CARNEGIE MELLON UNIVERSITY
COMPUTER SCIENCE DEPARTMENT
15-445/645 — DATABASE SYSTEMS (FALL 2024)
PROF. ANDY PAVLO

Homework #3 (by William) — Solutions
Due: Sunday October 6th, 2024 @ 11:59pm

IMPORTANT:
* Enter all of your answers into Gradescope by 11:59pm on Sunday October 6th, 2024.

* Plagiarism: Homework may be discussed with other students, but all homework is to be
completed individually.
For your information:
* Graded out of 100 points; 5 questions total
* Rough time estimate: ~4-6 hours (1-1.5 hours for each question)

Rewvision :2024/10/07 13:13

Question Points | Score

Linear Hashing and Cuckoo Hashing 18

Extendible Hashing 20
B+Tree 27

Bloom Filter 20
Alternate Index Structures 15

Total: 100

https://15445.courses.cs.cmu.edu/fall2024/
https://www.cs.cmu.edu/~pavlo/

15-445/645 (Fall 2024) Homework #3 Page 2 of 15

Question 1: Linear Hashing and Cuckoo Hashing..............[18 points]
Graded by:

For warmup, consider the following Linear Probe Hashing schema:

1. The table have a size of 4 slots, each slot can only contain one key value pair.
2. The hashing function is
hi(x) =x % 4.
3. When there is conflict, it finds the next free slot to insert key value pairs.
4. The original table is empty.
5. Uses a tombstone when deleting a key.
(a) [2 points] Insert key/value pair (1,A) and (7,B). For (1,A), “1” is the key and “A” is
the value. Select the value in each entry of the resulting table.
i. EntryO0 (key %4=0) O A O B N Empty
ii. Entry 1 (key %4=1) B A OB O Empty
iii. Entry 2 (key %4=2) O A O B N Empty
iv. Entry3(key %#4=3) O A EB B O Empty

Solution: A is inserted into Entry 1, B is inserted into Entry 3.

(b) [2 points] After the changes from part (a), delete (1, A), insert key value (5, D), and
lastly insert (9, C). Select the value in each entry of the resulting table.

i. Entry O (key % 4=0) O Tombstone O A OB 0OC OD N Empty
ii. Entry 1 (key %4=1) O Tombstone O A OB OC B D O Empty
iii. Entry 2 (key %4=2) O Tombstone O A OB B C 0OD O Empty
iv. Entry 3 (key %4=3) O Tombstone O A BB OC 0OD O Empty
Solution: A is first deleted, which inserts a tombstone into entry 1. D is then inserted

into entry 1 (since there is nothing there). Then, C is attempted to be inserted into entry
1, but since it’s occupied by D, C is inserted into entry 2 instead.

Question 1 continues. ..

15-445/645 (Fall 2024) Homework #3 Page 3 of 15

Consider the following Cuckoo Hashing schema:

1. Both tables have a size of 4.

2. The hashing function of the first table returns the fourth and third least significant bits:
hi(x) = (x >> 2) & ob11.

3. The hashing function of the second table returns the least significant two bits:
ha(x) = x & @b11.

4. When inserting, try table 1 first.
5. When replacement is necessary, first select an element in the second table.

6. The original entries in the table are shown in the figure below.

Table 1 Table 2

20

Figure 1: Initial contents of the hash tables.

(a) [2 points] Select the sequence of insert operations that results in the initial state.
B Insert 20, Insert 7 O Insert 7, Insert 20 O None of the above

Solution: 20 is inserted into table 1 @b@1 based on h;, 7 experiences a collision and is
hashed to table 2 @b11 based on hs.

Question 1 continues. ..

15-445/645 (Fall 2024) Homework #3 Page 4 of 15

(b) Starting from the initial contents, insert key 22 and then insert 38. Select the values in the
resulting two tables.

