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1 Introduction

The Pintos userspace that you implemented in Project 1 is subject to two major limitations. First, the
stack, which you set up properly to load a new process, is confined to a single page. If a user program’s
stack grows beyond 4,096 bytes, due to a long chain of function calls (e.g., due to a recursive function)
and/or stack-allocated data, then the process will be terminated on its first memory access beyond the
first stack page. Second, there is no way to perform any dynamic memory allocation in a user program.
Presently, all memory in a user process must either have been loaded from the executable (e.g., code,
globals) or must be allocated on the stack.

In this homework, you will remove both of these limitations. In Part A, you will modify Pintos to
dynamically extend the stack space of a process in response to memory accesses beyond the currently
allocated stack. In Part B, you will provide a way for a user process to explicitly request more memory
from the Pintos kernel.

This assignment is due at 11:59 pm on 12/2/2020.

2 Logistics

This homework builds on the Pintos userspace that you implemented in Project 1 (among some other
functionality implemented which is mentioned below). Unlike Project 1, however, this is an individ-
ual assignment. You should NOT share code with your group members to complete this
assignment!

To simplify the logistics, we are providing a minimal implementation of the requisite functionality
from Project 1 to complete this assignment. You should complete this assignment by building on the
userspace implementation that we provide you in the starter code, NOT using your group’s implementa-
tion from Project 1. That said, the nature of this assignment’s dependency on Project 1 is that, while
certain features of the Pintos userspace must be working in order for this assignment to be well-formed
(e.g., you have to be able to start a user process before it makes sense to extend its stack), the code you
write for this assignment will not depend directly on the implementation of Project 1 features.

3 Getting Started With Pintos

Log in to your Vagrant Virtual Machine and run:

cd ~/code/personal
git pull staff master
cd hwé

Then run cd src/memory and run make to build the code. Run make check to run the tests for this
assignment.

3.1 Overview of Starter Code
The starter code implements the following:
1. The one-line do-nothing hack needed to complete the “Getting Acquainted with Pintos” exercise.
2. The write system call for file descriptor 1 (stdout).
3. The ability to open, read, write, and close a single file per process.
4. Argument validation for the provided system calls using the page fault handler.

5. Elements needed for the heap growth portion of the homework in struct thread.
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6. The implementation for malloc/calloc/realloc/free in pintOS.

Notably, the provided starter code does not provide the ability to pass arguments on the command line,
exec a new process, or open multiple files. We chose to implement only the above mentioned items
to minimize the amount of code you would need to look over and simplify some of the implementation
(discussed below).

In the starter code, we include two new elements inside of struct thread, void* heap_base; and
void* heap_brk;. We provided these elements inside of the struct thread because it’s needed to keep
track of these per thread. The reasoning behind this is discussed more in depth below. Make sure you
correct initialize these elements.

Importantly, the provided starter code validates arguments to system calls using the following tech-
nique. Rather than validating every byte of user-provided arguments, the code merely checks that the
arguments’ memory is below PHYS_BASE, and then reacts to page faults by terminating the running
process. This is more efficient than validating the entire buffer up front, and makes implementing stack
extension easier. You should carefully read the provided code that validates system call
arguments to understand how it works.

3.2 Overview of Source Files
threads/palloc.c Page allocator.
threads/vaddr.h Helper functions for working with virtual addresses in Pintos.

userprog/process.c Loads ELF binaries, starts processes, and switches page tables on context switch.
You should be familiar with this code based on your experience in Project 1.

userprog/pagedir.c Manages the page tables. You probably won’t need to modify this code, but you
may want to call some of these functions.

userprog/syscall.c This is basic system call handler that implements the system calls mentioned above.

lib/user/syscall.c Provides library functions for user programs to invoke system calls from a C pro-
gram. Each function uses inline assembly code to prepare the syscall arguments and invoke the
system call. We do expect you to understand the calling conventions used for syscalls.

lib/user/stdlib.c Provides library functions for the C standard library linked into Pintos user appli-
cations. In Part B, you will implement malloc/calloc/realloc/free in this file.

lib/syscall-nr.h This file defines the syscall numbers for each syscall.

userprog/exception.c Handle exceptions. You are expected to modify page_fault, the Pintos page
fault handler, to complete this assignment. We already made some modifications to it in order to
validate arguments to system calls.

