
HW 0: Introduction to CS 162

CS 162

Due: September 3, 2020

Contents

1 Setup 2
1.1 GitHub and the Autograder . 2
1.2 Vagrant . 2

1.2.1 Windows (OS X and Linux users can skip this section) 3
1.2.2 Troubleshooting Vagrant . 3
1.2.3 Git Name and Email . 3
1.2.4 ssh-keys . 3
1.2.5 Repositories . 4

1.3 Autograder . 5
1.4 Editing code in your VM . 5

1.4.1 Windows . 5
1.4.2 Mac OS X . 6
1.4.3 Linux . 6

1.5 Shared Folders . 6

2 Useful Tools 7
2.1 git . 7
2.2 make . 7
2.3 man . 7
2.4 gdb . 8
2.5 tmux . 8
2.6 vim . 8
2.7 ctags . 8

3 Your First Assignment 9
3.1 words . 9

3.1.1 Total Word Count . 10
3.1.2 Word Frequency Count . 10

3.2 user limits . 11
3.3 The A-Z’s of GDB . 11
3.4 From Source Code to Executable . 12
3.5 Autograder & Submission . 14

3.5.1 Autograder . 14
3.5.2 Gradescope . 14

1

CS 162 Fall 2020 HW 0: Introduction to CS 162

This semester, you will be using various tools in order to submit, build, and debug your code. This
assignment is designed to help you get up to speed on some of these tools.
This assignment is due at 11:59 pm on 09/03/2020.

1 Setup

1.1 GitHub and the Autograder

Code submission for all projects and homework in the class will be handled via GitHub so you will
need a GitHub account. We will provide you with private repositories for all your projects. You must
not use your own public repositories for storing your code. Throughout the course, if you
discover repositories with CS 162 solutions, please notify the course staff. Using solutions
you may discover on-line is not permitted. Seek course staff for help. What you turn in
should reflect your work. Visit cs162.eecs.berkeley.edu/autograder1 to register your GitHub account
with the autograder.

1.2 Vagrant

We have prepared a Vagrant virtual machine image that is preconfigured with all the tools necessary to
run and test your code for this class. Vagrant is an tool for managing virtual machines. You can use
Vagrant to download and run the virtual machine image we have prepared for this course. (The virtual
machine for the course is new this term. Do not use one from a previous semester.)

Note: If you do not want to set up Vagrant on your own machine, take a look at the CS 162 VM provi-
sioner2 on GitHub for more options. You can run the VM on a variety of hypervisors, cloud computing
platforms, or even on bare metal hardware.

(If you are using Windows, these steps may or may not work. If they do work, you should
be fine. If they don’t work—which is likely to happen if you have an older version of
Windows that doesn’t support SSH on the command line—then skip to the section below
labeled “Windows”).

1. Vagrant depends on VirtualBox (an open source virtualization product) so first you will need
to download and install VirtualBox 5 from the VirtualBox website3. We have observed that
VirtualBox 5 is much more stable than VirtualBox 6. We recommend that if you
are on VirtualBox 6 to downgrade to VirtualBox 5. We will talk in class about virtual
machines; for now, you can think of it as a software version of actual hardware.

2. Now install the latest version of Vagrant from the Vagrant website4.

3. Once Vagrant is installed, type the following into your terminal:

$ mkdir cs162-vm

$ cd cs162-vm

$ vagrant init cs162/fall2020

$ vagrant up

$ vagrant ssh

1https://cs162.eecs.berkeley.edu/autograder
2https://github.com/Berkeley-CS162/vagrant/
3https://www.virtualbox.org/wiki/DownloadOldBuilds52
4http://www.vagrantup.com/downloads.html

2

https://cs162.eecs.berkeley.edu/autograder
https://github.com/Berkeley-CS162/vagrant/
https://github.com/Berkeley-CS162/vagrant/
https://www.virtualbox.org/wiki/Download_Old_Builds_5_2
http://www.vagrantup.com/downloads.html

CS 162 Fall 2020 HW 0: Introduction to CS 162

These commands will download our virtual machine image from our server and start a ssh session.
The “up” command will take a while, and may require an Internet connection.

4. You need to run all vagrant commands from the cs162-vm directory you created earlier. Do NOT
delete that directory, or vagrant will not know how to manage the VM you created.

