
CS 162 Stretch Activity: Pintos Fun

Contest Entry Deadline: TBA

Voting Period Begins: TBA

Voting Period Ends: TBA

Results Announced: TBA

Contents

1 Getting Started 3

2 A Shell for Pintos 3
2.1 Simple Shell . 4

2.1.1 Troubleshooting . 5
2.2 Advanced Shell . 5
2.3 Question to Think About . 6

3 Running Pintos in VMWare 6
3.1 Obtaining VMWare . 6
3.2 Prepare Pintos to run in VMWare . 6
3.3 Prepare a VMWare Disk Image . 6
3.4 Create and Run a Pintos VM in VMWare . 7

3.4.1 Instructions for VMWare Workstation . 7
3.4.2 Instructions for VMWare Fusion . 8
3.4.3 Running the VM . 8

3.5 Updating the VMWare VM . 8
3.6 Troubleshooting . 8
3.7 Question to Think About . 8

4 Playing Music from a Pintos Application 8
4.1 The Speaker Device . 9
4.2 The tone System Call . 9
4.3 The music.h Library . 10
4.4 Sound Cards . 10
4.5 Questions to Think About . 11

5 The Pintos Music Contest 11
5.1 How to Participate . 11
5.2 Rules . 11

5.2.1 Voting . 12
5.3 Submission . 12

1

CS 162 Summer 2020 Stretch Activity: Pintos Fun

6 Booting Pintos Natively 12
6.1 Creating a Bootable Disk . 12
6.2 Booting Pintos off of a USB Drive . 13
6.3 Troubleshooting . 14

2

CS 162 Summer 2020 Stretch Activity: Pintos Fun

Everything in this document is optional. If there is enough interest, we will hold a Pintos
Music Contest, and the winner of the contest will receive one point of extra credit. We expect, however,
that most students will be able to earn more points by instead spending their time studying for the final.
So, don’t feel pressured to do any of this before the end of the term, if you don’t want to. As the title
suggests, this is supposed to be fun!

That said, I highly recommend that you try out at least A Shell for Pintos. It may help
you find latent bugs in your Project 3 implementation. Even if you don’t have time to work on this now,
you should consider working through this document after the term ends and you are done with finals.
You’ve spent a significant amount of time implementing Pintos this term, and hopefully this stretch
exercise will give you a chance to have some fun with what you’ve built.

Before attempting anything in this document, you need to have, at minimum, implemented Project
1. To do anything other than Simple Shell, you’ll need to have implemented Project 1 and Project 3. If
you reach the part of this exercise where you start playing/creating music, it’s recommended (but not
required) that you have implemented Task 1 (Alarm Clock) of Project 2.

If you choose to work on this exercise after the term ends, you should make a copy of your GitHub
repository, because we will delete all group and student repositories on GitHub after the term ends.
Simply making a fork of the repository is not enough because when a GitHub repository is
deleted, forks of that repository also disappear. Either keep your local git repository safe as the only
copy of your code. Or, create a new private repository on GitHub, add it as a new remote, and push
your local code to that new repository. Remember to also keep a copy of the group0 repository, as
that contains the code you’ll need to merge in. Forking group0 is OK because we will not delete that
repository (though we will change the code in it).

1 Getting Started

Before beginning this exercise, you’ll need to update the Pintos.pm and pintos-set-cmdline scripts
to the latest version. If you’re reading this after Fall 2019, then the changes have probably already been
made in the class VM distributed at the beginning of the semester.

Run the following commands (make sure to type the long wget commands each as a single line):

$ cd ~/.bin

$ rm -f Pintos.pm pintos-set-cmdline

$ wget https://raw.githubusercontent.com/Berkeley-CS162/vagrant/master/modules/

cs162/files/shell/bin/Pintos.pm

$ wget https://raw.githubusercontent.com/Berkeley-CS162/vagrant/master/modules/

cs162/files/shell/bin/pintos-set-cmdline

$ chmod +x pintos-set-cmdline

Now you’re ready to get started on the exercise below.