1. Table 1

«) [1 point] Entry O (0boo) O 20 O 7 0O 22 0O 38 N Empty
B) [1 point] Entry 1 (0b01) 0O 20 O 7 W22 0O 38 0O Empty
v) [1 point] Entry2(0b10) O 20 0O 7 0O 22 0O 38 N Empty
0) [1 point] Entry3(eb11) O 20 0O 7 0O 22 0O 38 N Empty
ii. Table 2
«) [1 point] Entry O (¢boo) B 20 0O 7 0O 22 0O 38 O Empty
B) [1 point] Entry 1 (0b01) O 20 O 7 0O 22 0O 383 N Empty
7) [1 point] Entry2(0b10) O 20 O 7 0O 22 N 38 O Empty
0) [1 point] Entry3(eb11) O 20 B 7 0O 22 0O 38 O Empty

Solution: 22 tries to insert into table 1 first but due to conflict, it inserts into Entry 2 of
Table 2. 38 tries to insert into both tables but conflicts with both, so 38 inserts into Entry
2 of Table 2, replacing 22. 22 is then rehashed into Table 1 Entry 1, replacing 20. 20 is
then rehashed into Table 2 Entry 0.

(c) [4 points] Consider completely empty tables using the same two hash functions. Select
which sequence of insertions below will cause an infinite loop.
O [e, 4, 17, 20]
W [0, 4, 16, 20]
o [1, 4, 16, 20]
o [1, 5, 17, 22]
O None of the above

Solution: O is inserted into Table 1 Entry 0. 4 is inserted into Table 1 Entry 1. 16
conflicts in Table 1, so is inserted into Table 2 Entry 0. Inserting 20 then starts the
infinite loop.

Homework #3 continues. . .

15-445/645 (Fall 2024) Homework #3 Page 5 of 15

Question 2: Extendible Hashing...................cc00vvvee...[20 points]
Graded by:

Consider an extendible hashing structure such that:

» Each bucket can hold up to two records.
* The hashing function uses the lowest g bits, where g is the global depth.
* A new extendible hashing structure is initialized with g = 0 and one empty bucket

* If multiple keys are provided in a question, assume they are inserted one after the other
from left to right.

(a) Starting from an empty table, insert keys 1, 2.

i. [1 point] What is the global depth of the resulting table?
B0 O1 O2 O3 04 0O Noneoftheabove

Solution: No split has occurred yet because the first bucket (on initialization) can
hold 2 arbitrary values. Thus global depth is same as its initial value of 0.

ii. [1 point] What is the local depth of the bucket containing 2?
B0 O1 O2 O3 04 0O Noneoftheabove

Solution: There is only one bucket (created on initialization), and it holds both 1
and 2. Since no split has occurred yet, the bucket has local depth d = 0.

(b) Starting from the result in (a), you insert keys 9, 11.

i. [2 points] What is the global depth of the resulting table?
O0 O1 W2 O3 04 0O Noneoftheabove

Solution: After the inserts and splits, the table looks like the following:
Global depth =2

b@,b2 =2 // at local depth 1

b1 = 1,9 // at local depth 2

b3 =11 // at local depth 2

ii. [2 points] What are the local depths of the buckets for each key?
O 1 (Depth 1), 2 (Depth 1), 9 (Depth 1), 11 (Depth 1)
O 1 (Depth 3), 2 (Depth 1), 9 (Depth 3), 11 (Depth 3)
B 1 (Depth 2), 2 (Depth 1), 9 (Depth 2), 11 (Depth 2)
O 1 (Depth 3), 2 (Depth 1), 9 (Depth 3), 11 (Depth 2)
O 1 (Depth 2), 2 (Depth 2), 9 (Depth 2), 11 (Depth 2)
O None of the above

Solution: See the previous solution for an explanation.

(c) Starting from the result in (b), you insert keys 13, 27.

i. [2 points] What is the global depth of the resulting table?
O0 O1 O2 W3 04 0O Noneoftheabove

Question 2 continues. . .

