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Recall: Monitors and Condition Variables

� Monitor: a lock and zero or more condition variables for managing 
concurrent access to shared data

– Use of Monitors is a programming paradigm

– Some languages like Java provide monitors in the language

� Condition Variable: a queue of threads waiting for something inside a critical 
section

– Key idea: allow sleeping inside critical section by atomically releasing lock at 
time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section

� Operations:
– Wait(&lock): Atomically release lock and go to sleep. Re-acquire lock later, 

before returning. 

– Signal(): Wake up one waiter, if any

– Broadcast(): Wake up all waiters

� Rule: Must hold lock when doing condition variable ops!
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Recall: Structure of Mesa Monitor Program 

� Monitors represent the synchronization logic of the program

– Wait if necessary

– Signal when change something so any waiting threads can proceed

� Basic structure of mesa monitor-based program:
lock
while (need to wait) {

condvar.wait();
}
unlock

do something so no need to wait

lock

condvar.signal();

unlock

Check and/or update

state variables

Wait if necessary

Check and/or update

state variables
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Recall: I/O and Storage Layers

High Level I/O 

Low Level I/O 

Syscall

File System

I/O Driver

Application / Service

Streams

File Descriptors

open(), read(), write(), close(), …

Files/Directories/Indexes

Commands and Data Transfers

Disks, Flash, Controllers, DMA

What we’ve covered so 

far…

Open File Descriptions

What we’ll peek at next
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length = read(input_fd, buffer, BUFFER_SIZE);

ssize_t read(int, void *, size_t) {
marshal args into registers
issue syscall
register result of syscall to rtn value

};

void syscall_handler (struct intr_frame *f) {
unmarshall call#, args from regs
dispatch : handlers[call#](args)
marshal results fo syscall ret

}

Exception UK, interrupt processing

ssize_t vfs_read(struct file *file, char __user *buf, 
size_t count, loff_t *pos) {

User Process/File System relationship
call device driver to do the work

}

User App:

User library:

Device Driver

Layers of I/O…

High Level I/O 

Low Level I/O 

Syscall

File System

I/O Driver

Application / Service
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Many different types of I/O
The System Call Interface

Process

Management

Memory

Management
Filesystems

Device

Control
Networking

Architecture

Dependent

Code

Memory

Manager

Device

Control

Network

Subsystem

File System 

Types

Block

Devices
IF drivers

Concurrency,
multitasking

Virtual
memory

Files and dirs:
the VFS

TTYs and
device access

Connectivity
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Recall: Internal OS File Description

� Internal Data Structure describing everything about the file

– Where it resides

– Its status

– How to access it

� Pointer: struct file *file
– Everything accessed with file 

descriptor has one of these

� Struct file_operations *f_op:
Describes how this particular device 
implements its operations

– For disks: points to file operations 

– For pipes: points to pipe operations

– For sockets: points to socket operations
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File_operations: Why everything can look like a file

� Associated with particular hardware device or environment (i.e. file system)

� Registers / Unregisters itself with the kernel

� Handler functions for each of the file operations
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ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
{
ssize_t ret;
if (!(file‐>f_mode & FMODE_READ)) return ‐EBADF;
if (!file‐>f_op || (!file‐>f_op‐>read && !file‐>f_op‐>aio_read))

return ‐EINVAL;
if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) return ‐EFAULT;
ret = rw_verify_area(READ, file, pos, count);
if (ret >= 0) {

count = ret;
if (file‐>f_op‐>read)

ret = file‐>f_op‐>read(file, buf, count, pos);
else

ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {

fsnotify_access(file‐>f_path.dentry);
add_rchar(current, ret);

}
inc_syscr(current);

}
return ret;

} Linux: fs/read_write.c

�Read up to “count” bytes from “file” 

starting from “pos” into “buf”. 

�Return error or number of bytes read.

