
CS 61A Iterators, Generators
Fall 2023 Discussion 6: February 28, 2024

Pick someone in your group to join Discord. It’s fine if multiple people join, but one is enough.

Now switch to Pensieve:

• Everyone: Go to discuss.pensieve.co and log in with your @berkeley.edu email, then enter your group number.
(Your group number is the number of your Discord channel.)

Once you’re on Pensieve, you don’t need to return to this page; Pensieve has all the same content (but more features).
If for some reason Penseive doesn’t work, return to this page and continue with the discussion.

Post in the #help channel on Discord if you have trouble.

Getting Started
Say your name and share a favorite place on the Berkeley campus or surrounding city that you’ve discovered. Try to
pick a place that others might not have been yet. (But if the room you’re in now is your favorite place on campus,
that’s ok too.)

McCone Hall has a nice view from the 5th floor balcony.

Generators
A generator is an iterator that is returned by calling a generator function, which is a function that contains yield
statements instead of return statements. The ways to use an iterator are to call next on it or to use it as an iterable
(for example, in a for statement).

Q1: Big Fib

This generator function yields all of the Fibonacci numbers.

def gen_fib():
n, add = 0, 1
while True:

yield n
n, add = n + add, n

Explain the following expression to each other so that everyone understands how it works. (It creates a list of the
first 10 Fibonacci numbers.)

(lambda t: [next(t) for _ in range(10)])(gen_fib())

Then, complete the expression below by writing only names and parentheses in the blanks so that it evaluates to the
smallest Fibonacci number that is larger than 2024.

https://cs61a.org/articles/discord
http://discuss.pensieve.co
https://cs61a.org/articles/discord/
https://www.campus-maps.com/university-of-california-berkeley/mccone-hall/


2 Iterators, Generators

Talk with each other about what built-in functions might be helpful, such as map, filter, list, any, all, etc. (Click
on these function names to view their documentation.) Try to figure out the answer without using Python. Only
run the code when your group agrees that the answer is right. This is not the time for guess-and-check.

def gen_fib():
n, add = 0, 1
while True:

yield n
n, add = n + add, n

next(filter(lambda n: n > 2024, gen_fib()))

One solution has the form: next(____(lambda n: n > 2024, ____)) where the first blank uses a built-in function
to create an iterator over just large numbers and the second blank creates an iterator over all Fibonacci numbers.

Surprise! There’s no hint here. If you’re still stuck, it’s time to get help from the course staff.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functions.html#filter
https://docs.python.org/3/library/functions.html#func-list
https://docs.python.org/3/library/functions.html#any
https://docs.python.org/3/library/functions.html#all


Iterators, Generators 3

Q2: Something Different

Implement differences, a generator function that takes t, a non-empty iterator over numbers. It yields the
differences between each pair of adjacent values from t. If t iterates over a positive finite number of values n, then
differences should yield n-1 times.

def differences(t):
"""Yield the differences between adjacent values from iterator t.

>>> list(differences(iter([5, 2, -100, 103])))
[-3, -102, 203]
>>> next(differences(iter([39, 100])))
61
"""
last_x = next(t)
for x in t:

yield x - last_x
last_x = x

Add to the following implementation by initializing and updating previous_x so that it is always bound to the value
of t that came before x.

for x in t:
yield x - previous_x

Presentation Time. Work together to explain why differences will always yield n-1 times for an iterator t over
n values. Pick someone who didn’t present to the course staff last week to present your group’s answer, and then
send a message to the discuss-queue channel with the @discuss tag, your discussion group number, and the message
“We beg to differ!” and a member of the course staff will join your voice channel to hear your description and give
feedback.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



4 Iterators, Generators

Intermission

We’re lazy (like an iterator) and used ChatGPT to generate a generator joke…

Because it was skilled at knowing when to “return” to the recipe and when to “yield” to improvisation!

Q3: Partitions

Tree-recursive generator functions have a similar structure to regular tree-recursive functions. They are useful for
iterating over all possibilities. Instead of building a list of results and returning it, just yield each result.

You’ll need to identify a recursive decomposition: how to express the answer in terms of recursive calls that are
simpler. Ask yourself what will be yielded by a recursive call, then how to use those results.

Definition. For positive integers n and m, a partition of n using parts up to size m is an addition expression of
positive integers up to m in non-decreasing order that sums to n.

Implement partition_gen, a generator functon that takes positive n and m. It yields the partitions of n using parts
up to size m as strings.

Reminder: For the partitions function we studied in lecture (video), the recursive decomposition was to enumerate
all ways of partitioning n using at least one m and then to enumerate all ways with no m (only m-1 and lower).

def partition_gen(n, m):
"""Yield the partitions of n using parts up to size m.

>>> for partition in sorted(partition_gen(6, 4)):
... print(partition)
1 + 1 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 2
1 + 1 + 1 + 3
1 + 1 + 2 + 2
1 + 1 + 4
1 + 2 + 3
2 + 2 + 2
2 + 4
3 + 3
"""
assert n > 0 and m > 0
if n == m:

yield str(n)
if n - m > 0:

for p in partition_gen(n - m, m):
yield p + ' + ' + str(m)

if m > 1:
yield from partition_gen(n, m-1)

Yield a partition with just one element, n. Make sure you yield a string.

The first recursive case uses at least one m, and so you will need to yield a string that starts with p but also includes
m. The second recursive case only uses parts up to size m-1. (You can implement the second case in one line using

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://youtu.be/DvgT4dnSMVM


Iterators, Generators 5

yield from.)

Presentation Time. If you have time, work together to explain why this implementation of partition_gen does
not include base cases for n < 0, n == 0, or m == 0 even though the original implementation of partitions from
lecture (video) had all three. Pick someone who didn’t present to the course staff this week or last week to present
your group’s answer, and then send a message to the discuss-queue channel with the @discuss tag, your discussion
group number, and the message “We’re positive!” and a member of the course staff will join your voice channel to
hear your description and give feedback.

Document the Occasion
Please all fill out the attendance form (one submission per person per week).

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://youtu.be/DvgT4dnSMVM?si=MEkqzloqIcbD1-09&t=515
https://docs.google.com/forms/d/e/1FAIpQLSeqlK8l6WkScGr-RHR-kM4p5bnR9cllYrG95fDqPJspSlll7A/viewform

	Getting Started
	Generators
	Q1: Big Fib
	Q2: Something Different
	Intermission
	Q3: Partitions


	Document the Occasion