2 A Shell for Pintos

In Homework 2, you implemented a shell for Unix-based systems. Similarly, one can implement a shell
for Pintos. This will allow you, the user, to launch processes in Pintos interactively.

Before starting, pull the latest code by running:

$ git fetch staff

$ git pull staff master

This will download the scripts that we will use the exercises below.

3

CS 162 Summer 2020 Stretch Activity: Pintos Fun

2.1 Simple Shell

See the shell.c program in src/examples. It is a simple shell capable of spawning new processes and
waiting for them to complete. To run this simple shell, you only need to have implemented Project 1.
You do not need to have implemented Project 3, but the shell will be nicer if you have.

First, we will run this shell as a process in Pintos, with Pintos running in QEMU. To do so, navigate
to the src/filesys directory and run:

$ make

$ cd build

$../../../utils/bootable-cs162.sh --simple

The result is a bootable disk image, cs162proj.dsk, which contains both the kernel image and a file
system partition. The script builds the Pintos user applications in src/examples and copies them into
the file system in cs162proj.dsk.

Once you have the cs162proj.dsk file, you can start the Pintos shell by running:

$ pintos -k --qemu --disk cs162proj.dsk -- -q run "shell"

Alternatively, if you would like it to run on the command line only, then run:

$ pintos -v -k --qemu --disk cs162proj.dsk -- -q run "shell"

This boots Pintos off of the bootable disk image cs162proj.dsk and runs the shell program as the
first process. When you type a command, the shell program issues an exec system call directly, with
no path resolution. so the executable name is always interpreted as a relative path. When you are all
done, use the exit command, which will tell the shell to exit. When the first process exits, Pintos
shuts down, so this will cause Pintos to shut down. Alternatively, you can run the halt program, which
will issue a halt system call to make Pintos shut down.

Here are some of the commands you can run:

• cat - prints out the contents of a file (try it on file1.txt and file2.txt)

• cmp - compares two files (try it on file1.txt and file2.txt)

• cp - copies a file

• echo - prints out its command line arguments to the console

• hex-dump - prints out a file in hexadecimal

• insult - runs the Stanford insult generator

• ls - prints the names of all files in the current working directory (requires Project 3)

• mkdir - creates a new directory (requires Project 3)

• pwd - prints out the current working directory (requires Project 3)

• rm - unlinks a file, or a directory if it is empty

• halt - issues a halt system call, which shuts down the system

• shell - spawns a new shell

• cd (shell builtin) - changes the current working directory (requires Project 3)

• exit (shell builtin) - causes the shell program to exit, which will cause the system to shut down if
the shell was the first process

4

CS 162 Summer 2020 Stretch Activity: Pintos Fun

Notice that whenever a program finishes running, you will see the exit(0) message (or some other
return value). This is the functionality you implemented in Project 1. Then the shell prints an additional
message once its wait system call returns to indicate that the program has finished.

If you make any changes to the file system they will persist in the cs162proj.dsk file—if you reboot
Pintos, you will see the updated file system.

You can find the source code for all of the example programs in src/examples. Not all of them are
included in the simple shell, since the default root directory (if you’re using your Project 1 code) has a
cap on how many entries it can contain. Some utilities, like mcat and mcp, issue system calls that you
didn’t implement in your projects this term, so unfortunately they will not work.

2.1.1 Troubleshooting

When I type at the shell prompt (“--”), nothing shows up, or garbled characters show up.
You probably did not correctly implement the read system call in Project 1. If a program attempts
to read from file descriptor 0 (STDIN_FILENO), then your implementation of read should read from
console using input_getc(). This functionality was not tested by the Project 1 test suite. You
should make sure to handle this case correctly, and then try again.

It worked the first time I booted from cs162proj.dsk, but it fails when I boot again from the same file.
When you’re done using the shell, make sure to shut down the Pintos operating system cleanly by
exiting the shell or running the halt program, which will cause Pintos to shut down normally. If
you just close QEMU (e.g., with Ctrl-C), then the Pintos shutdown procedure will not run, and
your buffer cache (from Project 3) will not be flushed. This may leave the on-disk file system in an
inconsistent state, meaning that your file system code may not be able to properly interpret the
file system the next time it boots. Real file systems have tools, like fsck, to repair the file system
in this case, but in Project 3 you did not implement such a tool for your file system design.

