Recall: Deadlock is A Deadly type of Starvation

« Starvation: thread waits indefinitely
CS162 — Example, low-priority thread waiting for resources

Operating Systems and constantly in use by high-priority threads

Systems Programming + Deadlock: circular waiting for resources

Lecture 13 — Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

Memory 1: Address Translation and Virtual Memory

» Deadlock = Starvation but not vice versa

th — Starvation can end (but doesn’t have to)
October 12 . 2029 — Deadlock can’t end without external intervention
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu
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Recall: Four requirements for occurrence of Deadlock Recall: Banker’s Algorithm
e Mutual exclusion « Banker’s algorithm assumptions:
— Only one thread at a time can use a resource. — Every thread pre-specifies is maximum need for resources
« Hold and wait » However, it doesn’t have to ask for the all at once... (key advantage)

— Threads may now request and hold dynamically up to the maximum specified
number of each resources

» Simple use of the deadlock detection algorithm
— For each request for resources from a thread:
» Technique: pretend each request is granted, then run deadlock detection algorithm,

— Thread holding at least one resource is waiting to acquire additional
resources held by other threads

* No preemption
— Resources are released only voluntarily by the thread holding the

resource, after thread is finished with it and grant request if result is deadlock free (conservative!)
+ Circular wait — Keeps system in a “SAFE” state, i.e. there exists a sequence {T,, T,, ... T,} with
— There exists a set {T;, ..., T,} of waiting threads T, requesting all remaining resources, finishing, then T, requesting all remaining
» T, is waiting for a resource that is held by T, resources, etc..
» T, is waiting for a resource that is held by T, * Banker’s algorithm prevents deadlocks involving threads and resources by
» stalling requests that would lead to deadlock
» T, is waiting for a resource that is held by T, — Can't fix all issues — e.g. thread going into an infinite loop!
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Revisit: Deadlock Avoidance using Banker’s Algorithm

» |dea: When a thread requests a resource, OS checks if it would
result in deadleck an unsafe state

— If not, it grants the resource right away
— If so, it waits for other threads to release resources
* Example:

Thread A: Thread B:

x.Acquire(); y-Acquire(); ommmmm Thread B Waits
y.Acquire(); x.Acquire(); until Thread A
releases
y.Release(); X.Release(); resources...
x.Release(); y.Release();

* At point that Thread B attempts y.Acquire():
— Banker’s algorithm: Pretend to give y mutex to B
— Try to run deadlock detection algorithm
» Neither A nor B can get enough resources to complete
— Stall B by putting it to sleep.

Virtualizing Resources

* Physical Reality:
Different Processes/Threads share the same hardware
— Need to multiplex CPU (Just finished: scheduling)
— Need to multiplex use of Memory (starting today)
— Need to multiplex disk and devices (later in term)
* Why worry about memory sharing?
— The complete working state of a process and/or kernel is defined by its data in
memory (and registers)
— Consequently, cannot just let different threads of control use the same memory
» Physics: two different pieces of data cannot occupy the same locations in memory

— Probably don’t want different threads to even have access to each other’'s memory if
in different processes (protection)
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Recall: Four Fundamental OS Concepts THE BASICS: Address/Address Space
* Thread: Execution Context Address Space:
— Fully describes program state ]
— Program Counter, Registers, Execution Flags, Stack
+ Address space (with or w/o translation) e
— Set of memory addresses accessible to program (for read or write) Zk “ h "
— May be distinct from memory space of the physical machine Address: 1 mgs
(in which case programs operate in a virtual address space) “Things” here usually
* Process: an instance of a running program I A— means “bytes” (8 bits)
— Protected Address Space + One or more Threads k bits
* Dual mode operation / Protection * What is 2'0 bytes (where a byte is appreviated as “B”)?
— Only the “system” has the ability to access certain resources — 2198 =1024B = 1 KB (for memory, 1K = 1024, not 1000)
— Combined with translation, isolates programs from each other and * How many bits to addreﬁgs e?fh byte of 4KB page?
the OS from programs — 4KB = 4x1KB = 4x 210= 212— 12 bits
* How much memory can be addressed with 20 bits? 32 bits? 64 bits?
— Use 2%
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Address Space, Process Virtual Address Space