You should read carefully through the functions in threads/vaddr.h and userprog/pagedir.

as many of them will be useful to you in this assignment.

4 Pages and Page Tables in Pintos

In this section, we discuss how to allocate user pages and map them into the page tables of user processes.
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4.1 Allocating Pages

Use the following functions (#include "threads/palloc.h") to allocate and deallocate pages in the
Pintos kernel:

void *palloc_get_page (enum palloc_flags);

void *palloc_get_multiple (enum palloc_flags, size_t page_cnt);
void palloc_free_page (void *);

void palloc_free_multiple (void *, size_t page_cnt);

The palloc functions use a bitmap to keep track of which pages are free and which pages are allocated.
The flags argument is a bitmask of the following choices:

enum palloc_flags

{
PAL_ASSERT = 001, /* Panic on failure. */
PAL_ZERO = 002, /* Zero page contents. */
PAL_USER = 004 /* User page. */

};

The set of pages is partitioned into two separate pools: a user pool and a kernel pool. Pages in the kernel
pool are meant for use inside the kernel (e.g., the stack for kernel threads) and pages in the user pool are
meant to be mapped into the virtual address spaces of user processes. The reason for this separation is
to prevent failures in the kernel if user programs run out of memory. The PAL_USER flag tells the palloc
function to allocate the requested pages from the user pool. Otherwise, it will allocate the requested
pages from the kernel pool. If you intend to map a page into the virtual address space of a
process, you should allocate it from the user pool using PAL_USER.

4.2 Mapping a Page into a Virtual Address Space

The pagedir member of struct thread is a pointer to the page table of the process. When switching
to a process, Pintos uses the pagedir_activate function to start using that process’ page table for
address translation, by setting the page directory base register (%cr3). Note that the entirety of kernel
memory is mapped into every process’ virtual address space at addresses PHYS_BASE and above, so all
process’ page tables are interchangeable as long as you are accessing kernel memory. For this reason, we
sometimes refer to addresses at PHYS_BASE and above as kernel virtual addresses.

The physical address corresponding to a kernel virtual address can be computed by subtracting
PHYS_BASE from it. In principle this need not be true, but Pintos sets up its page tables such that it
holds. The functions vtop and ptov (#include "threads/vaddr.h") are helper functions that perform
this conversion for you, but we do not expect you to have to use those functions in this assignment.

Given a page allocated in kernel virtual memory, one can map it into the virtual address space of a
process by calling pagedir_set_page, which handles traversal of the two-level hierarchical page table
and allocation of leaves as needed. Two arguments to pagedir_set_page are the virtual address in the
user process at which the page should be mapped, and the kernel virtual address of the page to map.
Although the physical page table entry contains the physical page number, remember to
pass in the kernel virtual address into pagedir_set_page. Once you’ve mapped the page into the
process’ virtual address space, you don’t have to worry about deallocating it; when the process exits,
the process_exit function will call pagedir_destroy, which will call palloc_free_page on all pages
mapped into the process’ address space. If you would like the page to continue to be allocated even after
the process dies, you should first remove it from the page table using pagedir_clear_page.

Note that pages that you allocate using palloc_get_page could have been previously allocated and
then freed, and therefore could contain data from the previous time it was allocated. If it was mapped
into a user process, it could contain data from the previous user program. To properly enforce protection,
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you should initialize the contents of a page before mapping it into a user process. This is
typically done by setting all bytes in the page to zero, except in special situations where the
page should contain specific data (e.g., loading new code into a process or bringing back a page from
disk). Under no circumstances should memory used by the kernel, or by other processes, become visible
to a process because a physical page frame was reused.