2.2 Advanced Shell

In the simple shell, you may have noticed that the shell does not do path resolution, and that there is no
program you can use to create and write to files. This is partially because the interface to file creation
in Project 1 is awkward to use: you must specify the length of a file at the time it is created. This is
acceptable for copying file into the Pintos file system, but not for creating files within Pintos itself.

Fortunately, you fixed these shortcomings in Project 3. We have provided utilities that take advantage
of the functionality you implemented in Project 3. You can obtain by running the following commands:

$ git fetch staff

$ git merge staff/fun-shell

This will enhance the shell.c program with rudimentary path resolution; if you type a command but
the executable is not found in the current directory, it also checks in the directory /bin/. This is like path
resolution with the PATH variable hardcoded to /bin/ (note that Pintos does not support environment
variables). Furthermore, the cd command, which allows you to change the current working directory by
issuing a chdir system call, should now work.

We have also provided three new programs:

• fcreate - Creates a new file

• fappend - Appends a line to a file

• rmrec - Deletes a directory recursively (like rm -r on Linux)

When running the advanced shell, you can also omit the --simple flag to copy the executables to
the directory /bin/ (Project 3 required):

5

CS 162 Summer 2020 Stretch Activity: Pintos Fun

$ make

$ cd build

$../../../utils/bootable-cs162.sh

This will create a file system consisting of a single directory /bin/ containing the executables in
src/examples. Because of the rudimentary path resolution in the advanced shell, you can invoke the
executables by name even if your current working directory is not /bin/. If you do this, you’ll need to
specify /bin/shell as the executable to run as the first process:

$ pintos -k --qemu --disk cs162proj.dsk -- -q run "/bin/shell"

2.3 Question to Think About

If you wanted to implement the > operator in the Pintos shell, what changes would you have to make to
the Pintos kernel? What about the | operator?

3 Running Pintos in VMWare

Later in this exercise, you will write code to use the computer’s speaker device from Pintos. Unfortu-
nately, our QEMU setup in the VirtualBox VM does not virtualize the speaker hardware well enough to
properly play the music. In contrast, VMWare virtualizes the speaker hardware well enough to emulate
the sounds that would be played by real speaker hardware.

3.1 Obtaining VMWare

Unlike VirtualBox, VMWare’s virtualization products are not free. Fortunately, the University of Cal-
ifornia, Berkeley has already paid VMWare for a license to their software. As a UC Berkeley student,
you can obtain VMWare’s software for free at software.berkeley.edu1. You should download and install
VMWare on your host machine (i.e., NOT within the class VM). If you are running Windows or Linux,
you should install VMWare Workstation; if you are on Mac OS, you should install VMWare Fusion.

3.2 Prepare Pintos to run in VMWare

Before Pintos will boot properly in VMWare, you must comment out or delete the serial putc(c);

statement in src/lib/kernel/console.c2. The setup for running tests on the project code involves
a virtual serial line from the virtual machine running Pintos. All console output is written to this serial
line, which allows the testing framework to verify that your implementation is behaving properly, without
having to parse the screen image. Because nothing is connected to the other end of the serial line in
the VMWare setup, it will just cause the console to block after trying to write too many characters;
therefore, you must disable it by commenting out or deleting the above line. Once you complete this
step, all tests will fail, and you will no longer see output on the command line, except for
the bootloader’s output. The only output will be on the virtual screen, which you can see
by running pintos without the -v flag (see the example in Advanced Shell).

3.3 Prepare a VMWare Disk Image

Follow the instructions in Advanced Shell to invoke the bootable-cs162.sh script and obtain the
cs162proj.dsk file. This is a bootable disk image for your Pintos implementation, including a file
system initialized as described in Advanced Shell. You could copy the data in this file to a disk device,

1https://software.berkeley.edu
2https://github.com/Berkeley-CS162/group0/blob/master/pintos/src/lib/kernel/console.c#L189

6

https://software.berkeley.edu
https://github.com/Berkeley-CS162/group0/blob/master/pintos/src/lib/kernel/console.c#L189
https://github.com/Berkeley-CS162/group0/blob/master/pintos/src/lib/kernel/console.c#L189

CS 162 Summer 2020 Stretch Activity: Pintos Fun

and then boot from it. In order to create a VMWare VM that boots from it, you’ll need to first convert
it into the virtual disk format that VMWare knows how to use.

