
DatabaseSystems

Database
Systems

15-445/645 FALL 2024 PROF. ANDY PAVLO15-445/645 FALL 2024

15-445/645 FALL 2024  
PROF. ANDY PAVLO

PROF. ANDY PAVLO

Final Review &
Systems Potpourri

https://15445.courses.cs.cmu.edu/fall2024
https://15445.courses.cs.cmu.edu/fall2024
https://www.cs.cmu.edu/~pavlo/


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

ADMINISTRIVIA

Project #4 is due Sunday Dec 8th @ 11:59pm

Homework #6 is due Monday Dec 9th @ 11:59pm

Final Project Submission Deadline:
Monday Dec 16th @ 11:59am
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SPRING 2025

Jignesh is recruiting impressionable TAs for 15-
445/645 in Spring 2025.
→ All BusTub projects will remain in C++.
→ If you want to work on fixing BusTub over the 

winter break for money, please let us know. 

Sign up here:

https://www.ugrad.cs.cmu.edu/ta/S25 
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COURSE EVALS

Your feedback is strongly needed:
→ https://cmu.smartevals.com 
→ https://www.ugrad.cs.cmu.edu/ta/F24/feedback/ 

Things that we want feedback on:
→ Homework Assignments
→ Projects
→ Reading Materials
→ Lectures
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OFFICE HOURS

Andy:
→ Wednesday Dec 11th @ 3:30-4:30pm (GHC 9019)
→ Thursday Dec 12th @ 3:00-4:00pm (GHC 9019)
→ Or email me for an appt

Will:
→ Wednesday Dec 11th @ 10:30-11:30am (GHC 5th Floor 

Commons)

All other TAs will have their office hours up to and 
including Saturday Dec 7th 
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FINAL EXAM

Who: You

What: Final Exam

Where: Baker Hall A51

When: Friday Dec 13th @ 8:30-11:30am

Why: https://youtu.be/8tuoIO4CxOw 

Email instructors if you need special accommodations.

https://15445.courses.cs.cmu.edu/fall2024/final-guide.html

https://15445.courses.cs.cmu.edu/fall2024/final-guide.html
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FINAL EXAM

Everyone should come to BH A51.

You will then be assigned a random location in 
either A51 or A53.

There will be TAs stationed in each room to give 
you the exam and to handle questions.

Andy will bounce around the rooms during the 
exam time.
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FINAL EXAM

What to bring:
→ CMU ID
→ Pencil + Eraser (!!!)
→ Calculator (cellphone is okay)
→ One 8.5x11" page of handwritten notes (double-sided)
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STUFF BEFORE MID-TERM

SQL

Buffer Pool Management

Data Structures (Hash Tables, B+Trees)

Storage Models

Query Processing Models

Inter-Query Parallelism

Basic Understanding of BusTub Internals
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QUERY OPTIMIZATION

Heuristics
→ Predicate Pushdown
→ Projection Pushdown
→ Nested Sub-Queries: Rewrite and Decompose

Statistics
→ Cardinality Estimation
→ Histograms

Cost-based search
→ Bottom-up vs. Top-Down
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TRANSACTIONS

ACID

Conflict Serializability:
→ How to check for correctness?
→ How to check for equivalence?

View Serializability
→ Difference with conflict serializability

Isolation Levels / Anomalies
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TRANSACTIONS

Two-Phase Locking
→ Strong Strict 2PL
→ Cascading Aborts Problem
→ Deadlock Detection & Prevention

Multiple Granularity Locking
→ Intention Locks
→ Understanding performance trade-offs
→ Lock Escalation (i.e., when is it allowed)

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

TRANSACTIONS

Optimistic Concurrency Control
→ Read Phase
→ Validation Phase (Backwards vs. Forwards)
→ Write Phase

Multi-Version Concurrency Control
→ Version Storage / Ordering
→ Garbage Collection
→ Index Maintenance
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CRASH RECOVERY