5. You can run vagrant halt to stop the virtual machine. If this command does not work, make
sure you are running it from your host machine, not inside SSH. To start the virtual machine the
next time, you only need to run vagrant up and vagrant ssh. All of the other steps do not need
to be repeated.

1.2.1 Windows (OS X and Linux users can skip this section)

On the latest version of Windows 10, the virtual machine appears to work on the default command line
without needing to install Cygwin. But it is possible that your Windows installation may not support
SSH from the command line, especially if you do not have the latest version. In this case, the “vagrant
ssh” command from the above steps will cause an error message prompting you to download Cygwin or
something similar that supports an ssh client. Here5 is a good guide on setting up Vagrant with Cygwin
in windows.

Alternatively, it is possible to use PuTTY instead of Cygwin, but this might be slightly more work
to set up.

If you get an error about your VM bootup timing out, you may need to enable VT-x (virtualization)
on your CPU in BIOS.

1.2.2 Troubleshooting Vagrant

If “vagrant up” fails, try running “vagrant provision” and see if it fixes things. As a last resort, you
can run “vagrant destroy” to destroy the VM. Then, start over with “vagrant up”.

1.2.3 Git Name and Email

Run these commands to set up your Name and Email that will be used for your Git commits. Make
sure to replace “Your Name” and “your email@berkeley.edu” with your REAL name and REAL email.

$ git config --global user.name "Your Name"

$ git config --global user.email "your_email@berkeley.edu"

1.2.4 ssh-keys

You will need to setup your ssh keys in order to authenticate with GitHub from your VM.

New GitHub Users

SSH into your VM and run the following:

$ ssh-keygen -N "" -f ~/.ssh/id_rsa

$ cat ~/.ssh/id_rsa.pub

The first command created a new SSH keypair. The second command displayed the public key on
your screen. You should log in to GitHub and go to github.com/settings/ssh6 to add this SSH public
key to your GitHub account. The title of your SSH keypair can be “CS 162 VM”. The key should start
with “ssh-rsa” and end with “vagrant@development”.

5https://gist.github.com/rogerhub/456ae31427aafe5b70f7
6https://github.com/settings/ssh

3

https://gist.github.com/rogerhub/456ae31427aafe5b70f7
https://github.com/settings/ssh

CS 162 Fall 2020 HW 0: Introduction to CS 162

Experienced GitHub Users

If you already have a GitHub SSH keypair set up on your local machine, you can use your local ssh-
agent to utilize your local credentials within the virtual machine via ssh agent forwarding. Simply use
vagrant ssh to ssh into your machine. The Vagrant should enable SSH agent forwarding automatically.
If this doesn’t work, you can also use the instructions in the previous “New GitHub Users” section.

1.2.5 Repositories

You will have access to two private repositories in this course: a personal repository for homework, and a
group repository for projects. We will publish skeleton code for homeworks in Berkeley-CS162/student07

and we will publish skeleton code for group projects in Berkeley-CS162/group08. These two skeleton
code repositories are already checked out in the home folder of your VM, inside ~/code/personal and
~/code/group.

You will use the “Remotes” feature of Git to pull code from our skeleton repos (when we release new
skeleton code) and push code to your personal and group repos (when you submit code). Your working
files will be stored within the VM. Back them up by pushing to your github repo. Save your work early
and often. Several small clear commits and pushes is good practice. Communication with course staff
will often involve looking at the code and commits in your repo.

The Git Remotes feature allows you to link GitHub repositories to your local Git repository. We
have already set up a remote called “staff” that points to our skeleton code repos on GitHub, for both
your personal and group repo. You will now add your own remote that points to your private repo so
you can submit code.

You should have received the link to your personal private GitHub repo when you registered with
the autograder earlier. Add a new remote by doing the following steps in your VM:

1. First cd into your personal repository.

cd ~/code/personal

2. If the directory does not exist, run:

git clone https://github.com/Berkeley-CS162/student0.git ~/code/personal

cd ~/code/personal/

git remote add staff https://github.com/Berkeley-CS162/student0.git

We will be assuming you are you have the staff remote added in your virtual machine and will be
using that remote in all GitHub commands pulling from Berkeley-CS162/student0 moving forward.