Copy the cs162proj.dsk file out of the class VM. Then run the following command:

$ vboxmanage convertfromraw cs162proj.dsk cs162proj.vmdk --format VMDK

If you’re on Windows, you should instead run

> "C:\Program Files\Oracle\VirtualBox\VBoxManage.exe" cs162proj.dsk cs162proj.vmdk --format VMDK

This should produce the file cs162proj.vmdk, which is a bootable virtual disk image you can use with
VMWare. The vboxmanage program ships with VirtualBox. Because you installed VirtualBox to run
the class VM, this should be installed for you locally.

3.4 Create and Run a Pintos VM in VMWare

The instructions for creating the workstation are different depending on whether you are using VMWare
Workstation (Windows/Linux) or VMWare Fusion (Mac OS).

3.4.1 Instructions for VMWare Workstation

Open VMWare Workstation. Click File > New Virtual Machine... to open the New Virtual Machine
Wizard. Specify the configuration of the Pintos VM as described in the following steps:

1. For the type of configuration, choose “Custom (advanced).”

2. For Hardware Compatibility, choose the latest available version (15.x at the time of writing).

3. For Guest Operating System Installation, select “I will install the operating system later.”

4. For Guest Operating System, select “Other,” and for the version, choose “Other.”

5. For Virtual Machine Name, choose any name you desire.

6. For Processors, set the number of processors to 1 and the number of cores per processor to 1.

7. For Memory, set the amount of available memory to 64 MB.

8. For Network Connection, choose “Do not use a network connection.”

9. For I/O Controller Types, choose “BusLogic (Recommended)” for the SCSI controller, which
is the default at the time of writing.

10. For Virtual Disk Type, choose “IDE.”

11. For Disk, choose “Use an existing virtual disk.”

12. For Existing Disk File, choose the cs162proj.vmdk file you created in Prepare a VMWare Disk
Image.

13. Finally, click “Finish.”

7

CS 162 Summer 2020 Stretch Activity: Pintos Fun

3.4.2 Instructions for VMWare Fusion

Open VMWare Fusion. On the “Select the Installation Method” menu choose “Create a custom virtual
machine.”

1. For Chooose Operating System, select Other > Other.

2. For Choose Firmware Type, select “Legacy BIOS.”

3. For Choose a Virtual Disk, select “Use an existing virtual disk.” Choose the cs162proj.vmdk
file you created in Prepare a VMWare Disk Image. When choosing that file, choose the option
“Share this virtual disk with the virtual machine that created it.”

4. For Finish, you can just click “Finish.” If you like, you can click “Customize Settings” to customize
the memory and network connection as specified in the VMWare Workstation instructions, but
the default settings work fine.

3.4.3 Running the VM

Now, start the VM, and you should see the same shell setup you saw in QEMU in Advanced Shell. The
configuration above is one that I have verified works, but other configurations will work too. Feel free
to try changing the configuration if you’re feeling adventurous.

3.5 Updating the VMWare VM

In future parts of this exercise, you may need to update your Pintos implementation and run the new
Pintos in VMWare. You don’t have to set up a new VMWare VM from scratch. Instead, just power off
the VMWare VM, obtain the new cs162proj.dsk file, convert it into a new cs162proj.vmdk file, and
replace the old cs162proj.vmdk file with the new one. When you power on the VMWare VM again, it
will read the new cs162proj.vmdk file and boot the new Pintos kernel with the new file system stored
in the virtual disk.

3.6 Troubleshooting

When I try booting Pintos in VMWare, it gets stuck in the boot process or shortly thereafter.
You probably did not correctly disable the serial functionality by deleting or commenting out the
line of code specified in Prepare Pintos to run in VMWare.