Buffer Pool Policies:
→ STEAL vs. NO-STEAL
→ FORCE vs. NO-FORCE

Shadow Paging

Write-Ahead Logging
→ How it relates to buffer pool management
→ Logging Schemes (Physical vs. Logical)
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CRASH RECOVERY

Checkpoints
→ Non-Fuzzy vs. Fuzzy

ARIES Recovery
→ Dirty Page Table (DPT)
→ Active Transaction Table (ATT)
→ Analyze, Redo, Undo phases
→ Log Sequence Numbers
→ CLRs

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

DISTRIBUTED DATABASES

System Architectures

Replication

Partitioning Schemes

Two-Phase Commit
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TOPICS NOT ON EXAM!

Flash Talks

Seminar Talks

Details of specific database systems (e.g., Postgres)

Andy's legal troubles
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CMU 15-721 (Spring 2024)

SPEED RUN

15721.courses.cs.cmu.edu/spring2024

15721.courses.cs.cmu.edu/spring2024
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SEQUENTIAL SCAN: OPTIMIZATIONS

Data Encoding / Compression

Prefetching / Scan Sharing / Buffer Bypass

Task Parallelization / Multi-threading

Clustering / Sorting

Late Materialization

Materialized Views / Result Caching

Data Skipping

Data Parallelization / Vectorization

Code Specialization / Compilation

Lecture #06

Lecture #14

Lecture #14

Lecture #08

Lecture #12

Lecture #5

19

Lecture #13
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SELECT * FROM table
 WHERE key > $(low)
   AND key < $(high)

SELECTION SCANS

20

Bogdan Raducanu
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SELECTION SCANS

20

Scalar (Branching)

i = 0
for t in table:
  key = t.key
  if (key>low) && (key<high):
    copy(t, output[i])
    i = i + 1

Scalar (Branchless)

i = 0
for t in table:
  copy(t, output[i])
  key = t.key
  delta = (key>low ? 1 : 0) &
      ⮱(key<high ? 1 : 0)
  i = i + delta

Bogdan Raducanu
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SELECTION SCANS

21
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Scalar (Branchless)

i = 0
for t in table:
  copy(t, output[i])
  key = t.key
  m = (key≥low ? 1 : 0) &
      ⮱(key≤high ? 1 : 0)
  i = i + m

SELECT * FROM table
 WHERE key >= $low AND key <= $high

VECTORIZED SELECTION SCANS

22
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SELECT * FROM table
 WHERE key >= $low AND key <= $high

VECTORIZED SELECTION SCANS

22

Vectorized

i = 0
for vt in table:
  simdLoad(vt.key, vk)
  vm = (vk≥low ? 1 : 0) &
      ⮱(vk≤high ? 1 : 0)
  simdStore(vt, vm, output[i])
  i = i + |vm≠false|

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT * FROM table
 WHERE key >= $low AND key <= $high

VECTORIZED SELECTION SCANS

22

Vectorized

i = 0
for vt in table:
  simdLoad(vt.key, vk)
  vm = (vk≥low ? 1 : 0) &
      ⮱(vk≤high ? 1 : 0)
  simdStore(vt, vm, output[i])
  i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= "N" AND key <= "U"

https://db.cs.cmu.edu/
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TID
100

KEY
A

101 N
102 D
103 Y
104 P
105 I
106 S
107

SELECT * FROM table
 WHERE key >= $low AND key <= $high

VECTORIZED SELECTION SCANS

22

Vectorized

i = 0
for vt in table:
  simdLoad(vt.key, vk)
  vm = (vk≥low ? 1 : 0) &
      ⮱(vk≤high ? 1 : 0)
  simdStore(vt, vm, output[i])
  i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= "N" AND key <= "U"

Key Vector A N D Y P I S

https://db.cs.cmu.edu/
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TID
100

