
HW 4: HTTP Server

CS 162

Due: March 10, 2020

Contents

1 Introduction 2
1.1 Getting Started . 2
1.2 Setup Details . 2

2 Background 3
2.1 Structure of HTTP Request . 3
2.2 Structure of HTTP Response . 4

3 Your Assignment 5
3.1 HTTP Server Outline . 5
3.2 Usage ./httpserver . 5
3.3 Accessing the HTTP Server . 7
3.4 Common error messages . 7

3.4.1 Failed to bind on socket: Address already in use 7
3.4.2 Failed to bind on socket: Permission denied . 7

3.5 Your Assignment . 8
3.6 Submission . 11

A Function reference: libhttp 12
A.1 Request object . 12
A.2 Functions . 12

1

CS 162 Spring 2019 HW 4: HTTP Server

1 Introduction

The Hypertext Transport Protocol (HTTP) is the most commonly used application protocol on the
Internet today. Like many network protocols, HTTP uses a client-server model. An HTTP client opens
a network connection to an HTTP server and sends an HTTP request message. Then, the server replies
with an HTTP response message, which usually contains some resource (file, text, binary data) that was
requested by the client.

In this assignment, you will implement an HTTP server that handles HTTP GET requests. You will
provide functionality through the use of HTTP response headers, add support for HTTP error codes,
create directory listings with HTML, and create a HTTP proxy. The request and response headers must
comply with the HTTP 1.0 protocol found here1.

1.1 Getting Started

Log in to your VM and grab the skeleton code from the staff repository:

$ cd ~/code/personal

$ git pull staff master

$ cd hw4

1.2 Setup Details

The CS 162 Vagrant VM is set up with a special host-only network that will allow your host computer
(e.g. your laptop) to connect directly to your VM. The IP address of your VM is 192.168.162.162.

You should be able to run ping 192.168.162.162 from your host computer (e.g. your laptop)
and receive ping replies from the VM. If you are unable to ping the VM, you can try setting up port
forwarding in Vagrant instead (more information here2).

1http://www.w3.org/Protocols/HTTP/1.0/spec.html
2https://docs.vagrantup.com/v2/networking/forwarded ports.html

2

http://www.w3.org/Protocols/HTTP/1.0/spec.html
https://docs.vagrantup.com/v2/networking/forwarded_ports.html

CS 162 Spring 2019 HW 4: HTTP Server

2 Background

2.1 Structure of HTTP Request

The format of a HTTP request message is:

• an HTTP request line (containing a method, a query string, and the HTTP protocol version)

• zero or more HTTP header lines

• a blank line (i.e. a CRLF by itself)

The line ending used in HTTP requests is CRLF, which is represented as \r\n in C.
Below is an example HTTP request message sent by the Google Chrome browser to a HTTP web

server running on localhost (127.0.0.1) on port 8000 (the CRLF’s are written out using their escape
sequences):

GET /hello.html HTTP/1.0\r\n

Host: 127.0.0.1:8000\r\n

Connection: keep-alive\r\n

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8\r\n

User-Agent: Chrome/45.0.2454.93\r\n

Accept-Encoding: gzip,deflate,sdch\r\n

Accept-Language: en-US,en;q=0.8\r\n

\r\n

Header lines provide information about the request3. Here are some HTTP request header types:

• Host: contains the hostname part of the URL of the HTTP request (e.g. inst.eecs.berkeley.edu
or 127.0.0.1:8000)

• User-Agent: identifies the HTTP client program, takes the form “Program-name/x.xx”, where
x.xx is the version of the program. In the above example, the Google Chrome browser sets User-
Agent as Chrome/45.0.2454.93.