If you’re running into an issue, and you’re sure you have tried the fixes above, you should try
downloading and using the staff cs162proj.dsk file or cs162proj.vmdk file from the course website.
This will help you determine whether the issue is caused by your Pintos implementation, or by how you
configured the VM in VMWare.

3.7 Question to Think About

Could you instead run Pintos on your host machine in a Docker container, without a hardware virtual-
ization layer of any kind?

4 Playing Music from a Pintos Application

In this part of the exercise, we will provide user programs with the ability to control the speaker. This
will allow us to write and run pintos applications that play songs.

8

CS 162 Summer 2020 Stretch Activity: Pintos Fun

4.1 The Speaker Device

The PC Speaker3 has two positions. By moving the speaker between the positions, it is possible to
generate sound. By moving the speaker between those two positions at a certain frequency, one can
generate sound at that frequency. The processor can use the out instruction to move the speaker from
one position to the other.4

Producing a pure tone would require a sinusoidal wave form. On the surface, this seems incompatible
with the speaker having only two positions. However, the speaker takes a small amount of time to switch
between positions. It is possible to switch the speaker between the two provided positions very rapidly,
without allowing it to settle in either one, effectively holding the speaker at a position between the two
provided ones. This allows the CPU to drive the speaker directly to approximate arbitrary waveforms,
but it requires very precise timing on the CPU. In practice this tends to take a lot of CPU time away
from other useful work, especially so in the early days when CPUs were slower than they are now.

To avoid this, it is common to use a sound card. The sound card is a dedicated chip, separate from
the CPU, that drives the speaker. The CPU can program the sound card and then do other useful work
while sound plays in the background—the sound card, not the CPU, drives the speaker. Sound cards
also typically provide hardware support for digital signal processing to generate and mix different audio
signals to feed to the speaker.

The Pintos speaker driver5 uses the Programmable Interrupt Timer (PIT) in a way reminiscent of
a sound card. Channel 0 of the PIT is used to generate interrupts for scheduling (see timer_init in
timer driver6). Channel 2 of the PIT is configured by the speaker driver to output a square wave to the
speaker, where the position of the square wave (high or low) corresponds to the position of the speaker.
Controlling the frequency of the square wave adjusts the rate at which the speaker oscillates between
its two positions, and consequently allows one to control the frequency of the tone that is played. The
square wave is produced by the PIT, without any involvement from the CPU once the PIT and speaker
are configured. Thus, the CPU can perform other useful work while the tone is being played; only
changing the tone requires the CPU’s involvement.

Because the signal produced by the PIT is a square wave, it is not a pure tone. This means that, while
the primary frequency (“fundamental”) will be the one configured on the PIT, there will be additional
frequencies (“harmonics”) in the output. If you have taken EE 120, then you know that these additional
frequencies are odd-numbered multiples of the primary frequency, represented as Dirac deltas in the
Fourier transform, with magnitudes diminishing according to the sinc function7. For example, a 200 Hz
square wave will have additional harmonics at 600 Hz, 1000 Hz, etc.

4.2 The tone System Call

For this part of the exercise, it is recommended, but not required, that you have included
your Alarm Clock implementation from Project 2.

The speaker in driver allows one to drive the speaker using the PIT by calling three functions:
speaker_on, speaker_off, and speaker_beep. These functions can only be called in the kernel, how-
ever. To allow a user program to use the speaker, you need to implement a system call. In principle, we
could just wrap each of these functions in a system call and expose them to the user program directly.
For this exercise, you should just implement a single system call, which we will call tone:

System Call: void tone (int frequency, unsigned milliseconds) Plays a tone at the specified
frequency for the specified number of milliseconds. The calling process is blocked while the tone

3https://en.wikipedia.org/wiki/PC speaker
4Recall that there are two ways for the processor to interact with I/O peripherals: port-mapped I/O (via I/O instruc-

tions, like in and out) and memory-mapped I/O.
5https://github.com/Berkeley-CS162/group0/blob/master/pintos/src/devices/speaker.c
6https://github.com/Berkeley-CS162/group0/blob/master/pintos/src/devices/timer.c
7https://dsp.stackexchange.com/questions/34844/why-fourier-series-and-transform-of-a-square-wave-are-different

