
HW 1: Lists

CS 162

Due: September 16, 2020

Contents

1 Getting Started 2

1.1 Overview of Source Files . 2

2 Using Pintos Lists to Count Words 3

3 Observing a Multi-Threaded Program 4

4 Using Multiple Threads to Count Words 4

5 Additional Questions 5

6 Autograder and Submission 5

1

CS 162 Fall 2020 HW 1: Lists

In this homework, you will gain familiarity with threads and processes from the perspective of a user
program, which will help you understand how to support these concepts in the operating system. Along
the way, you will gain experience with the list data structure used widely in Pintos, but in a user program
running on Linux. We hope that completing this assignment will prepare you to begin Project 1, where
you will work with the implementations of these constructs in the Pintos kernel. Our goal is to give
you experience with how to use them in userspace, to understand the abstractions they provide in an
environment where bugs are relatively easy to debug, before having to work with them in Pintos. It will
also help you to see how you can do a lot of your development and testing of project code in a contained
user setting, before you drop it into the Pintos kernel.

This assignment is due at 11:59 pm on 9/16/2020.

1 Getting Started

Log in to your Vagrant Virtual Machine and run:

$ cd ~/code/personal/

$ git pull staff master

$ cd hw1

Run make to build the code. Four binaries should be created: pthread, words, pwords, and lwords.

1.1 Overview of Source Files

Below is an overview of the starter code:

list.c, list.h
These files are the list library used in Pintos, which is based on the list library in Linux. You should
be able to understand how to use this library based on the API given in list.h. You must not modify
these files. If you’re interested in learning about the internals of the list library, feel free to read list.c

and the list_entry macro in list.h. You can find a good explanation of the list_entry macro here1.

word_count_l.c

This file is the starter code for your implementation of the word_count interface specified in word_count.h,
using the Pintos list data structure. We have already provided the type declarations for this in
word_count.h. You must use those. Notice how the list element is embedded into the struct, rather
than the next pointer. Also, the Makefile provides the #define PINTOS_LIST as a flag to cc. words.c
is unchanged, as is its behavior. This exercise will cement your understanding of how to traverse and
manipulate the kinds of lists that are used throughout Pintos. Your implementation of the word_count
interface in word_count_l.c, when linked with the driver in words.c, should result in an application,
lwords that behaves identically to words, but internally uses the Pintos list data structure to keep track
of word counts.

pwords.c

This file is starter code to implement the pwords application. This is a version of the words application,
where each file is processed in a separate thread. You will need to modify it to spawn the threads and

1https://stackoverflow.com/questions/15832301/understanding-container-of-macro-in-the-linux-kernel

2

https://stackoverflow.com/questions/15832301/understanding-container-of-macro-in-the-linux-kernel

CS 162 Fall 2020 HW 1: Lists

coordinate their work.

word_count_p.c

This file is starter code to implement a version of word_count_l.c that not only uses the Pintos list
data structure, but also provides proper synchronization when accessing the word_count data structure
concurrently from multiple threads. This implementation of the word_count interface will be linked
with your code in pwords.c to produce the pwords application. You will need to complete it.

pthread.c

This file implements an example application that creates multiple threads and prints out certain memory
addresses and values. In this assignment, you will answer some questions about this program and its
output.

2 Using Pintos Lists to Count Words

The Pintos operating system makes heavy use of a particular linked list library taken directly from
Linux. Familiarity with this library will make it easier to understand Pintos, and you will need to use
it in your solution for the projects. The objective of this exercise is to build familiarity with the Pintos
linked list library in userspace, where issues are easier to debug than in the Pintos kernel.

First, read list.h to understand the API to library.

Then, complete word_count_l.c so that it properly implements the new word_count data structure with
the Pintos list representation. You MUST use the functions in list.h to manipulate the list.After you
finish making this change, lwords should work properly.

The wordcount_sort function sorts the wordcount list according to the comparator passed as an ar-
gument. Although words and lwords sort the output using the less_count comparator declared in
word_helpers.h, the wordcount_sort function that you write should work with any comparator passed
to it as the argument less. For example, passing the less_word function in word_helpers.h as the
comparator should also work. If you’re having trouble with function pointer syntax when implementing
this, here2 is a good tutorial.

Hint #1 : We provide a Makefile that will build lwords based on these source files. It compiles your
program with the -DPINTOS_LIST flag, which is equivalent to putting a #define PINTOS_LIST at the
top of the file. This selects a definition of the word count structure that uses Pintos lists. We recommend
reading the word_count.h file to understand the new structure definition so you can see how the Pintos
list structure is being used.