3For a deeper understanding, open the web developer view on your web browser and look at the headers sent when you
request any webpage

3

CS 162 Spring 2019 HW 4: HTTP Server

2.2 Structure of HTTP Response

The format of a HTTP response message is:

• an HTTP response status line (containing the HTTP protocol version, the status code, and a
description of the status code)

• zero or more HTTP header lines

• a blank line (i.e. a CRLF by itself)

• the content requested by the HTTP request

The line ending used in HTTP requests is CRLF, which is represented as \r\n in C.
Here is a example HTTP response with a status code of 200 and an HTML file attached to the

response (the CRLF’s are written out using their escape sequences):

HTTP/1.0 200 OK\r\n

Content-Type: text/html\r\n

Content-Length: 128\r\n

\r\n

<html>\n

<body>\n

<h1>Hello World</h1>\n

<p>\n

Let’s see if this works\n

</p>\n

</body>\n

</html>\n

Typical status lines might be HTTP/1.0 200 OK (as in our example above), HTTP/1.0 404 Not

Found, etc.
The status code is a three-digit integer, and the first digit identifies the general category of response:

• 1xx indicates an informational message only

• 2xx indicates success

• 3xx redirects the client to another URL

• 4xx indicates an error in the client

• 5xx indicates an error in the server

Header lines provide information about the response. Here are some HTTP response header types:

• Content-Type: the MIME type of the data attached to the response, such as text/html or
text/plain

• Content-Length: the number of bytes in the body of the response

4

CS 162 Spring 2019 HW 4: HTTP Server

3 Your Assignment

3.1 HTTP Server Outline

From a network standpoint, your basic HTTP web server should implement the following:

1. Create a listening socket and bind it to a port

2. Wait a client to connect to the port

3. Accept the client and obtain a new connection socket

4. Read in and parse the HTTP request

5. Do one of two things: (determined by command line arguments)

• Serve a file from the local file system, or yield a 404 Not Found

• Proxy the request to another HTTP server.

HTTP
server

HTTP
Proxy

Client 1
...

Client N

Figure 1: when using a proxy, the http server serves requests by streaming them to a remote http server
(proxy). responses from the proxy are sent back to clients.

The httpserver will be in either file mode or proxy mode. It does not do both things at the same
time.

6. Send the appropriate HTTP response header and attached file/document back to the client (or an
error message)

The skeleton code already implements steps 2-4. Part 1 of this assignment is to bind the server socket
to an address and to listen for incoming connections. This will be done with the bind() and listen()

syscalls. Parts 2 and 3 of this assignment is to serve files and directories to the client. Part 4 of this
assignment is to implement a proxy server. You will then implement a variety of methods to handle
client requests (Parts 5-7) and test the performance of each implementation (Part 8).

3.2 Usage ./httpserver

Here is the usage string for httpserver. The argument parsing step has been implemented for you:

$./httpserver --help

Usage: ./httpserver --files any_directory_with_files/ [--port 8000 --num-threads 5]

./httpserver --proxy inst.eecs.berkeley.edu:80 [--port 8000 --num-threads 5]

The available options are:

• --files — Selects a directory from which to serve files. You should be serving files from the hw4/
folder (e.g. if you are currently cd’ed into the hw4/ folder, you should just use “--files www/”.

• --proxy — Selects an “upstream” http server to proxy. The argument can have a port number
after a colon (e.g. inst.eecs.berkeley.edu:80). If a port number is not specified, port 80 is the
default.

5

CS 162 Spring 2019 HW 4: HTTP Server

• --port — Selects which port the http server listens on for incoming connections. Use in both files
mode and proxy mode. (This is different from the proxy port.) If a port number is not specified,
port 8000 is the default.

• --num-threads — Indicates the number of threads in your thread pool that are able to concurrently
serve client requests. This argument is initially unused and it is up to you to use it properly.

You should not specify both --files and --proxy at the same time, or the later option will override
any earlier one. The --proxy option can also take an IP address.

The --num-threads argument is used to specify the amount of worker threads in the thread pool.
This will only be used in Part 7 of the assignment.

If you want to use a port number between 0 and 1023, you will need to run your http server as root.
These ports are the “reserved” ports, and they can only be bound by the root user. You can do this by
running “sudo ./httpserver --files www/”.