KEY
A

101 N
102 D
103 Y
104 P
105 I
106 S
107

SELECT * FROM table
 WHERE key >= $low AND key <= $high

VECTORIZED SELECTION SCANS

22

Vectorized

i = 0
for vt in table:
  simdLoad(vt.key, vk)
  vm = (vk≥low ? 1 : 0) &
      ⮱(vk≤high ? 1 : 0)
  simdStore(vt, vm, output[i])
  i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= "N" AND key <= "U"

Key Vector A N D Y P I S

SIMD Compare

Mask #1 0 1 0 1 1 0 1 0

https://db.cs.cmu.edu/
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TID
100

KEY
A

101 N
102 D
103 Y
104 P
105 I
106 S
107

SELECT * FROM table
 WHERE key >= $low AND key <= $high

VECTORIZED SELECTION SCANS

22

Vectorized

i = 0
for vt in table:
  simdLoad(vt.key, vk)
  vm = (vk≥low ? 1 : 0) &
      ⮱(vk≤high ? 1 : 0)
  simdStore(vt, vm, output[i])
  i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= "N" AND key <= "U"

Key Vector A N D Y P I S

SIMD Compare

Mask #1 0 1 0 1 1 0 1 0

Mask #2 1 1 1 0 1 1 1 0
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TID
100

KEY
A

101 N
102 D
103 Y
104 P
105 I
106 S
107

SELECT * FROM table
 WHERE key >= $low AND key <= $high

VECTORIZED SELECTION SCANS

22

Vectorized

i = 0
for vt in table:
  simdLoad(vt.key, vk)
  vm = (vk≥low ? 1 : 0) &
      ⮱(vk≤high ? 1 : 0)
  simdStore(vt, vm, output[i])
  i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= "N" AND key <= "U"

Key Vector A N D Y P I S

SIMD Compare

SIMD AND

Mask #3 0 1 0 0 1 0 1 0

Mask #1 0 1 0 1 1 0 1 0

Mask #2 1 1 1 0 1 1 1 0
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TID
100

KEY
A

101 N
102 D
103 Y
104 P
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107

SELECT * FROM table
 WHERE key >= $low AND key <= $high

VECTORIZED SELECTION SCANS

22

Vectorized

i = 0
for vt in table:
  simdLoad(vt.key, vk)
  vm = (vk≥low ? 1 : 0) &
      ⮱(vk≤high ? 1 : 0)
  simdStore(vt, vm, output[i])
  i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= "N" AND key <= "U"

Key Vector A N D Y P I S

All Offsets 0 1 2 3 4 5 6 7

SIMD Compare

SIMD AND

Mask #3 0 1 0 0 1 0 1 0

Mask #1 0 1 0 1 1 0 1 0

Mask #2 1 1 1 0 1 1 1 0
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TID
100

KEY
A

101 N
102 D
103 Y
104 P
105 I
106 S
107

SELECT * FROM table
 WHERE key >= $low AND key <= $high

VECTORIZED SELECTION SCANS

22

Vectorized

i = 0
for vt in table:
  simdLoad(vt.key, vk)
  vm = (vk≥low ? 1 : 0) &
      ⮱(vk≤high ? 1 : 0)
  simdStore(vt, vm, output[i])
  i = i + |vm≠false|

SELECT * FROM table
 WHERE key >= "N" AND key <= "U"

Key Vector A N D Y P I S

All Offsets 0 1 2 3 4 5 6 7

Matched Offsets 1 4 6

SIMD Compare

SIMD Compress

SIMD AND

Mask #3 0 1 0 0 1 0 1 0

Mask #1 0 1 0 1 1 0 1 0

Mask #2 1 1 1 0 1 1 1 0
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HIQUE: HOLISTIC CODE GENERATION

For a given query plan, create a C/C++ program 
that implements that query’s execution.
→ Bake in all the predicates and type conversions.

Use an off-shelf compiler to convert the code into a 
shared object, link it to the DBMS process, and then 
invoke the exec function.