3. Then visit your personal repo on GitHub and find the SSH clone URL. It should have the form
“git@github.com:Berkeley-CS162/...”

4. Now add the remote

git remote add personal YOUR_GITHUB_CLONE_URL

5. You can get information about the remote you just added

git remote -v

git remote show personal

7https://github.com/Berkeley-CS162/student0/
8https://github.com/Berkeley-CS162/group0/

4

https://github.com/Berkeley-CS162/student0/
https://github.com/Berkeley-CS162/group0/

CS 162 Fall 2020 HW 0: Introduction to CS 162

6. Pull the skeleton, make a test commit and push to personal master

git pull staff master

touch test_file

git add test_file

git commit -m "Added a test file."

git push personal master

In this course, “master” is the default Git branch that you will use to push code to the autograder.
You can create and use other branches, but only the code on your master branch will be graded.
You should do this test commit before Monday. We want to know that everyone has got this basic
infrastructure in place.

7. Within 30 minutes you should receive an email from the autograder. (If not, please notify the
instructors via Piazza). Check cs162.eecs.berkeley.edu/autograder9 for more information.

1.3 Autograder

Here are some important details about how the autograder works:

• The autograder will automatically grade code that you push to your master branch, UNLESS the
assignment you are working on is LATE.

• If your assignment is late, you can still get it graded, but you will be using slip days. You can
request late grading using the autograder’s web interface at cs162.eecs.berkeley.edu/autograder10.

• Your final score in the autograder is not the maximum of your attempts, but rather your score for
only your latest build. Any non-autograded components, like style and written portions, will be
graded based on your last build for the assignment.

The autograder is for grading, not for testing. You should develop and carry out your tests in your
local environment. Lots of spurious autograder submissions can interfere with people getting their work
done. And the turnaround time is too slow for testing. It provides final confirmation that your tests are
consistent with ours.

1.4 Editing code in your VM

The VM contains a SMB server that lets you edit files in the vagrant user’s home directory. With the
SMB server, you can edit code using text editors on your host and run git commands from inside the
VM. This is the recommended way of working on code for this course, but you are free to do
whatever suits you best. One possibility is just using a non-graphical text editor in an SSH session.

1.4.1 Windows

1. Open the file browser, and press Ctrl L to focus on the location bar.

2. Type in \\192.168.162.162\vagrant and press Enter.

3. The username is vagrant and the password is vagrant.

You should now be able to see the contents of the vagrant user’s home directory.

9https://cs162.eecs.berkeley.edu/autograder
10https://cs162.eecs.berkeley.edu/autograder

5

https://cs162.eecs.berkeley.edu/autograder
https://cs162.eecs.berkeley.edu/autograder

CS 162 Fall 2020 HW 0: Introduction to CS 162

1.4.2 Mac OS X

1. Open Finder.

2. In the menu bar, select Go → Connect to Server....

3. The server address is smb://192.168.162.162/vagrant.

4. The username is vagrant and the password is vagrant.

You should now be able to see the contents of the vagrant user’s home directory.

1.4.3 Linux

Use any SMB client to connect to the /vagrant share on 192.168.162.162 with the username vagrant
and password vagrant. Your distribution’s file browser probably has support for SMB out of the box,
so look online for instructions about how to use it.

1.5 Shared Folders

The /vagrant directory inside the virtual machine is connected to the home folder of your host machine.
You can use this connection if you wish, but the SMB method in the previous section is recommended.
(You can also learn more about the file system of your local machine by finding where the file system of
your VM is mounted. Can you find it?)

6

CS 162 Fall 2020 HW 0: Introduction to CS 162

2 Useful Tools

Before continuing, we will take a brief break to introduce you to some useful tools that make a good
fit in any system hacker’s toolbox. Some of these (git, make) are MANDATORY to understand in that
you won’t be able to compile/submit your code without understanding how to use them. Others such as
gdb or tmux are productivity boosters; one helps you find bugs and the other helps you multitask more
effectively. All of these come pre-installed on the provided virtual machine. They are ESSENTIAL.

Note: We do not go into much depth on how to use any of these tools in this document. Instead,
we provide you links to resources where you can read about them. We highly encourage this reading
even though not all of it is necessary for this assignment. We guarantee you that each of these will come
in handy throughout the semester. If you need any additional help, feel free to ask any of the TA’s at
office hours!