File System: From Syscall to Driver
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ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
{
ssize_t ret;
if (!(file‐>f_mode & FMODE_READ)) return ‐EBADF;
if (!file‐>f_op || (!file‐>f_op‐>read && !file‐>f_op‐>aio_read))

return ‐EINVAL;
if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) return ‐EFAULT;
ret = rw_verify_area(READ, file, pos, count);
if (ret >= 0) {

count = ret;
if (file‐>f_op‐>read)

ret = file‐>f_op‐>read(file, buf, count, pos);
else

ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {

fsnotify_access(file‐>f_path.dentry);
add_rchar(current, ret);

}
inc_syscr(current);

}
return ret;

}

Make sure we 

are allowed to 

read this file

File System: From Syscall to Driver

Linux: fs/read_write.c
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ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
{
ssize_t ret;
if (!(file‐>f_mode & FMODE_READ)) return ‐EBADF;
if (!file‐>f_op || (!file‐>f_op‐>read && !file‐>f_op‐>aio_read))

return ‐EINVAL;
if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) return ‐EFAULT;
ret = rw_verify_area(READ, file, pos, count);
if (ret >= 0) {

count = ret;
if (file‐>f_op‐>read)

ret = file‐>f_op‐>read(file, buf, count, pos);
else

ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {

fsnotify_access(file‐>f_path.dentry);
add_rchar(current, ret);

}
inc_syscr(current);

}
return ret;

}

Check if file has 

read methods

File System: From Syscall to Driver

Linux: fs/read_write.c
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ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
{
ssize_t ret;
if (!(file‐>f_mode & FMODE_READ)) return ‐EBADF;
if (!file‐>f_op || (!file‐>f_op‐>read && !file‐>f_op‐>aio_read))

return ‐EINVAL;
if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) return ‐EFAULT;
ret = rw_verify_area(READ, file, pos, count);
if (ret >= 0) {

count = ret;
if (file‐>f_op‐>read)

ret = file‐>f_op‐>read(file, buf, count, pos);
else

ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {

fsnotify_access(file‐>f_path.dentry);
add_rchar(current, ret);

}
inc_syscr(current);

}
return ret;

}

�Check whether we can write to buf

(e.g., buf is in the user space range)  

�unlikely(): hint to branch prediction 

this condition is unlikely

File System: From Syscall to Driver

Linux: fs/read_write.c
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ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
{
ssize_t ret;
if (!(file‐>f_mode & FMODE_READ)) return ‐EBADF;
if (!file‐>f_op || (!file‐>f_op‐>read && !file‐>f_op‐>aio_read))

return ‐EINVAL;
if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) return ‐EFAULT;
ret = rw_verify_area(READ, file, pos, count);
if (ret >= 0) {

count = ret;
if (file‐>f_op‐>read)

ret = file‐>f_op‐>read(file, buf, count, pos);
else

ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {

fsnotify_access(file‐>f_path.dentry);
add_rchar(current, ret);

}
inc_syscr(current);

}
return ret;

}

Check whether we read from 

a valid range in the file.

File System: From Syscall to Driver

Linux: fs/read_write.c
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ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
{
ssize_t ret;
if (!(file‐>f_mode & FMODE_READ)) return ‐EBADF;
if (!file‐>f_op || (!file‐>f_op‐>read && !file‐>f_op‐>aio_read))

return ‐EINVAL;
if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) return ‐EFAULT;
ret = rw_verify_area(READ, file, pos, count);
if (ret >= 0) {

count = ret;
if (file‐>f_op‐>read)

ret = file‐>f_op‐>read(file, buf, count, pos);
else

ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {

fsnotify_access(file‐>f_path.dentry);
add_rchar(current, ret);

}
inc_syscr(current);

}
return ret;

}

If driver provide a read 

function (f_op->read) use it; 

otherwise use do_sync_read()