4.3 Summary and Example

In summary, here is how to map a fresh page into the virtual address space of a process.
1. Allocate the page from the user pool using palloc_get_page and passing the PAL_USER flag.

2. Zero out the page’s contents, either by using memset or passing the PAL_ZERO flag when allocating
the page (e.g., palloc_get_page (PAL_ZERO | PAL_USER)).

3. Use pagedir_set_page to map the page into the virtual addres space of a process.

4. The page will be deallocated when the process exits and pagedir_destroy is called. Alternatively,
if you would like the page to be deallocated at some other time, you can remove it from the page
table with pagedir_clear_page and then deallocate it later using palloc_free_page.

A simple example of this is in the setup_stack and install_page functions in process.c. We
strongly recommend that you review these functions and understand this simple example
before attempting this homework.

5 Debugging

You can run GDB for this assignment as you have done for the Pintos projects. Remember to include
all flags to the pintos script used to run the actual test, especially for tests that depend on auxiliary
files. For example, to run GDB for the pt-grow-stk-sc test, you can run:

pintos -v --gdb --qemu --filesys-size=2 -p tests/memory/pt-grow-stk-sc -a
pt-grow-stk-sc -p ../../tests/memory/sample.txt -a sample.txt --swap-size=4
-- —-q —f run pt-grow-stk-sc

Remember that you can change --qemu to --bochs if desired. Then, run pintos-gdb kernel.o in
another terminal, and then run debugpintos in the GDB to connect to Pintos in the first terminal.
Don’t forget to run loadusersymbols tests/memory/pt-grow-stk-sc if you would like to be able to
step through the test itself in GDB.

You can review this information in the Project 1 specification. You may also find it useful to review
Section 3.1.9 “Debugging Page Faults” from the Project 1 specification.

6 Part A: Stack Growth

Implement stack growth. In Project 1, the stack was a single page at the top of the user virtual address
space, and programs were limited to that much stack. Now, if the stack grows past its current size,
allocate additional pages as necessary.

Allocate additional pages only if they “appear” to be stack accesses. Devise a heuristic that attempts
to distinguish stack accesses from other accesses.

You may assume that a correct Pintos user program will never attempt to write to its stack below
the stack pointer. The stack pointer will point at or below any active variables on the stack. In real
operating systems, the system may interrupt a process at any time to deliver a “signal,” which pushes
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data on the stack (or in kernel mode, an interrupt).! So, you should check if the faulting address is above
the user value of %esp before extending the stack. However, there is an important edge case you need
to handle. For example, the x86 push instruction checks access permissions before it adjusts the stack
pointer, so it may cause a page fault 4 bytes below the stack pointer.? Similarly, the pusha instruction
pushes 32 bytes at once, so it may fault 32 bytes below the stack pointer. Your implementation of stack
growth should handle these cases.

You will need to be able to obtain the current value of the user program’s stack pointer. Within
a system call or a page fault generated by a user program, you can retrieve it from the esp member
of the intr_frame passed to the system call handler or page fault handler, respectively. The provided
code validates invalid arguments to system calls lazily, by terminating the user process in the system
call handler for page faults to user memory addresses that occur when handling a system call.

Note that the page fault resulting in stack growth may not necessarily be for the next consecutive
page on the stack—the stack may grow by multiple pages at a time. This leads to multiple ways to
implement stack growth. Here are two possibilities:

1. Only map the page containing the faulting address, so that the set of mapped pages for the stack
is not necessarily contiguous in the virtual address space.

2. Map all pages from the current stack until the page containing the faulting address, so that the
set of mapped pages is contiguous in virtual addresses.