23

Generating Code for Holistic Query EvaluationICDE 2010
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Interpreted Plan

HIQUE: OPERATOR TEMPLATES

24

for t in range(table.num_tuples):
  tuple = get_tuple(table, t)
  if eval(predicate, tuple, params):
    emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

https://db.cs.cmu.edu/
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Interpreted Plan

HIQUE: OPERATOR TEMPLATES

24

for t in range(table.num_tuples):
  tuple = get_tuple(table, t)
  if eval(predicate, tuple, params):
    emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

https://db.cs.cmu.edu/
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Templated PlanInterpreted Plan

HIQUE: OPERATOR TEMPLATES

24

tuple_size = ###
predicate_offset = ###
parameter_value = ###

for t in range(table.num_tuples):
    tuple = table.data + t ∗ tuple_size
    val = (tuple+predicate_offset)
    if (val == parameter_value + 1):
      emit(tuple)

for t in range(table.num_tuples):
  tuple = get_tuple(table, t)
  if eval(predicate, tuple, params):
    emit(tuple)

1. Get schema in catalog for table.
2. Calculate offset based on tuple size.
3. Return pointer to tuple.

1. Traverse predicate tree and pull values up.
2. If tuple value, calculate the offset of the target attribute.
3. Perform casting as needed for comparison operators.
4. Return true / false.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

VECTORWISE: PRECOMPILED PRIMITIVES

Pre-compiles thousands of "primitives" that 
perform basic operations on typed data.
→ Using simple kernels for each primitive means that they 

are easier to vectorize.

The DBMS then executes a query plan that invokes 
these primitives at runtime.
→ Function calls are amortized over multiple tuples.
→ The output of a primitive are the offsets of tuples that 

25

Micro Adaptivity in VectorwiseSIGMOD 2013
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VECTORWISE: PRECOMPILED PRIMITIVES

26

SELECT * FROM foo
WHERE str_col = 'abc'
  AND int_col = 4;

foo

str_col='abc' &&
int_col=4

https://db.cs.cmu.edu/
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VECTORWISE: PRECOMPILED PRIMITIVES

26

SELECT * FROM foo
WHERE str_col = 'abc'
  AND int_col = 4;

foo

str_col='abc' &&
int_col=4

vec<offset> sel_eq_str(vec<string> col, string val) {
  vec<offset> positions;   
  for (offset i = 0; i < col.size(); i++)
    if (col[i] == val) positions.append(i);
  return (positions);
}

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024
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VECTORWISE: PRECOMPILED PRIMITIVES

26

SELECT * FROM foo
WHERE str_col = 'abc'
  AND int_col = 4;

foo

str_col='abc' &&
int_col=4

vec<offset> sel_eq_str(vec<string> col, string val) {
  vec<offset> positions;   
  for (offset i = 0; i < col.size(); i++)
    if (col[i] == val) positions.append(i);
  return (positions);
}

vec<offset> sel_eq_int(vec<int> col, int val,
                       vec<offset> positions) {
  vec<offset> res;   
  for (offset i : positions)
    if (col[i] == val) res.append(i);
  return (res);
}

https://db.cs.cmu.edu/
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SYSTEMS

Google BigQuery (2011)

Snowflake (2013)

Amazon Redshift (2014)

Yellowbrick (2014)

Databricks Photon (2022)

DuckDB (2019)

TabDB (2019)

27
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GOOGLE BIGQUERY (2011)

Originally developed as "Dremel" in 2006 as a side-
project for analyzing data artifacts generated from 
other tools.
→ The "interactive" goal means that they want to support ad 

hoc queries on in-situ data files.
→ Did not support joins in the first version.

Rewritten in the late 2010s to shared-disk 
architecture built on top of GFS.

Released as public commercial product (BigQuery) 
in 2012.