File System: From Syscall to Driver

Linux: fs/read_write.c
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ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
{
ssize_t ret;
if (!(file‐>f_mode & FMODE_READ)) return ‐EBADF;
if (!file‐>f_op || (!file‐>f_op‐>read && !file‐>f_op‐>aio_read))

return ‐EINVAL;
if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) return ‐EFAULT;
ret = rw_verify_area(READ, file, pos, count);
if (ret >= 0) {

count = ret;
if (file‐>f_op‐>read)

ret = file‐>f_op‐>read(file, buf, count, pos);
else

ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {

fsnotify_access(file‐>f_path.dentry);
add_rchar(current, ret);

}
inc_syscr(current);

}
return ret;

}

Notify the parent of this file that the file was read 

(see http://www.fieldses.org/~bfields/kernel/vfs.txt)

File System: From Syscall to Driver

Linux: fs/read_write.c
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ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
{
ssize_t ret;
if (!(file‐>f_mode & FMODE_READ)) return ‐EBADF;
if (!file‐>f_op || (!file‐>f_op‐>read && !file‐>f_op‐>aio_read))

return ‐EINVAL;
if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) return ‐EFAULT;
ret = rw_verify_area(READ, file, pos, count);
if (ret >= 0) {

count = ret;
if (file‐>f_op‐>read)

ret = file‐>f_op‐>read(file, buf, count, pos);
else

ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {

fsnotify_access(file‐>f_path.dentry);
add_rchar(current, ret);

}
inc_syscr(current);

}
return ret;

}

Update the number of bytes 

read by “current” task (for 

scheduling purposes)

File System: From Syscall to Driver

Linux: fs/read_write.c
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ssize_t vfs_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
{
ssize_t ret;
if (!(file‐>f_mode & FMODE_READ)) return ‐EBADF;
if (!file‐>f_op || (!file‐>f_op‐>read && !file‐>f_op‐>aio_read))

return ‐EINVAL;
if (unlikely(!access_ok(VERIFY_WRITE, buf, count))) return ‐EFAULT;
ret = rw_verify_area(READ, file, pos, count);
if (ret >= 0) {

count = ret;
if (file‐>f_op‐>read)

ret = file‐>f_op‐>read(file, buf, count, pos);
else

ret = do_sync_read(file, buf, count, pos);
if (ret > 0) {

fsnotify_access(file‐>f_path.dentry);
add_rchar(current, ret);

}
inc_syscr(current);

}
return ret;

}

Update the number of read 

syscalls by “current” task 

(for scheduling purposes)

File System: From Syscall to Driver

Linux: fs/read_write.c
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Device Drivers

� Device Driver: Device-specific code in the kernel that interacts directly with the 
device hardware

– Supports a standard, internal interface

– Same kernel I/O system can interact easily with different device drivers

– Special device-specific configuration supported with the ioctl() system call

� Device Drivers typically divided into two pieces:
– Top half: accessed in call path from system calls

» implements a set of standard, cross-device calls like open(), close(), read(),
write(), ioctl(), strategy()

» This is the kernel’s interface to the device driver

» Top half will start I/O to device, may put thread to sleep until finished

– Bottom half: run as interrupt routine
» Gets input or transfers next block of output

» May wake sleeping threads if I/O now complete
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Device Driver

Top Half

Device Driver

Bottom Half

Device

Hardware

Kernel I/O

Subsystem

User

Program

Life Cycle of An I/O Request
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Goal for Today

� Discussion of Scheduling: 

– Which thread should run on the CPU next?

� Scheduling goals, policies

� Look at a number of different schedulers

if ( readyThreads(TCBs) ) {
nextTCB = selectThread(TCBs);
run( nextTCB );

} else {
run_idle_thread();

}
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Recall: Scheduling

� Question: How is the OS to decide which of several tasks to take off a queue?