The first option is conceptually simpler, but may be trickier to implement because the first access
to a stack page may occur while handling a system call. For an example of this, see the
pt-grow-stk-sc test. The reason this is tricky is that, if a page fault occurs while handling a system
call, the esp member of the intr_frame passed to the page fault handler does not contain the stack
pointer of the user program (think about why). The value of the stack pointer in the user program at
the time of the page fault is in the intr_frame passed to the system call handler. If your design requires
you to consider stack extension due to a page fault while handling a system call, you will need to arrange
a way to obtain the user-mode value of %esp in the faulting process in the page fault handler so that
you can decide if the stack should be grown as a result of the page fault.

If there is no free page in the user pool to use to extend the stack, you should terminate the process
with exit code -1. Except for this out-of-memory condition, do not implement an absolute
limit on stack size. Modern operating systems do implement other limits, however; see the appendix
(Resource Limits) for more information.

The first stack page need not be allocated lazily. You can allocate it at load time, as is done by the
code provided to you in process.c, with no need to wait for it to be faulted in. However, future stack
pages should only be allocated on demand. It is not acceptable to simply allocate a large stack
up front when the user program is loaded.

7 Part B: Dynamic Memory Allocation

For this portion of the homework, you’ll need to extend Pintos with the sbrk system call, so that your
dynamic memory allocator can request memory from the operating system. More details on this are
given below.

7.1 Process Memory

Each process has its own virtual address space. Parts of this address space are mapped to physical
memory through address translation. In order to build a memory allocator, we need to understand

IThis rule is common but not universal. One modern exception is the x86-64 System V ABI2, which designates 128
bytes below the stack pointer as a “red zone” that may not be modified by signal or interrupt handlers.

3If %esp were to be decremented by 4 bytes in the page fault handler, then the push instruction would not be restartable
in a straightforward fashion.


http://www.x86-64.org/documentation/abi.pdf
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how the heap in particular is structured. Here we describe the process memory layout, focusing on the
structure of the heap, within a Linuz process. You’ll have to implement a simplified version of the heap
in Pintos with the sbrk system call.

Stack

Unusable Region
<«— rlimit

Heap § Unmapped Region
“— brk

Initialized Data
Mapped Region

BSS <«— Start of heap

Code

The heap is a space of memory, continuous in the virtual address space of a process, with three bounds:
e The bottom of the heap.

e The top of the heap, known as the break. The break can be changed using brk and sbrk. The
break marks the end of the mapped memory space. Above the break lies virtual addresses which
have not been mapped to physical addresses by the operating system. For simplicity, you only
need to implement sbrk in Pintos for this assignment. You do not need to bother
with brk. You should implement sbrk as a new system call in Pintos.

e The hard limit of the heap, which the break cannot surpass. See the appendix (Resource Limits)
for more information. For simplicity, you should not implement a hard limit on the heap
size for this assignment.

In this assignment, you’ll be allocating blocks of memory in the mapped region and moving the break
appropriately whenever you need to expand the mapped region.

7.2 Requesting Memory from the Operating System

Initially the mapped region of the heap will have a size of 0. To expand the mapped region, we have to
manipulate the position of the break. The way to do this is sbrk, defined in 1ib/user/syscall.c:

void *sbrk(intptr_t increment);

Your task is to implement sbrk syscall by implementing the syscall_sbrk function inside src/userprog/syscall.c
that will increment the position of the break by increment bytes and returns the address of the pre-
vious break (i.e., the beginning of newly mapped memory if increment is positive). We have already
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implemented the boilerplate code needed to implement sbrk inside the syscall handler. To get the cur-
rent position of the break, pass in an increment of 0. Run man 2 sbrk on Linux for additional useful
information.

To implement the syscall_sbrk function, you’ll need to keep track of two variables for each process:
the start of the heap, and the segment break (end of the heap). These should be maintained in the
heap_base and heap_brk fields of struct thread, respectively. We describe how to how to use these
variables below.