Running make will give you 4 executables: httpserver, forkserver, threadserver, and poolserver.
Parts 1-4 will use httpserver. Part 5 is to implement forkserver; Part 6 is to implement threadserver;
Part 7 is to implement poolserver. Part 8 is to load test each of these servers to compare/contrast
their performances.

6

CS 162 Spring 2019 HW 4: HTTP Server

3.3 Accessing the HTTP Server

You can send HTTP requests with the curl program, which is installed on your VM. An example of
how to use curl is:

$ curl -v http://192.168.162.162:8000/

$ curl -v http://192.168.162.162:8000/index.html

$ curl -v http://192.168.162.162:8000/path/to/file

You can also open a connection to your HTTP server directly over a network socket using netcat (nc),
and type out your HTTP request (or pipe it from a file):

$ nc -v 192.168.162.162 8000

Connection to 192.168.162.162 8000 port [tcp/*] succeeded!

(Now, type out your HTTP request here.)

After Part 3, you can access your HTTP server by opening a web browser and going to http://192.168.162.162:8000/.

3.4 Common error messages

3.4.1 Failed to bind on socket: Address already in use

This means you have an httpserver running in the background. This can happen if your code leaks
processes that hold on to their sockets, or if you disconnected from your VM and never shut down your
httpserver. You can fix this by running “pkill -9 httpserver”. If that doesn’t work, you can specify
a different port by running “httpserver --files files/ --port 8001”, or you can reboot your VM
with “vagrant reload”.

3.4.2 Failed to bind on socket: Permission denied

If you use a port number that is less than 1024, you may receive this error. Only the root user can
use the “well-known” ports (numbers 1 to 1023), so you should choose a higher port number (1024 to
65535).

7

http://192.168.162.162:8000/

CS 162 Spring 2019 HW 4: HTTP Server

3.5 Your Assignment

1. Finish setting up the server socket in the serve forever() function.

• Bind the socket to an IPv4 address and port specified at the command line (i.e. server port)
with the bind() syscall.

• Afterwards, begin listening for incoming clients with the listen() syscall. At this stage, a
value of 1024 is sufficient for the backlog argument of listen(). When load testing in Part
8, you may play around with this value and comment on how this impacts server performance.

• After finishing Part 1, curl should output ”Empty reply from server”. There are no auto-
grader tests for Part 1.

2. Implement handle files request(int fd) to handle HTTP GET requests for files. You will
need to call serve file() accordingly. You should also be able to handle requests to files in
subdirectories of the files directory (e.g. GET /images/hero.jpg).

• If the file denoted by path exists, call serve file() on it. Read the contents of the file and
write it to the client socket.

– Make sure you set the correct Content-Length HTTP header. The value of this header
should be the size of the HTTP response body, measured in bytes.
For example, Content-Length: 7810. You can use snprintf() to convert an integer
into a string.

– You must use the read() and write() syscalls for this assignment. Any implementations
using fread() or fwrite() will not earn any credit. This is purely for pedagogical
reasons: we want you to be comfortable with the fact that low-level I/O may or may not
perform the entire operation on all the bytes requested.

• Else serve a 404 Not Found response (the HTTP body is optional) to the client. There are
many things that can go wrong during an HTTP request, but we only expect you to support
the 404 Not Found error message for a non-existent file.

• After finishing Part 2, curling for index.html should output the contents of the file index.html.
There are a few autograder tests for Part 2.

3. Implement handle files request(int fd) to handle HTTP GET requests for both files and
directories.

• You will now need to determine if path in handle files request() refers to a file or a
directory. The stat() syscall and the S ISDIR or S ISREG macros will be useful for this
purpose. After finding out if path is a file or a directory, you will need to call serve file()

and serve directory() accordingly.

• If the directory contains an index.html file, respond with a 200 OK and the full contents of
the index.html file. (You may not assume that directory requests will have a trailing slash
in the query string.)