» Definition: Set of accessible addresses and the state

Recall: Process Address Space: typical structure

associated with them — 0x000... 0x000...
— 232 = ~4 billion bytes on a 32-bit machine Code Segment
) o . Static Data PC: o )
* How many 32-bit numbers fit in this address space? Sp: o Static Data
— 32-bits = 4 bytes, so 23%/4 = 230=~1billion EE? .
i eap
» What happens when processor reads or writes to an Processor sbrk syscall
address? stack } registers
— Perhaps acts like regular mgmory OXFFF...
— Perhaps causes I/O operation
» (Memory-mapped 1/O) { Stack Segment—‘
OXFFF...
— Causes program to abort (segfault)?
— Communicate with another program
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Recall: Single and Multithreaded Processes Important Aspects of Memory Multiplexing
* Protection:
— Prevent access to private memory of other processes
» Different pages of memory can be given special behavior (Read Only, Invisible to
user programs, etc).
| code H data H files ‘ [ code H data H files | ° Threads encapsulate COnCUrrenCy » Kernel data protected from User programs

— “Active” component
» Address space encapsulate protection:
— “Passive” component
— Keeps bugs from crashing the entire
system
* Why have multiple threads per address
space?

|registers‘ [ stack ‘ registers ||| registers ||| registers

stack stack stack

thread —> ; ; ; §<—— thread

multithreaded process

single-threaded process
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10/12/20

» Programs protected from themselves
» Translation:
— Ability to translate accesses from one address space (virtual) to a different one
(physical)
— When translation exists, processor uses virtual addresses, physical memory
uses physical addresses
— Side effects:
» Can be used to avoid overlap
» Can be used to give uniform view of memory to programs
» Controlled overlap:
— Separate state of threads should not collide in physical memory. Obviously,
unexpected overlap causes chaos!
— Conversely, would like the ability to overlap when desired (for communication)
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Alternative View: Interposing on Process Behavior Recall: Loading

* OS interposes on process’ I/O operations

Threads
. Address Spaces  Windows
— How? All I/O happens via syscalls. Processes Files Sockets

Software OS Hardware Virtualization
» OS interposes on process’ CPU usage R

— How? Interrupt lets OS preempt current thread

Processor Protection
* Question: How can the OS interpose on process’ memory accesses? = Boundary
— Too slow for the OS to interpose every memory access
— Translation: hardware support to accelerate the common case
Networks

— Page fault: uncommon cases trap to the OS to handle

X -
S — -@ =
Displays
E Inputs play
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Binding of Instructions and Data to Memory Binding of Instructions and Data to Memory
Physical
Memory
0x0000
Assume 4byte words
0x300 = 4 * Ox0C0 0x0300 [ 9900020
Process view of memory Physi| exeCe = 0000 1100 0000 Process view of memory Physical addresses
\ 0x300 = 0011 0000 0000 \
datal: dw 32 ox03 datal: dw 32 Ox0300 00RO 0x0900 | 8C2000C0
0C000340
start: 1w rl,e(datal) Ox0900 8C2000CO start: 1w rl,e(datal) Ox0900 8C2000CO 2021FFFF
jal  checkit [[T) oxeves ecee jal  checkit [[T) oxeves ecee 2200202
loop:  addi ri, ri, -1 0x0908 2021FFFF loop:  addi ri, ri, -1 0x0908 2021FFFF
bnz ri1, loop 0x090C 14200242 bnz  ri, loop 0x090C 14200242
checkit: .. / ex checkit: .. / Ox
OXFFFF
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Second copy of program from previous example Second copy of program from previous example

