing to decompress them first.
→ Reduce # of specialized primitives per vector type

63

Mark Raasveldt

Unified
Vector
Format

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://www.youtube.com/watch?v=bZOvAKGkzpQ&list=PLSE8ODhjZXjYzlLMbX3cR0sxWnRM7CLFn&index=21

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://tabdb.io/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TABDB (2019)

TabDB is a relational DBMS that stores data in your
browser's tab title fields.

It uses Emscripten to convert SQLite's C code into
JavaScript.

It then splits the SQLite database file into strings
and stores them in your browser tabs.

https://tabdb.io/

104

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
https://emscripten.org/
https://tabdb.io/

15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

CONCLUDING REMARKS

Databases are awesome.
→ They cover all facets of computer science.
→ We have barely scratched the surface…

Going forth, you should now have a good
understanding how these systems work.

This will allow you to make informed decisions
throughout your entire career.
→ Avoid premature optimizations.

105

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024

	Introduction
	Slide 1: Final Review & Systems Potpourri
	Slide 2: ADMINISTRIVIA
	Slide 3: SPRING 2025
	Slide 4: COURSE EVALS
	Slide 5: OFFICE HOURS

	Final Exam Review
	Slide 6: FINAL EXAM
	Slide 7: FINAL EXAM
	Slide 8: FINAL EXAM
	Slide 9: STUFF BEFORE MID-TERM
	Slide 10: QUERY OPTIMIZATION
	Slide 11: TRANSACTIONS
	Slide 12: TRANSACTIONS
	Slide 13: TRANSACTIONS
	Slide 14: CRASH RECOVERY
	Slide 15: CRASH RECOVERY
	Slide 16: DISTRIBUTED DATABASES
	Slide 17: TOPICS NOT ON EXAM!

	Optimizations
	Slide 18
	Slide 19: SEQUENTIAL SCAN: OPTIMIZATIONS
	Slide 20: SELECTION SCANS
	Slide 21: SELECTION SCANS
	Slide 22: SELECTION SCANS
	Slide 23: VECTORIZED SELECTION SCANS
	Slide 24: VECTORIZED SELECTION SCANS
	Slide 25: VECTORIZED SELECTION SCANS
	Slide 26: VECTORIZED SELECTION SCANS
	Slide 27: VECTORIZED SELECTION SCANS
	Slide 28: VECTORIZED SELECTION SCANS
	Slide 29: VECTORIZED SELECTION SCANS
	Slide 30: VECTORIZED SELECTION SCANS
	Slide 31: VECTORIZED SELECTION SCANS
	Slide 32: HIQUE: HOLISTIC CODE GENERATION
	Slide 33: HIQUE: OPERATOR TEMPLATES
	Slide 34: HIQUE: OPERATOR TEMPLATES
	Slide 35: HIQUE: OPERATOR TEMPLATES
	Slide 36: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 37: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 38: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 39: VECTORWISE: PRECOMPILED PRIMITIVES
	Slide 40: SYSTEMS

	BigQuery
	Slide 41
	Slide 42: GOOGLE BIGQUERY (2011)
	Slide 43: BIGQUERY: OVERVIEW
	Slide 44: BIGQUERY: OVERVIEW
	Slide 45: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 46: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 47: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 48: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 49: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 50: BIGQUERY: IN-MEMORY SHUFFLE
	Slide 51: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 52: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 53: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 54: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 55: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 56: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 57: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 58: BIGQUERY: DYNAMIC REPARTITIONING
	Slide 59: BIGQUERY: DYNAMIC REPARTITIONING

	Snowflake
	Slide 60
	Slide 61: SNOWFLAKE (2013)
	Slide 62: SNOWFLAKE: OVERVIEW
	Slide 63: SNOWFLAKE: QUERY PROCESSING
	Slide 64: SNOWFLAKE: ADAPTIVE OPTIMIZATION
	Slide 65: SNOWFLAKE: ADAPTIVE OPTIMIZATION
	Slide 66: SNOWFLAKE: ADAPTIVE OPTIMIZATION
	Slide 67: SNOWFLAKE: ADAPTIVE OPTIMIZATION
	Slide 68: SNOWFLAKE: FLEXIBLE COMPUTE
	Slide 69: SNOWFLAKE: FLEXIBLE COMPUTE

	Redshift
	Slide 70
	Slide 71: AMAZON REDSHIFT (2014)
	Slide 72: REDSHIFT: OVERVIEW
	Slide 73: REDSHIFT: COMPILATION SERVICE
	Slide 74: REDSHIFT: HARDWARE ACCELERATION

	Yellowbrick
	Slide 75
	Slide 76: YELLOWBRICK (2014)
	Slide 77: YELLOWBRICK
	Slide 78: YELLOWBRICK: ARCHITECTURE
	Slide 79: YELLOWBRICK: QUERY EXECUTION
	Slide 80: YELLOWBRICK: MEMORY ALLOCATOR
	Slide 81: YELLOWBRICK: DEVICE DRIVERS

	Databricks
	Slide 82
	Slide 83: DATABRICKS PHOTON (2022)
	Slide 84: DATABRICKS PHOTON (2022)
	Slide 85: PHOTON: OVERVIEW
	Slide 86: PHOTON: VECTORIZED PROCESSING
	Slide 87: PHOTON: EXPRESSION FUSION
	Slide 88: PHOTON: EXPRESSION FUSION
	Slide 89: PHOTON: EXPRESSION FUSION
	Slide 90: SPARK: PARTITION COALESCING
	Slide 91: SPARK: PARTITION COALESCING
	Slide 92: SPARK: PARTITION COALESCING
	Slide 93: SPARK: PARTITION COALESCING
	Slide 94: SPARK: PARTITION COALESCING

	DuckDB
	Slide 95
	Slide 96: DUCKDB (2019)
	Slide 97: DUCKDB (2019)
	Slide 98: DUCKDB: OVERVIEW
	Slide 99: DUCKDB: PUSH-BASED PROCESSING
	Slide 100: DUCKDB: PUSH-BASED PROCESSING
	Slide 101: DUCKDB: VECTORS
	Slide 102: DUCKDB: VECTORS

	TabDB
	Slide 103
	Slide 104: TABDB (2019)

	Conclusion
	Slide 105: CONCLUDING REMARKS