15-445/645 (Fall 2024) Homework #3 Page 6 of 15

Solution: 13 inserts into b1 and causes a split. 27 inserts into b3 without a split.
The updated table looks as follows: Global depth = 3

bo,b2,b4,b6 =2 // at local depth 1

b1 =1,9// at local depth 3

b5 = 13 // at local depth 3

b3,b7 = 11,27 // at local depth 2

ii. [2 points] What are the local depths of the buckets for each new key?
O 13 (Depth 1), 27 (Depth 1)
O 13 (Depth 1), 27 (Depth 2)
O 13 (Depth 2), 27 (Depth 2)
B 13 (Depth 3), 27 (Depth 2)
0 13 (Depth 3), 27 (Depth 3)
O None of the above

Solution: See the previous solution for an explanation.

(d) [3 points] Starting from (¢)’s result, which key(s), if inserted next, will not cause a split?
M5 017 O43 M 8 O None of the above

Solution: To avoid a split in the current table the value must map to one of the fol-
lowing: b@,b2,b4,b6,b5. Out of the options provided only 5 and 8 hash to one of
those.

(e) [3 points] Starting from the result in (¢), which key(s), if inserted next, will cause a split
and increase the table’s global depth?
OO0 M3 0O5 MW17 O Noneofthe above

Solution: There are two options. The first is to insert a key that hashes to b1, since it
is the only full bucket whose local depth is equal to the global depth. 17 maps to this
bucket.

The other option is 3. 3 maps to bucket (b3,b7). Inserting 3 causes a local depth increase
to (depth = 3). However, 3, 11, and 27 all re-hash to the same bucket. This results in
another split that increases the global depth.

(f) [4 points] Starting from an empty table, insert keys 32, 64, 128, 512. What is the global
depth of the resulting table?
0o4 OS5 O6 M7 O8 0O2>9

Solution: Since each bucket can hold at most two keys, three or more keys cannot hash
to the same bucket without causing splits. When g = 7, 32 and 64 will each be mapped
to their own bin. 128 and 512 will share the same bin.

Homework #3 continues. ..

15-445/645 (Fall 2024) Homework #3 Page 7 of 15

Question 3: B+Tree.....ccovviiiiiiiiiieceteesccsscensnseess.[27 points]
Graded by:

Consider the following B+tree.

o]w]e]

‘10‘15‘ ‘ ‘20‘30‘ | ‘70‘80‘ ‘ 140

150 ‘ ‘

Figure 2: B+ Tree of order d = 4 and height /h = 2.

When answering the following questions, be sure to follow the procedures described in class
and in your textbook. You can make the following assumptions:

* A left pointer in an internal node guides towards keys < than its corresponding key, while
a right pointer guides towards keys >.
* A leaf node underflows when the number of keys goes below (%}

* An internal node underflows when the number of pointers goes below [4].

Note that B+ tree diagrams for this problem omit leaf pointers for convenience. The leaves of
actual B+ trees are linked together via pointers, forming a singly linked list allowing for quick
traversal through all keys.

Question 3 continues. ..

15-445/645 (Fall 2024)

Homework #3

Page 8 of 15

(a) [4 points] Insert 0* into the B+tree. Select the resulting tree.

O A)
15 70 | 140
0 10 15 20 30 70 80 140 | 150
O B)
70
10 20 140
0 10 15 20 30 70 80 140 | 150
20 70 | 140
0 10 15 20 30 70 80 140 | 150

O D)

70

20 140
10 15 20 30 70 80 140 | 150

Solution: Inserting 0* adds one element in the left-most leaf. It should not cause any

splits or merges.

Question 3 continues. . .

15-445/645 (Fall 2024)

Homework #3

Page 9 of 15

(b) [S points] Starting with the tree that results from (a), insert 35* and then 45*. Select the
resulting tree.

0 A
70
/ T 7_\—___7_—__‘—~>
20 35 | 140
0 10 15 20 30 35 45 70 80 140 | 150
O B)
35
/ T 7_\—___7_—__‘—~>
20 35 70
r///////////,//”/” \\\\\\\ |
0 10 15 20 30 35 45 70 80 140 | 150
o O
20 45 140
0 10 15 20 30 35 45 70 80 140 | 150

/

70

20 35

—

-

140

N

0 10 15

20

30

/

45

70

80

140 | 150

Solution: Inserting 35* fills in the remaining space of the second leaf node (from the
left). After inserting 45, the second leaf node splits. As the root-level node is full, the
root-level also splits.