� Scheduling: deciding which threads are given access to resources from 
moment to moment  

– Often, we think in terms of CPU time, but could also think about access to 
resources like network BW or disk access
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Scheduling: All About Queues
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Scheduling Assumptions
� CPU scheduling big area of research in early 70’s

� Many implicit assumptions for CPU scheduling:

– One program per user

– One thread per program

– Programs are independent

� Clearly, these are unrealistic but they simplify the problem 
so it can be solved

– For instance: is “fair” about fairness among users or 
programs?  

» If I run one compilation job and you run five, you get five times as 
much CPU on many operating systems

� The high-level goal: Dole out CPU time to optimize some 
desired parameters of system

USER1 USER2 USER3 USER1 USER2

Time 
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Assumption: CPU Bursts

� Execution model: programs alternate between bursts of CPU and I/O
– Program typically uses the CPU for some period of time, then does I/O, 

then uses CPU again

– Each scheduling decision is about which job to give to the CPU for use by 
its next CPU burst

– With timeslicing, thread may be forced to give up CPU before finishing 
current CPU burst

Weighted toward small bursts
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Scheduling Policy Goals/Criteria

� Minimize Response Time
– Minimize elapsed time to do an operation (or job)

– Response time is what the user sees:
» Time to echo a keystroke in editor

» Time to compile a program

» Real-time Tasks: Must meet deadlines imposed by World

� Maximize Throughput
– Maximize operations (or jobs) per second

– Throughput related to response time, but not identical:
» Minimizing response time will lead to more context switching than if you only 

maximized throughput

– Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)

» Efficient use of resources (CPU, disk, memory, etc)

� Fairness
– Share CPU among users in some equitable way

– Fairness is not minimizing average response time:
» Better average response time by making system less fair
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First-Come, First-Served (FCFS) Scheduling
� First-Come, First-Served (FCFS)

– Also “First In, First Out” (FIFO) or “Run until done”
» In early systems, FCFS meant one program 

scheduled until done (including I/O)

» Now, means keep CPU until thread blocks 

� Example: Process Burst Time
P1 24
P2 3
P3 3

– Suppose processes arrive in the order: P1 , P2 , P3  
The Gantt Chart for the schedule is:

– Waiting time for P1 = 0; P2 = 24; P3 = 27
– Average waiting time:  (0 + 24 + 27)/3 = 17

– Average Completion time: (24 + 27 + 30)/3 = 27

� Convoy effect: short process stuck behind long process

P1 P2 P3

24 27 300
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Convoy effect

� With FCFS non-preemptive scheduling, convoys of 
small tasks tend to build up when a large one is 
running.

time

S
ch

e
d
ul
in
g 

qu
e
ue

Scheduled Task (process, thread)

arrivals
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FCFS Scheduling (Cont.)
� Example continued:

– Suppose that processes arrive in order: P2 , P3 , P1 
Now, the Gantt chart for the schedule is:

– Waiting time for P1 = 6; P2 = 0; P3 = 3

– Average waiting time:   (6 + 0 + 3)/3 = 3

– Average Completion time: (3 + 6 + 30)/3 = 13

� In second case:

– Average waiting time is much better (before it was 17)

– Average completion time is better (before it was 27) 

� FIFO Pros and Cons:

– Simple (+)

– Short jobs get stuck behind long ones (-)

» Safeway: Getting milk, always stuck behind cart full of items!
Upside: get to read about Space Aliens!

P1P3P2

63 300
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� FCFS Scheme: Potentially bad for short jobs!
– Depends on submit order

– If you are first in line at supermarket with milk, you don’t 
care who is behind you, on the other hand…

� Round Robin Scheme: Preemption!
– Each process gets a small unit of CPU time 

(time quantum), usually 10-100 milliseconds

– After quantum expires, the process is preempted 
and added to the end of the ready queue.

– n processes in ready queue and time quantum is q 
» Each process gets 1/n of the CPU time 

» In chunks of at most q time units 

» No process waits more than (n-1)q time units

Round Robin (RR) Scheduling
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� Performance

– q large  FCFS

– q small  Interleaved (really small  hyperthreading?)