9

https://en.wikipedia.org/wiki/PC_speaker
https://github.com/Berkeley-CS162/group0/blob/master/pintos/src/devices/speaker.c
https://github.com/Berkeley-CS162/group0/blob/master/pintos/src/devices/timer.c
https://dsp.stackexchange.com/questions/34844/why-fourier-series-and-transform-of-a-square-wave-are-different
https://dsp.stackexchange.com/questions/34844/why-fourier-series-and-transform-of-a-square-wave-are-different

CS 162 Summer 2020 Stretch Activity: Pintos Fun

is played. If the specified frequency is 0, then no tone is played and the process just waits for the
specified duration.

You should implement a tone function in lib/user/syscall.h, like you did with sbrk in Homework
5, so that user programs can issue tone system calls. Then, implement the tone system call in your
Pintos kernel. To make this easier for you, we’ve provided the following example handler for the tone

system call:

static void syscall_tone(int frequency, unsigned milliseconds) {

if (frequency != 0) {

speaker_on(frequency);

}

timer_msleep((int64_t) milliseconds);

speaker_off();

}

Incidentally, no other way currently exists in Pintos for a user program to sleep for a certain duration.
If you have included your Alarm Clock implementation from Project 2, this allows a process to sleep
without busy-waiting. You could also implement a sleep system call specifically for this purpose.8

4.3 The music.h Library

Once you have implemented the tone system call, you can write Pintos applications that issue tone

system calls to play music! We’ve written some examples that you can try out. Run the following
commands:

$ git fetch staff

$ git merge staff/fun-music

You should be able to build the following new programs in src/examples: yankee, railroad,
railroad162, and auld. Repeat the instructions in Advanced Shell to create a fresh disk image con-
taining your updated Pintos kernel, which implements the tone system call, and a fresh file system
including these new programs in /bin/. Then boot a VMWare VM with this disk image, following the
instructions in Running Pintos in VMWare. If you run one of the above programs, you should hear a
song and see the words printed out. The process will exit once the song is played to completion.

Read the source files for these songs (yankee.c, railroad.c, railroad162.c, and auld.c) to see
how they work. They make use of a primitive music library that I implemented in music.h. Feel free
to read these files, understand how they work, and use music.h to write songs of your own.

4.4 Sound Cards

For a further stretch, you can configure VMWare to provide you a virtual sound card, and then write a
driver for it in Pintos. This will allow you to use the sound card’s digital signal processing capabilities
to produce more complex music. As a start, most sound cards will (1) have multiple channels, allowing
you to play multiple tones at once, each with a different waveform, and (2) support playback of sampled
audio. The sound card will take care of properly mixing the different signals and driving the speaker
accordingly according to the synthesized result. I would recommend starting with a relatively simple
sound card, like the Sound Blaster 169. I’ve only managed to detect a virtualized Sound Blaster 16 chip
in VirtualBox, but this link10 says it can be done in VMWare too.

8On Linux, the equivalent system call is nanosleep.
9https://wiki.osdev.org/Sound Blaster 16

10https://communities.vmware.com/docs/DOC-40539

10

https://wiki.osdev.org/Sound_Blaster_16
https://communities.vmware.com/docs/DOC-40539

CS 162 Summer 2020 Stretch Activity: Pintos Fun

The first two minutes of this video11 provide an understandable introduction to sound cards, specif-
ically their multi-channel capabilities and FM synthesis. The rest of the video isn’t relevant to this
exercise, but may be still be interesting to you.

4.5 Questions to Think About

What problems may arise with the tone system call if two user applications want to use the speaker
concurrently? There various ways in which OS can allow applications to share the speaker, and you
should think about the trade-offs of each approach. With modern sound cards, one can simply “mix”
the signals (i.e., play both tones at the same time) to avoid this problem. In the Pintos setup, where
this is not possible, a simple solution is to just lock around the tone system call handler, but this could
cause multiple songs to become interleaved between notes in undesirable ways. Another possibility is to
allow a process to “acquire” the speaker as a resource while it is using it, blocking other processes that
want to acquire it meanwhile until it becomes available. Using this approach for other I/O devices could
cause applications to deadlock if they aren’t careful, however.