29
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BIGQUERY: OVERVIEW

Shared-Disk / Disaggregated Storage

Vectorized Query Processing

Shuffle-based Distributed Query Execution

Columnar Storage
→ Zone Maps / Filters
→ Dictionary + RLE Compression
→ Only Allows "Search" Inverted Indexes

Hash Joins Only

Heuristic Optimizer + Adaptive Optimizations

30
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BIGQUERY: OVERVIEW

Shared-Disk / Disaggregated Storage

Vectorized Query Processing

Shuffle-based Distributed Query Execution

Columnar Storage
→ Zone Maps / Filters
→ Dictionary + RLE Compression
→ Only Allows "Search" Inverted Indexes

Hash Joins Only

Heuristic Optimizer + Adaptive Optimizations
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BIGQUERY: IN-MEMORY SHUFFLE

The shuffle phases represent checkpoints in a 
query's lifecycle where that the coordinator makes 
sure that all tasks are completed.

Fault Tolerance / Straggler Avoidance:
→ If a worker does not produce a task's results within a 

deadline, the coordinator speculatively executes a 
redundant task.

Dynamic Resource Allocation:
→ Scale up / down the number of workers for the next stage 

depending size of a stage's output.

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

BIGQUERY: IN-MEMORY SHUFFLE

32
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BIGQUERY: IN-MEMORY SHUFFLE
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BIGQUERY: DYNAMIC REPARTITIONING

BigQuery dynamically load balances 
and adjusts intermediate result 
partitioning to adapt to data skew.

DBMS detects whether shuffle 
partition gets too full and then 
instructs workers to adjust their 
partitioning scheme.

33
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SNOWFLAKE (2013)

Managed OLAP DBMS written in C++.
→ Shared-disk architecture with aggressive compute-side 

local caching.
→ Written from scratch. Did not borrow components from 

existing systems.
→ Custom SQL dialect and client-server network protocols.

The OG cloud-native data warehouse.

35
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SNOWFLAKE: OVERVIEW

Cloud-native OLAP DBMS written in C++.

Shared-Disk / Disaggregated Storage

Push-based Vectorized Query Processing

Precompiled Operator Primitives

Separate Table Data from Meta-Data

No Buffer Pool

PAX Columnar Storage

36
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SNOWFLAKE: QUERY PROCESSING

Snowflake is a push-based vectorized engine that 
uses precompiled primitives for operator kernels.
→ Pre-compile variants using C++ templates for different 

vector data types.
→ Only uses codegen (via LLVM) for tuple 

serialization/deserialization between workers.

Does not support partial query retries
→ If a worker fails, then the entire query has to restart.

37
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SNOWFLAKE: ADAPTIVE OPTIMIZATION

After determining join ordering, 
Snowflake's optimizer identifies 
aggregation operators to push down 
into the plan below joins.

The optimizer adds the downstream 
aggregations but then the DBMS only 
enables them at runtime according to 
statistics observed during execution.

38
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SNOWFLAKE: FLEXIBLE COMPUTE

If a query plan fragment will process a 
large amount of data, then the DBMS 
can temporarily deploy additional 
worker nodes to accelerate its 
performance.

Flexible compute worker nodes write 
results to storage as if it was a table.
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AMAZON REDSHIFT (2014)

Amazon's flagship OLAP DBaaS.
→ Based on ParAccel's original shared-nothing architecture. 
→ Switched to support disaggregated storage (S3) in 2017.
→ Added serverless deployments in 2022.

Redshift is a more traditional data warehouse  
compared to BigQuery/Spark where it wants to 
control all the data.

Overarching design goal is to remove as much 
administration + configuration choices from users.

41

Amazon Redshift Re-InventedSIGMOD 2022
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REDSHIFT: OVERVIEW

Shared-Disk / Disaggregated Storage

Push-based Vectorized Query Processing

Transpilation Query Codegen (C++)

Precompiled Primitives

Compute-side Caching

PAX Columnar Storage

Sort-Merge + Hash Joins

Hardware Acceleration (AQUA)

Stratified Query Optimizer

42
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REDSHIFT: COMPILATION SERVICE

Separate nodes to compile query plans using GCC 
and aggressive caching. 
→ DBMS checks whether a compiled version of each 

templated fragment already exists in customer's local cache.
→ If fragment does not exist in the local cache, then it checks 

a global cache for the entire fleet of Redshift customers.