2.1 git

Git is a version control program that helps keep track of your code. GitHub is only one of the many
services that provide a place to host your code. You can use git on your own computer, without GitHub,
but pushing your code to GitHub lets you easily share it and collaborate with others.

At this point, you have already used the basic features of git, when you set up your repos. But an
understanding the inner workings of git will help you in this course, especially when collaborating with
your teammates on group projects.

If you have never used git or want a fresh start, we recommend you start here11. If you sort of
understand git, this presentation12 we made and this website13 will be useful in understanding the inner
workings a bit more.

2.2 make

make is a utility that automatically builds executable programs and libraries from source code by reading
files called Makefiles, which specify how to derive the target program. How it does this is pretty cool: you
list dependencies in your Makefile and make simply traverses the dependency graph to build everything.
Unfortunately, make has very awkward syntax that is, at times, very confusing if you are not properly
equipped to understand what is actually going on.

A few good tutorials are here14 and here15. And of course the official GNU documentation (though
it may be a bit dense) here16.

2.3 man

man – the user manual pages – is really important. There are lots of stuff on the web, but the docu-
mentation in man is definitive. The man pages can be accessed through a terminal. For instance, if you
wanted to learn more about the ls command, simply type “man ls” into your terminal. If you were
curious about a function called fork, you could learn more about it by typing “man fork” into your
terminal.

11http://git-scm.com/book/en/Getting-Started
12http://goo.gl/cLBs3D
13http://think-like-a-git.net/
14http://wiki.wlug.org.nz/MakefileHowto
15http://mrbook.org/blog/?s=make
16http://www.gnu.org/software/make/manual/make.html

7

http://git-scm.com/book/en/Getting-Started
http://goo.gl/cLBs3D
http://think-like-a-git.net/
http://wiki.wlug.org.nz/MakefileHowto
http://mrbook.org/blog/?s=make
http://www.gnu.org/software/make/manual/make.html

CS 162 Fall 2020 HW 0: Introduction to CS 162

2.4 gdb

Debugging C programs is hard. Crashes don’t give you nice exception messages or stack traces by
default. Fortunately, there’s the GNU Debugger, or gdb for short. If you compile your programs with a
special flag -g then the output executable will have debug symbols, which allow gdb to do its magic. If
your run your C program inside gdb, you will be able to not only look get a stack trace, but also inspect
variables, change variables, pause code and much more! Moreover, gdb can even start new processes and
attach to existing processes (which will be useful when debugging PintOS.)

Normal gdb has a very plain interface. So, we have installed cgdb for you to use on the virtual
machine, which has syntax highlighting and few other nice features. In cgdb, you can use i and ESC to
switch between the upper and lower panes.

This17 is an excellent read on understanding how to use gdb. The official documentation18 is also
good, but a bit verbose.

2.5 tmux

tmux is a terminal multiplexer. It basically simulates having multiple terminal tabs, but displays them
in one terminal session. It saves having to have multiple tabs of sshing into your virtual machine.

You can start a new session with tmux new -s <session_name>

Once you create a new session, you will just see a regular terminal. Pressing ctrl-b + c will create
a new window. ctrl-b + n will jump to the nth window.

ctrl-b + d will “detach” you from your tmux session. Your session is still running, and so are any
programs that you were running inside it. You can resume your session using tmux attach -t <session_name>.
The best part is this works even if you quit your original ssh session, and connect using a new one.

Here19 is a good tmux tutorial to help you get started.

2.6 vim

vim is a nice text editor to use in the terminal. It’s well worth learning. Here20 is a good series to get
better at vim. Others may prefer emacs. Whichever editor you choose, you will need to get proficient
with an editor that is well suited for writing code.

If you want to use Sublime Text, Atom, CLion, or another GUI text editor, look at 1.4 Editing code
in your VM, which shows you how to access your VM’s filesystem from your host.

2.7 ctags

ctags is a tool that makes it easy for you to navigate large code bases. Since you will be reading a lot
of code, using this tool will save you a lot of time. Among other things, this tool will allow you to jump
to any symbol declaration. This feature together with your text editor’s go-back-to-last-location feature
is very powerful.