Physical Physical
Memory Memory
0x0000 0x0000
0x0300 0x0300
Process view of memory Physical addresses Process view of memory Physical addresses
datal: dw 32 N ex0300 ceooo0zs | 22000 APP X datal: dw 32 ) ex1300 oooeeeze | @@%00| APPX
start: 1w ril,e(datal) exegee SCZEOQCG . start: %w r'l,e((.jatal) 0x1§60 8C2694C9
jal  checkit E Ox0984 0COPB288 jal = checkit E 0x1904 0C00 0x1300 | 50000020
loop:  addi ri, ri, -1 0x0908 2021FFFF loop:  addi ri, ri, -1 0x1908 2021FFFF
bnz  ri1, loop 0x090C 14200242 bz (il e 6x190C 14200642
exioee [ 8C2004C0
checkit: .. Ox0A00 checkit: .. ox 0C000680
/ J 2021FFFF
. . 14200642
* One of many possible translations!
OXFFFF : OXFFFF
. IX * Where does translation take place?
Need address translation! Compile time, Link/Load time, or Execution time?
10/12/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 13.17 10/12/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 13.18
From Program to Process Recall: Uniprogramming

* Preparation of a program for execution involves
components at:

— Compile time (i.e., “gcc”)

source
program

* Uniprogramming (no Translation or Protection)
— Application always runs at same place in physical

— Link/Load time (UNIX “Id” does link) } campls memory since only one application at a time
— Execution time (e.g., dynamic libs) — Application can access any physical address
+ Addresses can be bound to final values anywhere in . OXFFFFFFFF —g
this path module Operating
— Depends on hardware support System = 5
— Also depends on operating system & §
+ Dynamic Libraries o8
— Linking postponed until execution - $Z
— Small piece of code (i.e. the stub), locates time Aonlication
appropriate memory-resident library routine lbrary pp 0x00000000

— Stub replaces itself with the address of the routine,
and executes routine ynamicall

loaded
system
library

— Application given illusion of dedicated machine by giving
po— }s::;f:;; it reality of a dedicated machine

linking memory time)

image
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Primitive Multiprogramming

» Multiprogramming without Translation or Protection
— Must somehow prevent address overlap between threads

OxFFFFFFFF
Operating
System
Application2 0x00020000
Application1
0x00000000

— Use Loader/Linker: Adjust addresses while program loaded into
memory (loads, stores, jumps)

» Everything adjusted to memory location of program
» Translation done by a linker-loader (relocation)
» Common in early days (... till Windows 3.x, 95?)
» With this solution, no protection: bugs in any program can
cause other programs to crash or even the OS
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Multiprogramming with Protection

+ Can we protect programs from each other
without translation?

—Yes: Base and Bound!
— Used by, e.g., Cray-1 supercomputer

: OXFFFFFFFF
Operating
System
| Bound= 0x10000 —
| Base = 0x20000 [ Application2 | 0x00020000
Application1
0x00000000
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Recall: Base and Bound (No Translation)

heap I

« Still protects OS and isolates program
* Requires relocating loader
» No addition on address path

0000...

| s ]
Original Program
1000 g
Program 1010... Static Data Static Data
address [ heap |
2

e

1100...

FFFF...
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Recall: General Address translation

Virtual Physical
Addresses Addresses

Untranslated read or write

» Consequently, two views of memory:
— View from the CPU (what program sees, virtual memory)
— View from memory (physical memory)

— Translation box (Memory Management Unit or MMU) converts between the two
views

» Translation = much easier to implement protection!
— If task A cannot even gain access to task B’s data, no way for A to adversely affect B

+ With translation, every program can be linked/loaded into same region of user

address space
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Recall: Base and Bound (with Translation)

Addresses translated
on-the-fly heap I
| stk ]
Base Address
1000, kA 1000
address U1010. I
|
» Hardware relocation
» Can the program touch OS?
FFFF.

» Can it touch other programs?

. Original Program

code

0000...