7.2.1 Determining the Start of the Heap

You should make sure that the process heap is located above (i.e., at a higher virtual address than)
the process’ code and other data loaded from the executable. You should determine at what address
the heap should start when the program is loaded, after which it should remain fixed for the duration
of the process. Look closely at the load function in process.c. For each loadable segment in the
executable (remember segments from Homework 07), load allocates pages in the virtual address space
of the process, according to the read/write permissions and virtual address specified in the executable,
and reads data from the executable file into those pages. Based on where the segments are loaded into
memory, you should determine at what address the heap should start.

The ELF executable format guarantees that loadable segments will be listed in the executable in
ascending order by virtual address space. Thus, you should start the heap at a virtual address
after the last loadable segment processed by the load function. We recommend choosing a
page-aligned address to start the heap.

To learn more about ELF, read man 5 elf.

7.2.2 Manipulating the Segment Break

The segment break should be first address past the end of the heap, so you can initialize the data segment
break to the start of the heap after loading the process. You should move it only in response to sbrk
system calls. The user program should be able to write data starting at the start of the
heap, up to and not including the segment break. If the user program moves the segment break
to increase the size of the heap, you should allocate pages and map them into the user’s virtual address
space as necessary. If the user program moves the segment break to decrease the size of the heap, you
should deallocate pages that no longer contain part of the heap as necessary. You should only have to
allocate or deallocate pages if the segment break crosses a page boundary.

Memory can only be mapped into a virtual address space in quanta of pages. Therefore, if the
segment break is not page-aligned, it is acceptable for memory including after the system break, but
before the next page boundary, to be accessible by a process. See the appendix (Unmapped Region and
No Man’s Land) for more information.

Allocating additional pages for a process’ heap will fail if, for example, the user memory pool is ex-
hausted and palloc_get_page fails. If sbrk fails, the net effect should be that sbrk returns (void*) -1
and that the segment break and the process heap are unaffected. You might have to undo any operations
you have done so far in this case.

Finally, real operating systems may allocate pages for sbrk lazily, similar to stack growth. While
sbrk moves the segment break, pages are not allocated until the user program actually tries to access
data in its heap. For simplicity, you are not required to implement this optimization.

7.2.3 Tips on getting started

You are advised to begin by reading over the functions start_process and load functions in process. c.
Consider what new initialization you must perform is these locations in order to support the heap
functionality outlined above.
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8 Submission Details

To submit and run to autograder, first commit your changes. Then do:

git push personal master
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A Unmapped Region and No Man’s Land

We saw earlier that the break marks the end of the mapped virtual address space. By this assumption,
accessing addresses above the break should trigger an error (“bus error” or “segmentation fault”).

The virtual address space is mapped in quanta of pages (usually some multiple of 4096 bytes). When
sbrk is called, the operating system will have to map more memory to the heap. To do that, it maps an
entire page from physical memory to the mapped region of the heap. Now, it is possible that the break
doesn’t end up exactly on a page boundary. In this situation, what is the status of the memory between
the break and the page boundary? It turns out that this memory is accessible, even though it is above
the break and thus should be unmapped in theory. Bugs related to this issue are particularly insidious,
because no error will occur if you read from or write to this “no man’s land.”

Unmapped region
page boundary —»
No Man's Land
brk —
Chunk of allocated
memory
Metadata
Chunk of free memory -
size
free: true
Metadata
*next
Chunk of allocated N
memory prev
Metadata
Chunk of allocated
memory size
free: false
Metadata
Start of heap —> *next
*prev

B Resource Limits

In Homework 0, you briefly explored the getrlimit limit. In modern operating systems like Linux,
processes have limits on their resource usage. For example, the maximum size of the stack and heap are
governed by limits on the resources RLIMIT_STACK and RLIMIT_DATA (see man 2 getrlimit). Each of
these resources has a hard limit and a soft limit. A process can raise its own soft limits; the soft limit
exists to catch bugs (e.g., resource leaks) early by causing an error if a process uses more resources than
expected. The hard limit can only be raised by the superuser (root), and exists to prevent resource
abuse.

For this assignment, do not place an upper bound on the stack size and heap size. You do not need
to implement resource limits.
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