Instructions for installing ctags can be found for vim here21 and for sublime here22. If you don’t
use vim or Sublime, ctags still is probably supported on your text editor although you might need to
search installation instructions yourself.

17http://www.unknownroad.com/rtfm/gdbtut/gdbtoc.html
18https://sourceware.org/gdb/current/onlinedocs/gdb/
19http://danielmiessler.com/study/tmux/
20http://derekwyatt.org/vim/tutorials/
21http://ricostacruz.com/til/navigate-code-with-ctags.html
22https://github.com/SublimeText/CTags

8

http://www.unknownroad.com/rtfm/gdbtut/gdbtoc.html
https://sourceware.org/gdb/current/onlinedocs/gdb/
http://danielmiessler.com/study/tmux/
http://derekwyatt.org/vim/tutorials/
http://ricostacruz.com/til/navigate-code-with-ctags.html
https://github.com/SublimeText/CTags

CS 162 Fall 2020 HW 0: Introduction to CS 162

3 Your First Assignment

3.1 words

Programming in C is a very important baseline skill for CS 162. This exercise should make sure you’re
comfortable with the basics of the language. In particular, you need to be fluent in working with structs,
linked data structures (e.g., lists), pointers, arrays, typedef and such, which CS 61C may have touched
only lightly.

You will be writing a program called words. words is a program that counts (1) the total amount
of words and (2) the frequency of each word in a file(s). It then prints the results to stdout. Like most
Linux utilities in the real world, your program should read its input from each of the files specified as
command line arguments, printing the cumulative word counts. If no file is provided, your program
should read from stdin.

In C, header files (suffixed by .h) are how we engineer abstractions. They define the objects, types,
methods, and—most importantly—documentation. The corresponding .c file provides the implementa-
tion of the abstraction. You should be able to write code with the header file without peeking under the
covers at its implementation.

In this case, words/word_count.h provides the definition of the word_count struct, which we will use
as a linked list to keep track of a word and its frequency. This has been typedef’d into WordCount. This
means that instead of typing out struct word_count, we can use WordCount as shorthand. The header
file also gives us a list of functions that are defined in words/word_count.c. Part of this assignment is
to write code for these functions in words/word_count.c.

We have provided you with a compiled version of sort_words so that you do not need to write the
wordcount_sort function. However, you may still need to write your own comparator function (i.e.
wordcount_less). The Makefile links this in with your two object files, words.o and word_count.o.

Note that words.o is an ELF formatted binary. As such you will need to use a system which can
run ELF executables to test your program (such as the CS 162 VM). Windows and OS X do NOT use
ELF and as such should not be used for testing.

For this section, you will be making changes to words/main.c and words/word_count.c. After
editing these files, cd into the words directory and run make in the terminal. This will create the words
executable. (Remember to run make after making code changes to generate a fresh executable). Use
this executable (and your own test cases) to test your program for correctness. The autograder will use
a series of test cases to determine your final score for this section.

9

CS 162 Fall 2020 HW 0: Introduction to CS 162

For the below examples, suppose we have a file called words.txt that contains the following content:

abc def AaA

bbb zzz aaa

3.1.1 Total Word Count

Your first task will be to implement total word count. When executed, words will print the total number
of words counted to stdout. At this point, you will not need to make edits to word_count.c. A complete
implementation of the num_words() function can suffice.

A word is defined as a sequence of contiguous alphabetical characters of length greater than one. All
words should be converted to their lower-case representation and be treated as not case-sensitive. The
maximum length of a word has been defined at the top of main.c.

After completing this part, running ./words words.txt should print:

The total number of words is: 6

3.1.2 Word Frequency Count

Your second task will be to implement frequency counting. Your program should print each unique word
as well as the number of times it occurred. This should be sorted in order of frequency (low first). The
alphabetical ordering of words should be used as a tie breaker. The wordcount_sort function has been
defined for you in wc_sort.o. However, you will need to implement the wordcount_less function in
main.c.

You will need to implement the functions in word_count.c to support the linked list data structure
(i.e. WordCount a.k.a. struct word_count). The complete implementation of word_count.c will prove
to be useful when implementing count_words() in main.c.