Static Data

heap

\Z

T

Issues with Simple B&B Method

process 6 process 6 process 6 process 6

process 5 process 5 process 5 .
process 9 process 9 Drocessiit

process 2 =) =) =) process 10

0s 0s 0s 0s

* Fragmentation problem over time

—Not every process is same size = memory becomes fragmented over time
* Missing support for sparse address space

—Would like to have multiple chunks/program (Code, Data, Stack, Heap, etc)
» Hard to do inter-process sharing

—Want to share code segments when possible

—Want to share memory between processes

—Helped by providing multiple segments per process
Lec 13.26
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More Flexible Segmentation Implementation of Multi-Segment Model
: p Virtual Error
- Address Base0] Limit0
brout tack
e - s | Base1| Limit1 |
el Base3| Limit3 | R Physical
e Base4| Limitd | V Address
2 Baseb| Limits | N
sqrt Base6| Limité | N
R 3 Base7| Limit7 [V
* Segment map resides in processor Access
user view of physical — Segment number mapped into base/limit pair Error
ioglesliadaiess memory space memory space — Base added to offset to generate physical address
) : ] T Tmmmmemdalinasssssiiiiaiidessiiien — Error CheCk CatCheS offset OUt Of range
. Loglca_l View: multiple separate segments » As many chunks of physical memory as entries
— Typical: Code, Data, Stack — Segment addressed by portion of virtual address
— Others: memory sharing, etc — However, could be included in instruction instead:
« Each segment is given region of contiguous memory » x86 Example: mov [es:bx],ax.
— Has a base and limit * What is “V/N” (Va“d / not Valld)f)
— Can reside anywhere in physical memory — Can mark segments as invalid; requires check as well
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Intel x86 Special Registers
80386 Special Registers

Segment registets

Example: Four Segments (16 bit addresses)

SegID# | Base Limit

" 3210 [S8a] Offset ] [0(code) |0x4000 |0x0800
- [ e | N L I 15 1413 o [1(data) |0x4800 |0x1400
| | Virtual Address Format 2 (shared) | 0xFO0O | 0x1000
RPL = Requestol Plivilege Level Stack Seg Exlia Seg.
TL=Table Lndicator e = 5 15 ES o 3 (stack) 0x0000 | 0x3000
[0=G0T, 1=LOT)
Thdex =Tnden into lable | |E,llln Sex. | |E,M Seg 0x0000 0x0000
Protected Mode segment selector & = 2 2 = 2
. . x ¥ é[l: ? E l[= E '; % ® ‘; ® lP= x % 0x4000
° Typ|Ca| Segment Reg|ster 1514131211109 2 7 & 5 & 3 2 1 @
— Current Priority is RPL of Code Segment (CS) [ EEEREE[|ce [ ume  Jem 0xB000
+ Segmentation can’t be just “turned off’ S S
. i . | Lineit Address CR2 | Bise Registel ‘u;:d|ca3
— What if we just want to use paging? 3 E Bnoened ! O 0xC000
. [ TOPLAE0 Phatirae Level
— Set base and bound to all of memory, in all Tl eSO
segments FEE Aol Itriemu(Fls
s Virtual Physical
tEnu e Address Space Address Space
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Example: Four Segments (16 bit addresses) Example: Four Segments (16 bit addresses)
SegID# | Base Limit SegID# | Base Limit
- Offset ] 0 (code) |0x4000 | 0x0800 - Offset ] 0 (code) |0x4000 | 0x0800
15 1413 0 1 (data) 0x4800 | 0x1400 15 1413 0 1 (data) 0x4800 | 0x1400
Virtual Address Format 2 (shared) | 0xFO0O | 0x1000 Virtual Address Format 2 (shared) | 0xF00O | 0x1000
3 (stack) | 0x0000 |0x3000 3 (stack) |0x0000 |0x3000
0x0000 SegID =0 0x0000 0x0000 SegID =0 0x0000
0x4000 L 0x4000 Segib=1l____5 0xao00
> oxsc00
0x8000 0x8000
0xC000 0xC000
Virtual Physical Virtual Physical
Address Space Address Space Address Space Address Space
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Example: Four Segments (16 bit addresses)