Background workers proactively recompile plans 
when new version of DBMS is released.
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REDSHIFT: HARDWARE ACCELERATION

AWS introduced the AQUA 
(Advanced Query Accelerator) for 
Redshift (Spectrum?) in 2021.

Separate compute/cache nodes that 
use FPGAs to evaluate predicates.

AQUA was phased out and replaced 
with Nitro cards on compute nodes
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YELLOWBRICK (2014)

OLAP DBMS written on C++ and derived from a 
hardfork of PostgreSQL v9.5.
→ Uses PostgreSQL's front-end (networking, parser, catalog) 

to handle incoming SQL requests.
→ They hate the OS as much as I do.

Originally started as an on-prem appliance with 
FPGA acceleration. Switched to DBaaS in 2021.

Cloud-version uses Kubernetes for all components.
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YELLOWBRICK

Shared-Disk / Disaggregated Storage

Push-based Vectorized Query Processing

Transpilation Query Codegen (C++)

Compute-side Caching

Separate Row + PAX Columnar Storage

Sort-Merge + Hash Joins

PostgreSQL Query Optimizer++

Insane Systems Engineering

47
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YELLOWBRICK: ARCHITECTURE

48
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YELLOWBRICK: QUERY EXECUTION

Pushed-based vectorized query processing that 
supports both row- and columnar-oriented data 
with early materialization.
→ Introduces transpose operators to convert data back and 

forth between row and columnar formats.

Holistic query compilation via source-to-source 
transpilation.

Yellowbrick's architecture goal is for workers to 
always process data residing in the CPU's L3 cache 
and not memory.
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YELLOWBRICK: MEMORY ALLOCATOR

Custom NUMA-aware, latch-free allocator that gets 
all the memory needed upfront at start-up
→ Using mmap with mlock with huge pages.
→ Allocations are grouped by query to avoid fragmentation.
→ Claims their allocator is 100x faster than libc malloc.

Each worker also has a buffer pool manager that 
uses MySQL-style approximate LRU-K to store 
cached data files.
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YELLOWBRICK: DEVICE DRIVERS

Custom NVMe / NIC drivers that run 
in user-space to avoid memory copy 
overheads.
→ Falls back to Linux drivers if necessary.

Custom reliable UDP network 
protocol with kernel-bypass (DPDK) 
for internal communication.
→ Each CPU has its own receive/transmit 

queues that it polls asynchronously.
→ Only sends data to a "partner" CPU at 

other workers.
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DATABRICKS PHOTON (2022)

JNI

Single-threaded C++ execution engine embedded 
into Databricks Runtime (DBR) via JNI.
→ Overrides existing engine when appropriate.
→ Support both Spark's earlier SQL engine and Spark's 

DataFrame API.
→ Seamlessly handle impedance mismatch between row-

oriented DBR and column-oriented Photon.

Accelerate execution of query plans over "raw / 
uncurated" files in a data lake.

53

Photon: A Fast Query Engine for Lakehouse SystemsSIGMOD 2022
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PHOTON: OVERVIEW

Shared-Disk / Disaggregated Storage

Pull-based Vectorized Query Processing

Precompiled Primitives + Expression Fusion

Shuffle-based Distributed Query Execution

Sort-Merge + Hash Joins

Unified Query Optimizer + Adaptive Optimizations

54
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PHOTON: VECTORIZED PROCESSING

Photon is a pull-based vectorized engine that uses 
precompiled operator kernels (primitives).
→ Converts physical plan into a list of pointers to functions 

that perform low-level operations on column batches.

Databricks: It is easier to build/maintain a 
vectorized engine than a JIT engine.
→ Engineers spend more time creating specialized codepaths 

to get closer to JIT performance.
→ With codegen, engineers write tooling and observability 

hooks instead of writing the engine.