After completing this part, running ./words -f words.txt should print:

1 abc

1 bbb

1 def

1 zzz

2 aaa

Hint: You can run:

cat <filename>

| tr " " "\n"

| tr -s "\n"

| tr "[:upper:]" "[:lower:]"

| tr -d -C "[:lower:]\n"

| sort

| uniq -c

| sort -n

to verify the basic functionality of your program (don’t treat this as a testing spec though).

10

CS 162 Fall 2020 HW 0: Introduction to CS 162

3.2 user limits

Now that you have dusted off your C skills and gained some familiarity with the CS 162 tools, we want
you to understand what is really inside of a running program and what the operating system needs to
deal with.

The operating system needs to deal with the size of the dynamically allocated segments: the stack
and heap. How large should these be? Poke around a bit to find out how to get and set these limits
on Linux. Modify limits.c so that it prints out the maximum stack size, the maximum number of
processes, and maximum number of file descriptors. Currently, when you compile and run limits.c you
will see it print out a bunch of system resource limits (stack size, heap size, etc.). Unfortunately all the
values will be 0. Your job is to get this to print the ACTUAL limits (use the soft limits, not the hard
limits). (Hint: run “man getrlimit”)

You should expect output similar to this:

stack size: 8388608

process limit: 2782

max file descriptors: 1024

You can run make limits to compile your code.

3.3 The A-Z’s of GDB

Now we’re going to use a sample program, map, for some GDB practice. The map program is designed to
print out its own executing structure. Before you start, be sure to take a look at map.c and recurse.c

which form the program. Once you feel familiar with the program, you can compile it by running
“make map”.

Write down the commands you use to complete each step of the following walk-through. Be sure to
also record and submit your answers to all questions in bold to Gradescope.

a. Run GDB on the map executable.

b. Set a breakpoint at the beginning of the program’s execution.

c. Run the program until the breakpoint.

d. What memory address does argv store?

e. Describe what’s located at that memory address. (What does argv point to?)

f. Step until you reach the first call to recur.

g. What is the memory address of the recur function?

h. Step into the first call to recur.

i. Step until you reach the if statement.

j. Switch into assembly view.

k. Step over instructions until you reach the callq instruction.

l. What values are in all the registers?

m. Step into the callq instruction.

n. Switch back to C code mode.

11

CS 162 Fall 2020 HW 0: Introduction to CS 162

o. Now print out the current call stack. (Hint: what does the backtrace command do?)

p. Now set a breakpoint on the recur function which is only triggered when the argument is 0.

q. Continue until the breakpoint is hit.

r. Print the call stack now.

s. Now go up the call stack until you reach main. What was argc?

t. Now step until the return statement in recur.

u. Switch back into the assembly view.

v. Which instructions correspond to the return 0 in C?

w. Now switch back to the source layout.

x. Finish the remaining 3 function calls.

y. Run the program to completion.

z. Quit GDB.

3.4 From Source Code to Executable

Now that you’ve seen how map works, let’s take a dive into what how we went from high level C code to
an executable.

There are 10 written questions for this section, and you must submit your responses to these ques-
tions on Gradescope.

Before we start, we’ll be using a few compiler flags which are likely new to you. Here’s a summary of
the flags we’ll be using.

• -Wall – Enables all compiler warnings

• -m32 – Compiles the code for the i386 architecture.

• -S – Invokes the COMPILER only.

• -c – Invokes the COMPILER and ASSEMBLER only.

Let’s start by invoking the compiler. The compiler takes high level C code and produce a variant of x86
known as 8086 or i386 assembly.

To compile map.c, run:

$ gcc -m32 -S -o map.S map.c

This will only invoke the compiler for map.c and output the assembly code in map.S.

1. Generate recurse.S and find which instruction(s) corresponds to the recursive call of recur(i - 1).

Now we will assemble our compiled code into an executable. To assemble our code we can run:

$ gcc -m32 -c map.S -o map.o

12

CS 162 Fall 2020 HW 0: Introduction to CS 162

This turns our raw x86 code (map.S) into machine code or an object file (map.out).
We can also combine these steps by just running gcc -m32 -c on our C file directly. We can run:

$ gcc -m32 -c recurse.c -o recurse.o

The assembler converts the raw assembly code into an object file which contains code as well as other
data and metadata necessary for execution. Different operating systems use different types of object
files. In this class, we will be using ELF (Executable and Linkable Format), the object format used by
Linux. Let’s start by taking a look map.o and recurse.o. These are object files, so we will use the
objdump program to read them.