Example of Segment Translation (16bit address)

— —LOx240___ _main: la _$a@, varx
el ISR ox244 jal strien SegID# | Base | Limi
[S&8] Offset | | O(code) |0x4000 | 0x0800 - 0 (code) | 0x4000 | 0x0800
15 1413 0 1 (data) 0x4800 | 0x1400 0x360 strlen: 1li $v@, @ ;count
Virtual Address Format 2 (shared) | 0xFO00 | 0x1000 2EC O s (62 1(data) | 0x4500 | 0x1400
3 (stack 0x0000 | 0x3000 0x368 beq $re,$te, done 2 (shared) | 0xFO0O | 0x1000
SogiD=0 (stack) | O X 3 (stack) | 0x0000 | 0x3000
0x0000 0x0000 0x4050 varx dw  0x314159
Let’s simulate a bit of this code to see what happens (PC=0x240):
Might 1. Fetch 0x0240 (0000 0010 0100 0000). Virtual segment #? 0; Offset? 0x240
SegID =1 0x4000 ig _ o t n
0x4000 0x4800 - be shared Physical address? Base=0x4000, so physical addr=0x4240
——> 1x5C00 Fetch instruction at 0x4240. Get “la $a0, varx”
0x8000 Move 0x4050 — $a0, Move PC+4—PC
Space for
0xC000 Other Apps
0xF000 Shared with
Other Apps
Virtual Physical
Address Space Address Space
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Example of Segment Translation (16bit address) Example of Segment Translation (16bit address)
—10x240 __main: la_$a@, varx ——|ox240 main: la $a@, varx
0x244 jal strlen SegID# | Base | Limit 0x244 jal strlen SegID# | Base | Limit
ex§60 strlen: 1i $vo, @ ;count Ullegels) | e L0l | sty 0x§66 strlen: 1i $vo, @ ;count Ulleels) | e Dol 900ty
ox364  loop: 1b  $to, ($a0) 1 (data) 0x4800 | 0x1400 ox364  loop: T6 $te, (%a0) 1 (data) 0x4800 | 0x1400
0x368 beq $re,$te, done 2 (shared) | 0xFOOO | 0x1000 0x368 beq $re,$te, done 2 (shared) | 0xFO0O0 | 0x1000
3 (stack) | 0x0000 [ 0x3000 3 (stack) | 0x0000 [ 0x3000
0x4050 varx dw  0x314159 0x4050 varx dw  0x314159
Let’s simulate a bit of this code to see what happens (PC=0x240): Let’s simulate a bit of this code to see what happens (PC=0x240):
1. Fetch 0x0240 (0000 0010 0100 0000). Virtual segment #? 0; Offset? 0x240 1. Fetch 0x0240 (0000 0010 0100 0000). Virtual segment #? 0; Offset? 0x240
Physical address? Base=0x4000, so physical addr=0x4240 Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx” Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050 — $a0, Move PC+4—PC Move 0x4050 — $a0, Move PC+4—PC
2. Fetch 0x244. Translated to Physical=0x4244. Get “jal strlen” 2. Fetch 0x244. Translated to Physical=0x4244. Get “jal strlen”
Move 0x0248 — $ra (return address!), Move 0x0360 — PC Move 0x0248 — $ra (return address!), Move 0x0360 — PC
3. Fetch 0x360. Translated to Physical=0x4360. Get “li $v0, 0"
Move 0x0000 — $v0, Move PC+4—PC
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Example of Segment Translation (16bit address)

——10x0240 main: la $a@, varx
0x0244 jal strlen

SegID# | Base Limit

0x5360 strlen: 1i $v0, @ ;count et Lty | Gty

[oxe364 loop: b $to, ($a0) 1 (data) | 0x4800 | 0x1400
0x0368 beq $ro,$te, done 2 (shared) | 0xFO0O | 0x1000