– q must be large with respect to context switch, otherwise 

overhead is too high (all overhead)

RR Scheduling (Cont.)
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� Example: Process Burst Time
P1 53
P2 8
P3 68
P4 24

– The Gantt chart is:

– Waiting time for P1=(68-20)+(112-88)=72
P2=(20-0)=20
P3=(28-0)+(88-48)+(125-108)=85
P4=(48-0)+(108-68)=88

– Average waiting time = (72+20+85+88)/4=66¼

– Average completion time = (125+28+153+112)/4 = 104½

� Thus, Round-Robin Pros and Cons:
– Better for short jobs, Fair (+)

– Context-switching time adds up for long jobs (-)

P1

0 20

P2

28

P3

48

P4

68

P1

88

P3

108

P4 P1 P3 P3

112 125 145 153

Example of RR with Time Quantum = 20
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Decrease Response Time

� T1: Burst Length 10

� T2: Burst Length 1

� Q = 10

– Average Response Time = (10 + 11)/2 = 10.5

� Q = 5

– Average Response Time = (6 + 11)/2 = 8.5

T1

0 10

T2

11

T1

0 6

T2

11

T1

5
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Same Response Time

� T1: Burst Length 1

� T2: Burst Length 1

� Q = 10

– Average Response Time = (1 + 2)/2 = 1.5

� Q = 1

– Average Response Time = (1 + 2)/2 = 1.5

T1

0 1

T2

2

T1

0 1

T2

2
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� T1: Burst Length 1

� T2: Burst Length 1

� Q = 1

– Average Response Time = (1 + 2)/2 = 1.5

� Q = 0.5

– Average Response Time = (1.5 + 2)/2 = 1.75

T1

0 1

T2

2

0 2

Increase Response Time
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How to Implement RR in the Kernel?

� FIFO Queue, as in FCFS

� But preempt job after quantum expires, and send it to the back of the queue

– How? Timer interrupt!

– And, of course, careful synchronization

Project 2: 

Scheduling
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� How do you choose time slice?

– What if too big?

» Response time suffers

– What if infinite ()?

» Get back FIFO

– What if time slice too small?

» Throughput suffers! 

� Actual choices of timeslice:

– Initially, UNIX timeslice one second:

» Worked ok when UNIX was used by one or two people.

» What if three compilations going on? 3 seconds to echo each keystroke!

– Need to balance short-job performance and long-job throughput:

» Typical time slice today is between 10ms – 100ms

» Typical context-switching overhead is 0.1ms – 1ms

» Roughly 1% overhead due to context-switching

Round-Robin Discussion
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Comparisons between FCFS and Round Robin
� Assuming zero-cost context-switching time, is RR always better than FCFS?

� Simple example: 10 jobs, each take 100s of CPU time
RR scheduler quantum of 1s
All jobs start at the same time

� Completion Times:

– Both RR and FCFS finish at the same time

– Average response time is much worse under RR!
» Bad when all jobs same length

� Also: Cache state must be shared between all jobs with RR but can be 
devoted to each job with FIFO

– Total time for RR longer even for zero-cost switch!

Job # FIFO RR

1 100 991

2 200 992

… … …

9 900 999

10 1000 1000
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Quantum

Completion

Time

Wait

Time

AverageP4P3P2P1

Earlier Example with Different Time Quantum

P2

[8]

P4

[24]

P1

[53]

P3

[68]

0 8 32 85 153

Best FCFS:

6257852284Q = 1

104½11215328125Q = 20

100½8115330137Q = 1

66¼ 88852072Q = 20

31¼885032Best FCFS

121¾14568153121Worst FCFS

69½32153885Best FCFS

83½121014568Worst FCFS

95½8015316133Q = 8

57¼5685880Q = 8

99½9215318135Q = 10

99½8215328135Q = 5

61¼68851082Q = 10

61¼58852082Q = 5
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� Execution Plan

– Always execute highest-priority runable jobs to completion

– Each queue can be processed in RR with some time-quantum

� Problems:

– Starvation: 

» Lower priority jobs don’t get to run because higher priority jobs

– Deadlock: Priority Inversion

» Happens when low priority task has lock needed by high-priority task

» Usually involves third, intermediate priority task preventing high-priority task from running

� How to fix problems?