Hint #2 : The provided Makefile uses the words.o and lwords.o object files we have given you to
provide the main() function in both the words and lwords programs. To ensure that your code works
with this main() function (which we have not given you the source code of, but only the object files),
you should ensure that your implementation of word_count_l.c adheres to the interface contained in
word_count.h.

2https://www.geeksforgeeks.org/function-pointer-in-c/

3

https://www.geeksforgeeks.org/function-pointer-in-c/

CS 162 Fall 2020 HW 1: Lists

3 Observing a Multi-Threaded Program

The pthread application is an example application that uses multiple threads. First, read pthread.c

carefully. Then, run pthread multiple times and observe its output. Answer the following questions on
Gradescope:

1. Is the program’s output the same each time it is run? Why or why not?

2. Based on the program’s output, do multiple threads share the same stack?

3. Based on the program’s output, do multiple threads have separate copies of global variables?

4. Based on the program’s output, what is the value of void *threadid? How does this relate to
the variable’s type (void *)?

5. Using the first command line argument, create a large number of threads in pthread. Do all
threads run before the program exits? Why or why not?

4 Using Multiple Threads to Count Words

The words program operates in a single thread, opening, reading, and processing each file one after
another. In this exercise, you will write a version of this program that opens, reads, and processes each
file in a separate thread.

First, read and understand pwords.c, which is a first cut at a program that intends to use multiple
threads to count words.

Your task is to properly implement the pwords application. You will make changes to pwords.c and
word_count_p.c to complete this task. It will need to spawn threads, open and process each file in a
separate thread, and properly synchronize access to shared data structures when processing files.

Your synchronization must be fine-grained. Different threads should be able to open and read
their respective files concurrently, serializing only their modifications to the shared data structure. In
particular, it is unacceptable to use a global lock around the call to count_words() in pwords.c, as
such a lock would prevent multiple threads from reading the files concurrently. Instead, you should only
synchronize access to the word count list data structure in word_count_p.c. You will need to ensure all
such modifications are complete before printing the result or terminating the process.

We recommend that you start by just implementing the thread-per-file aspect, without synchronizing
updates to the word count list. Can you even detect the errors? Multithreaded programs with synchro-
nization bugs may appear to work properly much of the time. But, the bugs are latent, ready to cause
problems.

To help you find subtle synchronization bugs in your program, we have provided a somewhat large input
for your words program in the gutenberg/ directory. To generate these files, we selected some stories
from among the most popular books made freely available by Project Gutenberg3, making sure to choose
short stories so that the word count program does not take too long to run. You should compare the
result of running your pwords program on the Gutenberg dataset to the result of running words on the
Gutenberg dataset and ensure they are same. This does not guarantee that your code is correct, but it
might alert you to subtle concurrency bugs that may not manifest for smaller inputs.

3https://www.gutenberg.org/ebooks/search/?sort order=downloads

4

https://www.gutenberg.org/ebooks/search/?sort_order=downloads

CS 162 Fall 2020 HW 1: Lists

Hint #1 : The Makefile that we provide will compile your pwords.c program with the two flags
-DPINTOS_LIST -DPTHREADS, which select a definition of the word count structure that not only uses
Pintos lists, but also includes a mutex that you may find useful for synchronization. Unlike the lwords
exercise, in which the word_count_t structure was typedef’d to the Pintos list structure directly, the
word_count_t structure now contains the Pintos list structure and a mutex. We expect your code in
word_count_p.c to be similar to your code in word_count_l.c, with syntactic changes according to
the new word_count_t structure and added synchronization to allow concurrent use of the word_count
API as needed for pwords.

Hint #2 : The multiple threads should aggregate their results without reading from or writing to any
intermediate files. Attempting to open or read from any files other than the ones passed as
input to your program may cause autograder tests to fail or not be run.

5 Additional Questions

Answer the following additional questions on Gradescope:

1. Briefly compare the performance of lwords and pwords when run on the Gutenberg dataset. How
might you explain the performance differences?

2. Under what circumstances would pwords perform better than lwords? Under what circumstances
would lwords perform better than pwords? Is it possible to use multiple threads in a way that
always performs better than lwords?

6 Autograder and Submission

To submit and push to autograder, first commit your changes, then do:

$ git push personal master

Within a few minutes you should receive an email from the autograder. (If you haven’t received an
email within half an hour, please notify the instructors via a private post on Piazza.) Please do not print
anything extra for debugging, as this can interfere with the autograder.

Your written responses submitted to Gradescope will not be graded by the autograder. It will be graded
manually based on effort.

5

	Getting Started
	Overview of Source Files

	Using Pintos Lists to Count Words
	Observing a Multi-Threaded Program
	Using Multiple Threads to Count Words
	Additional Questions
	Autograder and Submission