Question 3 continues. ..

15-445/645 (Fall 2024) Homework #3 Page 10 of 15

(c) [8 points] Starting with the tree that results from (b), deletes 80* and then 20*. Select
the resulting tree.

O A)
70
/ _H’_“——__,_____‘
20 140
/ | \
0 10 15 30 35 45 70 140 | 150
20 70
0 10 15 30 35 45 70 140 | 150
a C)
70
/ _—___’_‘i—‘_,_____‘
v
0 10 15 30 35 45 70 | 140 | 150
O D)
20 70 | 140
0 10 15 30 35 45 70 140 | 150

Solution: Deleting 80* causes the third leaf node to underflow and causes the right two
leaf nodes to merge. After merging, the right internal node underflows, which triggers
recursive merging.

Then deleting 20* causes the second leaf node to underflow. This leads the second and
third leaf node to then merge into (30, 35, 45).

Question 3 continues. ..

15-445/645 (Fall 2024) Homework #3 Page 11 of 15

(d)

i. [2 points] Under optimistic latch crabbing, read-only thread can drop its latch on

ii.

1il.

1v.

the current page before acquiring the latch on the next page (e.g., child, sibling).
O True M False

Solution: During traversal, a reader temporarily needs to hold a latch on both the
parent and child (or two siblings in a leaf node scan) before releasing the latch on
the parent page.

[2 points] Under optimistic latch coupling, write threads never take the write latch
on the root to avoid contention.
O True M False

Solution: Using the optimistic latch coupling/crabbing scheme that we discussed
in class, the thread will have to take a write latch on the root if it needs to restart.

[2 points] Threads can release their latches in any order.
B True O False

Solution: Threads can release latches in any order.

[2 points] “No-Wait” mode for acquiring sibling latches prevents deadlock by al-
lowing a read thread to inspect what another thread is doing.
O True M False

Solution: The “No-Wait” mode does not enable inspecting another thread. Rather,
a “no-wait” mode prevents threads from getting stuck.

[2 points] For OLTP-style queries, a DBMS will not benefit from using two sepa-
rate buffer pools for inner node and leaf pages.
O True W False

Solution: Because the DBMS is aware of whether a page is for a leaf or an inner
node, and because B+Tree transformations never change a leaf into an inner node or
vice- versa, it’s straightforward for a DMBS to use a different buffer pool for inner
node pages than for leaf node pages. Such a configuration would help prevent index
leaf scans from sequentially flooding the buffer pool and harming the performance
of OLTP-style queries on the same index.

Homework #3 continues. . .

15-445/645 (Fall 2024) Homework #3 Page 12 of 15

Question 4: Bloom Filter...............cciiiiiieiiinneneee...[20 points]
Graded by:

Assume that we have a bloom filter that is used to register names. The filter uses two hash
functions hy and hy which hash the following strings to the following values:

input hq ho

“DataBootX” 1749 | 8327
“QueryOptimizeR” | 4123 | 9681
“FilterStream” 5076 | 2310
“ProtoBloom” 6598 | 9842

(a) [6 points] Suppose the filter has 8 bits initially set to O:

bitO | bit1 | bit2 | bit3 | bit4 | bit5 | bit 6 | bit 7
0 0 0 0 0 0 0 0

Which bits will be set to 1 after “DataBootX” and “ProtoBloom” have been inserted?
Oo0 O1 M2 O3 O4 W5 WHo6e M7

Solution: Because the filter has 8 bits, we take the modulo of the hashed output and 8.
1749 mod 8 = 5; 8327 mod 8 = 7; 6598 mod 8 = 6; 9842 mod 8 = 2

(b) Suppose the filter has 8 bits set to the following values:

bitO | bit1 | bit2 | bit3 | bit4 | bit5S | bit 6 | bit 7
0 1 0 1 1 1 0 0

i. [4 points] What will we learn using the above filter if we lookup “FilterStream”?
O FilterStream has been inserted
B FilterStream has not been inserted
O FilterStream may have been inserted
O Not possible to know

Solution: 5076 mod 8 = 4; 2310 mod 8 =6
Because bit 6 is 0, the filter will just return false, so it has not been inserted.

ii. [4 points] What will we learn if we lookup “QueryOptimizeR”?
O QueryOptimizeR has been inserted
O QueryOptimizeR has not been inserted
B QueryOptimizeR may have been inserted
O Not possible to know

Question 4 continues. . .