– The http format index() function in libhttp.c may be useful.

• If the directory does not contain an index.html file, respond with an HTML page containing
links to all of the immediate children of the directory (similar to ls -1), as well as a link
to the parent directory.

– The http format href() function in libhttp.c may be useful.

– To list the contents of a directory, good functions to use are opendir() and readdir()

• If the directory does not exist, serve a 404 Not Found response to the client.

8

CS 162 Spring 2019 HW 4: HTTP Server

• You don’t need to worry about extra slashes in your links (e.g. //files///a.jpg is perfectly
fine). Both the file system and your web browser are tolerant of it.

• You do not need to handle file system objects other than files and directories (e.g. you do not
need to handle symbolic links, pipes, special files)

• Remember to close the client socket before returning from the handle files request() func-
tion.

• Make helper functions to re-use similar code when you can. It will make your code easier to
debug!

• After finishing Part 3, curling for the root directory / should output the contents of the file
index.html. All tests for [Basic Server] should pass.

4. Implement handle proxy request(int fd) to proxy HTTP requests to another HTTP server.

We’ve already handled the connection setup code for you. You should read and understand it, but
you don’t need to modify it. In short, here is what we have done:

• We use the value of the --proxy command line argument, which contains the address and port
number of the upstream HTTP server. (These two values are stored in the global variables
char *server proxy hostname and int server proxy port.

• We do a DNS lookup of the server proxy hostname, which will look up the IP address of
the hostname (check out gethostbyname2()).

• We create a network socket and connect it to the IP address that we get from DNS. Check
out socket() and connect().

• htons() is used to set the socket’s port number (integers in memory are little-endian, whereas
network stuff expects big-endian). Also note that HTTP is a SOCK STREAM protocol.

Now comes your part! Here is what you need to take care of:

• Wait for new data on both sockets (the HTTP client fd, and the target HTTP server fd).
When data arrives, you should immediately read it to a buffer and then write it to the other
socket. You are essentially maintaining 2-way communication between the HTTP client and
the target HTTP server. Your proxy must support multiple requests/responses.

Hints:

– This is more tricky than writing to a file or reading from stdin, since you do not know
which side of the 2-way stream will write data first, or whether they will write more
data after receiving a response. In proxy mode, you will find that multiple HTTP re-
quest/responses are sent within the same connection, unlike your HTTP server which
only needs to support one request/response per connection.

– You should use pthreads for this task. Consider using two threads to facilitate the two-
way communication, one from A to B and the other from B to A.

– Do not use select(), fcntl(), or the like. We used to recommended this approach in
previous semesters, but we’ve found this method to be too confusing.

• If either of the sockets closes, communication cannot continue, so you should close both sockets
to terminate the connection.

• After finishing Part 4, all [Proxy] tests should pass on the autograder.

5. Implement forkserver. You won’t be writing much new code. With the conditional compilation
preprocessor directives, we only need to change how we call the request handler() in each of
these different servers.

9

CS 162 Spring 2019 HW 4: HTTP Server

• The child process should call the request handler() with the client socket fd. After serving
a response, the child process will terminate.

• The parent process will continue listening and accepting incoming connections. It will NOT
wait for the child.

• Remember to close sockets appropriately in both the parent and child process.

6. Implement threadserver.

• Create a new pthread to send the proper response to the client.

• The original thread continues listening and accepting incoming connections. It will NOT join
with the new thread.

7. Implement a fixed-sized thread pool for handling multiple client request concurrently.

• Your thread pool should be able to concurrently serve exactly --num-threads clients and no
more. Note that we typically use --num-threads + 1 threads in our program: the original
thread is responsible for accept()-ing client connections in a while loop and dispatching the
associated requests to be handled by the threads in the thread pool.

• Begin by looking at the functions in wq.c/h.

– The original thread (i.e. the thread you started the httpserver program with) should
wq push the client socket file descriptors received from accept into the wq t work queue

declared at the top of httpserver.c and defined in wq.c/h.