55
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SELECT * FROM foo
 WHERE cdate BETWEEN '2024-01-01' AND '2024-04-01';

PHOTON: EXPRESSION FUSION

56
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SELECT * FROM foo
 WHERE cdate >= '2024-01-01'
   AND cdate <= '2024-04-01';

PHOTON: EXPRESSION FUSION

56

foo

cdate >= '2024-01-01'
  AND
cdate <= '2024-04-01'



vec<offset> sel_geq_date(vec<date> batch, date val) {
  vec<offset> positions;   
  for (offset i = 0; i < batch.size(); i++)
    if (batch[i] >= val) positions.append(i);
  return (positions);
}

vec<offset> sel_leq_date(vec<date> batch, date val) {
  vec<offset> positions;   
  for (offset i = 0; i < batch.size(); i++)
    if (batch[i] <= val) positions.append(i);
  return (positions);
}

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2024


15-445/645 (Fall 2024)

15-445/645 (Fall 2024)

SELECT * FROM foo
 WHERE cdate >= '2024-01-01'
   AND cdate <= '2024-04-01';

PHOTON: EXPRESSION FUSION

56

foo

cdate >= '2024-01-01'
  AND
cdate <= '2024-04-01'



vec<offset> sel_between_dates(vec<date> batch,
                              date low, date high) {
  vec<offset> positions;   
  for (offset i = 0; i < batch.size(); i++)
    if (batch[i] >= low && batch[i] <= high)
      positions.append(i);
  return (positions);
}
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SPARK: PARTITION COALESCING

Spark (over-)allocates a large number 
of shuffle partitions for each stage.
→ Number needs to be large enough to avoid 

one partitioning from filling up too much.

After the shuffle completes, the 
DBMS then combines underutilized 
partitions using heuristics.

57

Worker

Maryann Xue
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DUCKDB (2019)

Multi-threaded embedded (in-process, serverless) 
DBMS that executes SQL over disparate data files.
→ PostgreSQL-like dialect with quality-of-life enhancements.
→ "SQLite for Analytics"

Provides zero-copy access to query results via 
Arrow to client code running in same process.

The core DBMS is nearly all custom C++ code with 
little to no third-party dependencies.
→ Relies on extensions ecosystem to expand capabilities.

59
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DUCKDB: OVERVIEW

Shared-Everything

Push-based Vectorized Query Processing

Precompiled Primitives

Multi-Version Concurrency Control

Morsel Parallelism + Scheduling

PAX Columnar Storage

Sort-Merge + Hash Joins

Stratified Query Optimizer
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DUCKDB: PUSH-BASED PROCESSING

System originally used pull-based vectorized query 
processing but found it unwieldly to expand to 
support more complex parallelism.
→ Cannot invoke multiple pipelines simultaneously.

Switched to a push-based query processing model in 
2021. Each operator determines whether it will 
execute in parallel on its own instead of a 
centralized executor.
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DUCKDB: VECTORS

Custom internal vector layout for intermediate 
results that is compatible with Velox.

Supports multiple vector types:
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DUCKDB: VECTORS

DuckDB uses a unified format to process all vector 
types without needing to decompress them first.
→ Reduce # of specialized primitives per vector type

63

Mark Raasveldt

Unified
Vector
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TABDB (2019)

TabDB is a relational DBMS that stores data in your 
browser's tab title fields.

It uses Emscripten to convert SQLite's C code into 
JavaScript.

It then splits the SQLite database file into strings 
and stores them in your browser tabs.

 

https://tabdb.io/
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CONCLUDING REMARKS

Databases are awesome.
→ They cover all facets of computer science.
→ We have barely scratched the surface…

Going forth, you should now have a good 
understanding how these systems work.

This will allow you to make informed decisions 
throughout your entire career.
→ Avoid premature optimizations.
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