15-445/645 (Fall 2024) Homework #3 Page 13 of 15

Solution: 4123 mod 8 = 3; 9681 mod 8 =1
Because both bits are 1, filter will return True, meaning we might have inserted it.

(c) [6 points] A colleague is interviewing a candidate and would like to first test your
knowledge of bloom filters. The colleague has a list of prepared statements and would
like you to identify which of them are true. Select all true statements.

B Bloom filters can eliminate unnecessary disk 1/0s.
O We can lower a bloom filter’s false positive rate by using more hash functions.
O Bloom filters are effective for exact-match (or lookup) queries.

B Add and lookup operations on bloom filters are parallelizable.
O All of the above.

Solution:

Using more hash functions can increase the likelihood of false positives due to overlap-
ping bits.

For exact-match queries, query execution is better off using a hash index.

Homework #3 continues. . .

15-445/645 (Fall 2024) Homework #3 Page 14 of 15

Question 5: Alternate Index Structures..........cccevveeee....[15 points]
Graded by:

(a) [S points] Your manager is thinking of utilizing a skip list index. They asked a large
language model for some factual statements about skip lists but are uncertain about
the model’s response. They would like you to identify all factually correct statements.
B Multiple threads can scan, insert, and delete from skip-lists without latches.

O Skip Lists require re-balancing.

B Single-Linked Skip Lists support finding (keys < X) and (keys > X).

0O When inserting a key into a skip list, the number of towers is a function of the key.
O Each level (i) of a skip list must have half the nodes as the level below (i+1).

O None of the above

Solution: With careful design and using atomic primitives, multiple threads can interact
with skip lists without latches. If curious, search for “lock-free skip list”.

Single-linked Skip Lists can support both predicates.

When inserting a key into a skip list, the number of towers is randomized. By extension,

there is no formal guarantee that a level (i) must have half the nodes as the next level
below (i+1).

(b) [5 points] You are interviewing for a company. The team lead is asking you to compare
B+Trees, Skip Lists, Radix Trees, and Inverted Indexes. Select all the true statements.
O Both Skip Lists and B+Tree guarantee logarithmic complexity for lookups.
O Radix Trees and Inverted Indexes are both efficient at substring predicates.
O B+Tree performs better than Radix Trees for prefix queries.

O Update overhead is generally Inverted Index > Skip Lists > B+Tree.
B None of the above.

Solution: All of the above statements are false.

Skip Lists have approximate logarithmic complexity for lookups, but not guaranteed.
Radix Trees do not support efficient substring predicates (i.e., LIKE “%?%”).

Radix Trees generally perform better than B+Trees for prefix queries.

Inverted index are expensive to update. B+Trees are generally more expensive than skip
lists due to the need to potentially split/merge nodes.

(c) [5S points] Suppose you are trying to run the following query:
’ SELECT * FROM PEOPLE WHERE name NOT LIKE ‘%WuTang%’;
Assume that there is a non-clustering B+Tree index on name. Your query takes too long.
Which of the following choices (if any) would make this query go faster?
O Replace non-clustering B+Tree with a clustering B+Tree index on name.
O Replace the index with a hash index on name.
O Drop the index and build a bloom filter on name.

Question 5 continues. . .

15-445/645 (Fall 2024) Homework #3 Page 15 of 15

O Replace the index with a trie or radix tree on name.
B None of the above.

Solution: All of these are ineffective. If these queries dominant the workload, the best
thing to do would be to invest in an inverted index. All the above options would not
substantially speed up the query.

End of Homework #3