3 (stack) | 0x0000 | 0x3000

0x4050 varx dw  0x314159
Let’s simulate a bit of this code to see what happens (PC=0x0240):
1. Fetch 0x0240 (0000 0010 0100 0000). Virtual segment #? 0; Offset? 0x240
Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050 — $a0, Move PC+4—PC
2. Fetch 0x0244. Translated to Physical=0x4244. Get “jal strlen”
Move 0x0248 — $ra (return address!), Move 0x0360 — PC
3. Fetch 0x0360. Translated to Physical=0x4360. Get “li $v0, 0”
Move 0x0000 — $v0, Move PC+4—PC
4. Fetch 0x0364. Translated to Physical=0x4364. Get “Ib $t0, ($a0)”
Since $a0 is 0x4050, try to load byte from 0x4050
Translate 0x4050 (0100 0000 0101 0000). Virtual segment #? 1; Offset? 0x50
Physical address? Base=0x4800, Physical addr = 0x4850,

Load Byte from 0x4850—$t0, Move PC+4—PC
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Observations about Segmentation

« Translation on every instruction fetch, load or store
» Virtual address space has holes
— Segmentation efficient for sparse address spaces
* When it is OK to address outside valid range?
— This is how the stack (and heap?) allowed to grow
— For instance, stack takes fault, system automatically increases size of stack
» Need protection mode in segment table
— For example, code segment would be read-only
— Data and stack would be read-write (stores allowed)
» What must be saved/restored on context switch?
— Segment table stored in CPU, not in memory (small)
— Might store all of processes memory onto disk when switched (called “swapping”)
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What if not all segments fit in memory?

p— =

operating ol

system
G/\‘ swap out process P.

(2)swapin

process P,

L T
user — 3
Eeac backing store

main memory

+ Extreme form of Context Switch: Swapping
— To make room for next process, some or all of the previous process is moved to disk
» Likely need to send out complete segments
— This greatly increases the cost of context-switching
» What might be a desirable alternative?
— Some way to keep only active portions of a process in memory at any one time
— Need finer granularity control over physical memory
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Problems with Segmentation

» Must fit variable-sized chunks into physical memory
+ May move processes multiple times to fit everything
+ Limited options for swapping to disk

* Fragmentation: wasted space
— External: free gaps between allocated chunks
— Internal: don’t need all memory within allocated chunks
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Recall: General Address Translation

COde Code

Data Stack 1 Data

Heap ez Heap

StaCk Code 1 Stack
Prog 1 Prog 2

Virtual Data 1 Virtual
Address Address
Space 1 Space 2

[ OS code \
Translation Map 1 0S data Translation Map 2
OS heap &
Stacks

Physical Address Space
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Paging: Physical Memory in Fixed Size Chunks

+ Solution to fragmentation from segments?
— Allocate physical memory in fixed size chunks (“pages”)
— Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 .. 110010

» Each bit represents page of physical memory
1 = allocated, 8 = free

» Should pages be as big as our previous segments?
—No: Can lead to lots of internal fragmentation
» Typically have small pages (1K-16K)
— Consequently: need multiple pages/segment
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How to Implement Simple Paging?
Virtual Address:

PageTablePtr

—1

Physical Address

Check Perm )
page#4 |N
Access page #5 | V.RW Access
Error Error

» Page Table (One per process)
— Resides in physical memory
— Contains physical page and permission for each virtual page (e.g. Valid bits, Read, Write, etc)
* Virtual address mapping
— Offset from Virtual address copied to Physical Address
» Example: 10 bit offset = 1024-byte pages
— Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

— Check Page Table bounds and permissions
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Simple Page Table Example
Example (4 byte pages)

ox00 0000 0000 0x00 [—
b
: c 0 0x04 [
i ox04 .g_ 00000100 o , i 0x05!
: k
: f 0000 010! ||
! 0x067 | g |—>2 1| 0x08
0x08 .P_ 0000 1000 ox0C e
i 0x09?|] f
: k g | oxoe!
0x10 Jg—
Virtual 0000 0110 ===-> 0000 1110 .
Memory 00001001 ====> 00000101 c
o
Physical
................................................................................. Memory. ..........:
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What about Sharing?