$ objdump -D map.o

$ objdump -D recurse.o

2. What do the .text and .data sections contain?

The assembler generates a symbol table which is part of the object file. The symbol table contains all
the symbols that can be globally referenced (referenced outside the object file) from another object file
(i.e. global/static variables and functions).

3. What command do we use to view the symbols in an ELF file? (Hint: We can use objdump again,
look at “man objdump” to find the right flag).

Here’s an excerpt from the map.o symbol table:

00000000 g O .data 00000004 stuff

00000000 g F .text 00000060 main

...

00000000 *UND* 00000000 malloc

00000000 *UND* 00000000 recur

4. What do the g, O, F, and *UND* flags mean?

5. Where else can we find a symbol for recur? Which file is this in? Copy and paste the relevant
portion of the symbol table.

Finally, let’s link our 2 objects files to create an executable.

$ gcc -m32 map.o recurse.o -o map

Note that to we could’ve just called gcc -m32 map.c recurse.c -o map on the C files to do this entire
process in a single command. Often times build systems will separate these commands in order to speed
up compile times (since only the changed files need to be recompiled).

6. Examine the symbol table of the entire map program now. What has changed?

objdump can be used to look at more than just the symbol table—it can show us the structure of the
executable. Run “objdump -x -d map”. You will see that your program has several segments, names
of functions and variables in your program correspond to labels with addresses or values. The guts of
everything is chunks of stuff within segments.

In the objdump output these segments are under the section heading. There’s actually a slight nuance
between these two terms which you can read more about online.

Using the output of objdump, answer the following questions:

13

CS 162 Fall 2020 HW 0: Introduction to CS 162

7. What segment(s)/section(s) contains recur (the function)? (The address of recur in objdump will
not be exactly the same as what you saw in gdb. An optional stretch exercise is to think about
why. See the Wikipedia article on relocation23 for a hint.)

8. What segment(s)/section(s) contains global variables? Hint: look for the variables foo and stuff.

9. Do you see the stack segment anywhere? What about the heap? Explain.

10. Based on the output of map, in which direction does the stack grow? Explain.

3.5 Autograder & Submission

3.5.1 Autograder

To push to your code to the autograder do:

cd ~/code/personal/hw0

git status

git add limits.c map.c recurse.c words/main.c words/word_count.c Makefile

git commit -m "Finished my first CS 162 assignment"

git push personal master

This saves your work and it gives the instructors a chance to see the progress you are making.
Congratulations for not waiting until the last minute.

Within a few minutes you should receive an email from the autograder. (If not, please notify the
instructors via Piazza). Check cs162.eecs.berkeley.edu/autograder24 for more information.

Note that the questions with written responses submitted to Gradescope will not be shown in or
graded by the autograder.

Hopefully after this you are slightly more comfortable with your tools. You will need them for the
long road ahead!

3.5.2 Gradescope

The written portions of assignments will be submitted to Gradescope. If you’re enrolled in the class you
should have already been added to Gradescope.

If you’re not on Gradescope or the autograder, please make a private post on piazza, or email Taj
Shaik (email can be found on the course website25) and include your name, email, and Student
ID.

23https://en.wikipedia.org/wiki/Relocation (computing)
24https://cs162.eecs.berkeley.edu/autograder
25https://cs162.eecs.berkeley.edu/staff/

14

https://en.wikipedia.org/wiki/Relocation_(computing)
https://cs162.eecs.berkeley.edu/autograder
https://cs162.eecs.berkeley.edu/staff/

	Setup
	GitHub and the Autograder
	Vagrant
	Windows (OS X and Linux users can skip this section)
	Troubleshooting Vagrant
	Git Name and Email
	ssh-keys
	Repositories

	Autograder
	Editing code in your VM
	Windows
	Mac OS X
	Linux

	Shared Folders

	Useful Tools
	git
	make
	man
	gdb
	tmux
	vim
	ctags

	Your First Assignment
	words
	Total Word Count
	Word Frequency Count

	user limits
	The A-Z's of GDB
	From Source Code to Executable
	Autograder & Submission
	Autograder
	Gradescope