Why do we need to write a new system call to allow user programs to use the speaker? Why can’t
the user application call the speaker_on, speaker_off, and speaker_beep functions directly?

5 The Pintos Music Contest

We will only hold the Pintos Music Contest if there is enough interest from students in the class. If
you’re interested in entering, contact me. We will hold the contest if enough people say that they are
interested.

The Pintos Music Contest, like everything else in this document, is completely optional. It is
intended to be a way to have fun with the operating system that you have built this semester. We
strongly recommend that you complete all other assignments for CS 162 before spending time preparing
a submission.

If the contest is held, then every student in CS 162 has the opportunity to submit a song that can
be played in Pintos using the tone system call described above.

5.1 How to Participate

You may submit to the contest as a group, or as an individual.
Your submission will consist of the contest.c file given in src/examples. You should implement

your song in this file as a C program. You can #include "music.h" and use any other functions in the
standard Pintos user library.

5.2 Rules

1. You are not required to work with the other group members in your project group. Your group
for the contest may be a subset of your project group, consist of people in different project groups,
or consist of only yourself. However, each student can submit to the contest at most once
(i.e., you may not be a part of multiple contest groups).

2. Your song must not exceed 1 minute in length. Talk to us if you feel you have a good reason for
needing more time.

3. Entries will be posted online. Your submission will be in the form of a video of your contest

program running in VMWare. Your program’s console output will be visible, so feel free
to print to the console if it will increase your chances of winning.

11https://youtu.be/q 3d1x2VPxk?t=19

11

https://youtu.be/q_3d1x2VPxk?t=19

CS 162 Summer 2020 Stretch Activity: Pintos Fun

4. To produce the video of your entry, we will run your contest program on our staff implementation
of Pintos. So, you are not allowed to make any modifications to the Pintos kernel to
support your contest entry, nor should you depend on any particular implementation-
level artifacts of your code.

5. Depending on the volume of submissions, there may be multiple winners. If fewer than three people
submit, then there will be no contest, and all submissions will receive the extra credit point.

6. Keep your submissions positive. All content should be PG-13. Do not include political messages.
Do not say anything negative about named individuals. We reserve the right to disqualify
submissions based on content. If you feel you are in a gray area, please reach out to us.

5.2.1 Voting

Two days before the final, we will release an optional exit survey for CS 162. As part of the survey,
students will be provided a link to a video containing submissions to the Pintos Music Contest and will
be asked to vote for their favorite entry.

5.3 Submission

You should submit contest.c and cs162proj.dsk files to Gradescope. The cs162proj.dsk file is
optional; including it will help us make sure that your submission runs as expected on our implementation
of Pintos.

6 Booting Pintos Natively

For the contest, it’s fine to run your Pintos implementation in VMWare. This section describes how
to run your Pintos implementation natively on real hardware. There are inherent risks to doing
this, as any bugs in your Pintos implementation could result in loss of data or could even
damage your computer. We suggest waiting until after the semester to try this out.

In Summer 2020, I posted a video12 showing what it looks like to run Pintos natively. Feel free to
watch the video if you want to see what it looks like to run Pintos natively, without the hassle of setting
it up yourself. Depending on your computer, you may need to explicitly select the device to boot from,
if you boot Pintos from a USB drive. See Booting Pintos off of a USB Drive for details.

6.1 Creating a Bootable Disk

The cs162proj.dsk file is a raw disk image. By copying this image to a disk drive, we can obtain a
drive that can boot Pintos. You can use the dd utility on Linux to do this:

$ dd if=cs162proj.dsk of=/dev/sda bs=1M

If you do this, then the device represented by /dev/sda will now boot your Pintos imple-
mentation, and you will lose all existing data on that device. You’ll probably also need to use
sudo to have write permissions to the block device. Therefore, we do not recommending using a disk
drive that contains any valuable data on it for booting Pintos.