– Dynamic priorities – adjust base-level priority up or down based on heuristics about 
interactivity, locking, burst behavior, etc…

Priority 3

Priority 2

Priority 1

Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

Handling Differences in Importance: Strict Priority Scheduling
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Scheduling Fairness

� What about fairness?

– Strict fixed-priority scheduling between queues is unfair (run highest, then 

next, etc):

» long running jobs may never get CPU 

» Urban legend: In Multics, shut down machine, found 10-year-old job 
Ok, probably not…

– Must give long-running jobs a fraction of the CPU even when there are shorter 

jobs to run

– Tradeoff: fairness gained by hurting avg response time!
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Scheduling Fairness

� How to implement fairness?

– Could give each queue some fraction of the CPU 

» What if one long-running job and 100 short-running ones?

» Like express lanes in a supermarket—sometimes express lanes get so long, get 
better service by going into one of the other lines

– Could increase priority of jobs that don’t get service

» What is done in some variants of UNIX

» This is ad hoc—what rate should you increase priorities?

» And, as system gets overloaded, no job gets CPU time, so everyone increases in 
priorityInteractive jobs suffer
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What if we Knew the Future?

� Could we always mirror best FCFS?

� Shortest Job First (SJF):

– Run whatever job has least amount of 
computation to do

– Sometimes called “Shortest Time to Completion First” (STCF)

� Shortest Remaining Time First (SRTF):

– Preemptive version of SJF: if job arrives and has a shorter time 
to completion than the remaining time on the current job, 
immediately preempt CPU

– Sometimes called “Shortest Remaining Time to Completion 
First” (SRTCF)

� These can be applied to whole program or current CPU burst

– Idea is to get short jobs out of the system

– Big effect on short jobs, only small effect on long ones

– Result is better average response time
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Discussion

� SJF/SRTF are the best you can do at minimizing average 
response time

– Provably optimal (SJF among non-preemptive, SRTF among 
preemptive)

– Since SRTF is always at least as good as SJF, focus on SRTF

� Comparison of SRTF with FCFS

– What if all jobs the same length?

» SRTF becomes the same as FCFS (i.e. FCFS is best can do if 
all jobs the same length)

– What if jobs have varying length?

» SRTF: short jobs not stuck behind long ones
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Example to illustrate benefits of SRTF

� Three jobs:

– A, B: both CPU bound, run for week
C: I/O bound, loop 1ms CPU, 9ms disk I/O

– If only one at a time, C uses 90% of the disk, A or B could 
use 100% of the CPU

� With FCFS:

– Once A or B get in, keep CPU for two weeks

� What about RR or SRTF?

– Easier to see with a timeline

C

C’s 

I/O

C’s 

I/O

C’s 

I/O

A or B
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SRTF Example continued:

C’s 

I/O

CABAB… C

C’s 

I/O

RR 1ms time slice

C’s 

I/O

C’s 

I/O

CA BC

RR 100ms time slice

C’s 

I/O

AC

C’s 

I/O

AA

SRTF

Disk Utilization:

~90% but lots 

of wakeups!

Disk Utilization:

90%

Disk Utilization:

9/201 ~ 4.5%
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� Starvation

– SRTF can lead to starvation if many small jobs!

– Large jobs never get to run

� Somehow need to predict future

– How can we do this? 