– Then, threads in the thread pool should use wq pop to get the next client socket file
descriptor to handle.

• You’ll need to make your server spawn --num-threads new threads which will spin in a loop
doing the following:

– Make blocking calls to wq pop for the next client socket file descriptor.

– After successfully popping a to-be-served client socket fd, call the appropriate request handler

to handle the client request.

8. Test, measure, and comment on the performance of httpserver, forkserver, threadserver, and
poolserver.

• We will be using the Apache HTTP server benchmarking tool (ab for short) to load test each
server type. To install ab, run the following command:

$ sudo apt-get install apache2-utils

• Run ./httpserver --files www/ in your terminal.

• In a separate terminal window, run the command:

$ ab -n 500 -c 10 http://192.168.162.162:8000/

• This command issues 500 requests at a concurrency level of 10 (meaning it dispatches 10
requests at a time). Read man ab to learn more about the tool. You can type man ab in
your terminal or your preferred search engine. However, please note that typing man ab into
Google will also give you defined images of chiseled male abdominal muscles; do so at your
own discretion.

• Notice how ab outputs the mean time per request. Take note of this value and comment on
how it changes when we change how the server handles requests.

10

CS 162 Spring 2019 HW 4: HTTP Server

• Use ab to load test forkserver, threadserver, and poolserver. Play around with the n

and c variables as well as the size of the thread pool in poolserver.

• Answer the questions on Gradescope.

9. Congratulations on implementing your own HTTP server!

3.6 Submission

To submit and push to autograder, first commit your changes, then do:

git push personal master

Within 30 minutes you should receive an email from the autograder. (If you haven’t received an
email within half an hour, please notify the instructors via a private post on Piazza.)

11

CS 162 Spring 2019 HW 4: HTTP Server

A Function reference: libhttp

We have provided some helper functions to deal with the details of the HTTP protocol. They are
included in the skeleton as libhttp.c and libhttp.h. These functions only implement a small fraction
of the entire HTTP protocol, but they are more than enough for this assignment.

A.1 Request object

A http_request struct pointer is returned by http_request_parse. This struct contains just two
members:

struct http_request {

char *method;

char *path;

};

A.2 Functions

• struct http_request *http_request_parse(int fd)

Returns a pointer to a http_request struct containing the HTTP method and the path that of a
request that is read from the socket. This function will return NULL if the request is invalid. This
function will block until data is available on fd.

• void http_start_response(int fd, int status_code)

Writes the HTTP status line to fd to start the HTTP response. For example, when status_code

is 200, the function will produce HTTP/1.0 200 OK\r\n

• void http_send_header(int fd, char *key, char *value)

Writes a HTTP response header line to fd. For example, if key is equal to "Content-Type" and
the value is equal to "text/html" this function will write Content-Type: text/html\r\n

• void http_end_headers(int fd)

Writes a CRLF (\r\n) to fd to indicate the end of the HTTP response headers.

• char *http_get_mime_type(char *file_name)

Returns a string for the correct Content-Type based on file_name.

• void http_format_href(char *buffer, char *path, char *filename)

Puts filename
into the provided buffer. The resulting
string in the buffer is null-terminated. It is the caller’s responsibility to ensure that the buffer has
enough space for the resulting string.

• void http_format_index(char *buffer, char *path)

Puts path/index.html into the provided buffer. The resulting string in the buffer is null-terminated.
It is the caller’s responsibility to ensure that the buffer has enough space for the resulting string.

12

	Introduction
	Getting Started
	Setup Details

	Background
	Structure of HTTP Request
	Structure of HTTP Response

	Your Assignment
	HTTP Server Outline
	Usage ./httpserver
	Accessing the HTTP Server
	Common error messages
	Failed to bind on socket: Address already in use
	Failed to bind on socket: Permission denied

	Your Assignment
	Submission

	Function reference: libhttp
	Request object
	Functions