If you’d like to keep your data, you can try partitioning your hard disk drive using a tool like gparted.
We intentionally do not provide detailed instructions for this, because gparted can be tricky to use.
You should make sure you really understand what you’re doing before trying to partition
your computer’s hard drive.

12https://youtu.be/6pZZpCWGXPM

12

https://youtu.be/6pZZpCWGXPM

CS 162 Summer 2020 Stretch Activity: Pintos Fun

6.2 Booting Pintos off of a USB Drive

An alternative, that allows you to keep your data, is to instead create a USB drive that can boot Pintos,
and then boot Pintos off of that USB drive. To create such a USB drive, replace /dev/sda in the
command above with the device corresponding to the USB drive that you want to use.

Simply copying Pintos to a USB drive won’t work, however. Pintos won’t be able to find the file
system, because there is no USB support in Pintos. Fortunately, I managed to find some code online
that implements a USB driver for Pintos, which I could modify to work with the Pintos we used in the
class projects. The downside is that these drivers only work with USB 1.x, so you will need
a computer with a UHCI controller to be able to boot Pintos off of USB. Typically, only
older computers, like those made in the 2000s or early 2010s, have a UHCI controller.

You can find this code on the fun-drivers branch. Merge it into your Pintos implementation with
the following commands:

$ git fetch staff

$ git merge staff/fun-drivers

You should run the above commands to add PCI and USB storage support to your Pintos implementa-
tion, and then create a new cs162proj.dsk. Then copy the disk image to the USB storage device using
the above dd command.

To boot Pintos off of the USB drive, you may need to select the USB drive in the BIOS. The procedure
for this is different depending on your computer, but it is often done by pressing F2, F10, or F12 keys
when your computer is initially powered on. This is partially demonstrated in the live Pintos demo that
I did in lecture on December 3, 201913.

Once you successfully boot Pintos off of a USB drive, you should be able to interact with the shell,
just as you did in the VM. It should look something like this:

13https://youtu.be/OnnvzB2zRmw?t=2420

13

https://youtu.be/OnnvzB2zRmw?t=2420
https://youtu.be/OnnvzB2zRmw?t=2420

CS 162 Summer 2020 Stretch Activity: Pintos Fun

6.3 Troubleshooting

When I try booting Pintos, it gets stuck in the middle of a print statement. You probably did
not correctly disable the serial functionality by deleting or commenting out the line of code specified
in Prepare Pintos to run in VMWare.

When I try booting Pintos, it gets stuck while setting up a particular hardware device. A
simple fix is to comment out some code in the Pintos initialization routine to prevent Pintos from
interacting with that hardware device. For example, if it gets stuck when scanning the PCI bus,
you can try commenting out this line14. The important thing is that Pintos finds and initializes
your USB drive containing the Pintos file system.

If you’re running into an issue, and you’re sure you have tried the fixes above, you should try
downloading and using the staff cs162proj.dsk file from the course website. This will help you determine
whether the issue is caused by your Pintos implementation, or by how you configured the VM in VMWare.

14https://github.com/Berkeley-CS162/group0/blob/fun-drivers/pintos/src/devices/pci.c#L559

14

https://github.com/Berkeley-CS162/group0/blob/fun-drivers/pintos/src/devices/pci.c#L559

	Getting Started
	A Shell for Pintos
	Simple Shell
	Troubleshooting

	Advanced Shell
	Question to Think About

	Running Pintos in VMWare
	Obtaining VMWare
	Prepare Pintos to run in VMWare
	Prepare a VMWare Disk Image
	Create and Run a Pintos VM in VMWare
	Instructions for VMWare Workstation
	Instructions for VMWare Fusion
	Running the VM

	Updating the VMWare VM
	Troubleshooting
	Question to Think About

	Playing Music from a Pintos Application
	The Speaker Device
	The tone System Call
	The music.h Library
	Sound Cards
	Questions to Think About

	The Pintos Music Contest
	How to Participate
	Rules
	Voting

	Submission

	Booting Pintos Natively
	Creating a Bootable Disk
	Booting Pintos off of a USB Drive
	Troubleshooting