– Some systems ask the user

» When you submit a job, have to say how long it will take

» To stop cheating, system kills job if takes too long

– But: hard to predict job’s runtime even for non-malicious users

� Bottom line, can’t really know how long job will take

– However, can use SRTF as a yardstick 
for measuring other policies

– Optimal, so can’t do any better

� SRTF Pros & Cons

– Optimal (average response time) (+)

– Hard to predict future (-)

– Unfair (-)

SRTF Further discussion
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Predicting the Length of the Next CPU Burst

� Adaptive: Changing policy based on past behavior

– CPU scheduling, in virtual memory, in file systems, etc

– Works because programs have predictable behavior

» If program was I/O bound in past, likely in future

» If computer behavior were random, wouldn’t help

� Example: SRTF with estimated burst length

– Use an estimator function on previous bursts: 
Let tn-1, tn-2, tn-3, etc. be previous CPU burst lengths. 
Estimate next burst n = f(tn-1, tn-2, tn-3, …)

– Function f could be one of many different time series estimation schemes 
(Kalman filters, etc)

– For instance, exponential averaging
n = tn-1+(1-)n-1
with (0<1)

Lec 10.489/30/20 Kubiatowicz CS162 © UCB Fall 2020

Lottery Scheduling

� Yet another alternative: Lottery Scheduling

– Give each job some number of lottery tickets

– On each time slice, randomly pick a winning ticket

– On average, CPU time is proportional to number of tickets 
given to each job

� How to assign tickets?

– To approximate SRTF, short running jobs get more, long running jobs get 
fewer

– To avoid starvation, every job gets at least one ticket (everyone makes 
progress)

� Advantage over strict priority scheduling: behaves gracefully as load changes

– Adding or deleting a job affects all jobs proportionally, independent of how 
many tickets each job possesses
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Lottery Scheduling Example (Cont.)

� Lottery Scheduling Example
– Assume short jobs get 10 tickets, long jobs get 1 ticket

– What if too many short jobs to give reasonable response time?  

» If load average is 100, hard to make progress

» One approach: log some user out

# short jobs/

# long jobs

% of CPU each 
short jobs gets

% of CPU each 
long jobs gets

1/1 91% 9%

0/2 N/A 50%

2/0 50% N/A

10/1 9.9% 0.99%

1/10 50% 5%
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How to Evaluate a Scheduling algorithm?

� Deterministic modeling

– takes a predetermined workload and compute the performance of each algorithm 
for that workload

� Queueing models

– Mathematical approach for handling stochastic workloads

� Implementation/Simulation:

– Build system which allows actual algorithms 
to be run against actual data 

– Most flexible/general
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� Consider mix of interactive and high throughput apps:

– How to best schedule them?

– How to recognize one from the other?

» Do you trust app to say that it is “interactive”?

– Should you schedule the set of apps identically on servers, workstations, 
pads, and cellphones?

� For instance, is Burst Time (observed) useful to decide which application 
gets CPU time?

– Short Bursts  Interactivity  High Priority?

� Assumptions encoded into many schedulers:

– Apps that sleep a lot and have short bursts must be interactive apps –
they should get high priority

– Apps that compute a lot should get low(er?) priority, since they won’t notice 
intermittent bursts from interactive apps

� Hard to characterize apps:

– What about apps that sleep for a long time, but then compute for a long time?

– Or, what about apps that must run under all circumstances (say periodically)

How to Handle Simultaneous Mix of Diff Types of Apps?
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Multi-Level Feedback Scheduling

� Another method for exploiting past behavior (first use in CTSS)

– Multiple queues, each with different priority

» Higher priority queues often considered “foreground” tasks

– Each queue has its own scheduling algorithm

» e.g. foreground – RR, background – FCFS

» Sometimes multiple RR priorities with quantum increasing exponentially 
(highest:1ms, next: 2ms, next: 4ms, etc)

� Adjust each job’s priority as follows (details vary)

– Job starts in highest priority queue

– If timeout expires, drop one level

– If timeout doesn’t expire, push up one level (or to top)

Long-Running Compute
Tasks Demoted to 

Low Priority
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Scheduling Details

� Result approximates SRTF:

– CPU bound jobs drop like a rock

– Short-running I/O bound jobs stay near top

� Scheduling must be done between the queues

– Fixed priority scheduling: 

» serve all from highest priority, then next priority, etc.

– Time slice:

» each queue gets a certain amount of CPU time 

» e.g., 70% to highest, 20% next, 10% lowest

Long-Running Compute
Tasks Demoted to 

Low Priority
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Scheduling Details

� Countermeasure: user action that can foil intent of the OS designers

– For multilevel feedback, put in a bunch of meaningless I/O to keep job’s 
priority high

– Of course, if everyone did this, wouldn’t work!

� Example of Othello program:

– Playing against competitor, so key was to do computing at higher priority the 
competitors. 

» Put in printf’s, ran much faster!

Long-Running Compute
Tasks Demoted to 

Low Priority
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So, Does the OS Schedule Processes or Threads?

� Many textbooks use the “old model”—one thread per process

� Usually it's really: threads (e.g., in Linux)

� One point to notice: switching threads vs. switching processes incurs 
different costs:

– Switch threads: Save/restore registers

– Switch processes: Change active address space too!

» Expensive

» Disrupts caching
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Multi-Core Scheduling

� Algorithmically, not a huge difference from single-core scheduling

� Implementation-wise, helpful to have per-core scheduling data structures

– Cache coherence

� Affinity scheduling: once a thread is scheduled on a CPU, OS tries to 
reschedule it on the same CPU

– Cache reuse
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Recall: Spinlock

� Spinlock implementation:

int value = 0; // Free
Acquire() {

while (test&set(value)) {}; // spin while busy
}

Release() {
value = 0;                  // atomic store

}

� Spinlock doesn’t put the calling thread to sleep—it just busy waits

– When might this be preferable?

� For multiprocessor cache coherence: every test&set() is a write, which 
makes value ping-pong around in cache (using lots of memory BW)
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Gang Scheduling and Parallel Applications

� When multiple threads work together on a multi-core system, try to 
schedule them together

– Makes spin-waiting more efficient (inefficient to spin-wait for a thread that’s 
suspended)

� Alternative: OS informs a parallel program how many processors its 
threads are scheduled on (Scheduler Activations)

– Application adapts to number of cores that it has scheduled

– “Space sharing” with other parallel programs can be more efficient, because 
parallel speedup is often sublinear with the number of cores
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A Final Word On Scheduling

� When do the details of the scheduling policy and fairness really matter?

– When there aren’t enough resources to go around

� When should you simply buy a faster computer?

– (Or network link, or expanded highway, or …)

– One approach: Buy it when it will pay for itself in improved response time

» Perhaps you’re paying for worse response time in reduced 
productivity, customer angst, etc…

» Might think that you should buy a faster X when X is utilized 100%, 
but usually, response time goes to infinity as utilization100%

� An interesting implication of this curve:

– Most scheduling algorithms work fine in the “linear” portion of 
the load curve, fail otherwise

– Argues for buying a faster X when hit “knee” of curve
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Conclusion

� Round-Robin Scheduling: 
– Give each thread a small amount of CPU time when it executes; cycle between 

all ready threads

– Pros: Better for short jobs 

� Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):

– Run whatever job has the least amount of computation to do/least remaining 
amount of computation to do

– Pros: Optimal (average response time) 

– Cons: Hard to predict future, Unfair

� Multi-Level Feedback Scheduling:
– Multiple queues of different priorities and scheduling algorithms

– Automatic promotion/demotion of process priority in order to approximate 
SJF/SRTF

� Lottery Scheduling:
– Give each thread a priority-dependent number of tokens 

(short tasksmore tokens)