Virtual Address
(Process A):

| PageTablePtrA |——| VR |

V,R,WM
page #4 |N
page #5 |V.RWM

| PageTablePtrB |'" page #0

v, R’I[

N
R W

This physical page
appears in address
space of both processes

Where is page sharing used ?

THIS user

The “kernel region” of every process has the same page table entries
— The process cannot access it at user level
— But on U->K switch, kernel code can access it AS WELL AS the region for

» What does the kernel need to do to access other user processes?

« Different processes running same binary!

— Execute-only, but do not need to duplicate code segments

+ User-level system libraries (execute only)

« Shared-memory segments between different processes
— Can actually share objects directly between processes

» Must map page into same place in address space!

— This is a limited form of the sharing that threads have within a single

Virtual Address _ process
(Process B):
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Memory Layout for Linux 32-bit (Pre-Meltdown patch!) Some simple security measures
~ * Address Space Randomization
/ Kernel space . .
| e e - — Position-Independent Code = can place user code anywhere in address space
( f randon seack offser » Random start address makes much harder for attacker to cause jump to code that it
Stack (o dowm)  RLIMIT_STACK (e.g., 8MB) Seeks to take over
| rondon mmap atfoct — Stack & Heap can start anywhere, so randomize placement
|
e Thrarcary and o * Kernel address space isolation
mappings. Example: /lib/libc.so ) . .
— Don’t map whole kernel space into each process, switch to kernel page table
368 progran break — Meltdown=-map none of Kernel page-table isolation
i kernel into user mode! page
Heap start_brk
F Random brk offset Kernel space Kernel space
Uninitialized stati:ﬁsjirsj:gbml:";, filled with zeros. Kernel space
Example: static char *userName;
Data segment end_data
Static variables initialized by the programmer.
Example: static C:i:;i:::n: (2::,; owWn prototype”; ZE:&:E::G User space User space User space
Stores the binary image of the process {e.g., /bin/gonzo)
L o
http://static.duartes.org/img/blogPosts/linuxFlexibleAddressSpacelayout.png ser mode Kemeimode | Usermode
Kernel mode
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Summary: Paging

Summary: Paging

- - Page Tabl - - Page Tabl
Virtual memory view “a1$1e 11a1me 717, Physical memory view Virtual memory view “a1$1e 11a101e Physical memory view
0 1111 1111
1111 111 P 11110{ 11100 177 11110| 11100
1111 0000 °‘:‘“"‘ 11101| null stack 11101 null
11100 I 11100 [}
* 11011 ::u 110 0000 1110 0000 H 11011 ::II 110 0000
11010| null 11010| null
11001| null 11001 null
1100 0000 11000 null : 11000 null
10111 ::II What happens If 10111 ::II
T 10101l stack grows to 1010l
nu nu
| 10100 null 1110 00007 10100 null
\10011 null \10011 null
10010| 10000 10010| 10000
1000 0000 %10001 TPy — 1000 0000 %10001 2Py E—
10000| 01110 ! 0111 000 10000| 01110 T 0111 000
01111| null 01111| null
01110 null 01110 null
01101| null 0101 000 01101| null 0101 000
01100 null 01100 null
0100 0000 01011| 01101 0100 0000 01011| 01101
01010( 01100 01010( 01100
01001( 01011 01001( 01011
01000( 01010 o 01000( 01010 g
00111 null COUT 00111 null COUT
code \oo"o null 0001 0000 code 00110| null 0001 0000
00101 null 00101 null
0000 0000 Sorod| e T 0000 0000 0000 0000 Sorod| e T 0000 0000
— \00011 00101 — 00011 00101
page # offset 00010| 00100 page # offset 00010| 00100
00001( 00011 00001( 00011
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Summary: Paging How big do things get?
Virtual memory view Fage Tabe Physical memory view + 32-bit address space => 2%2 bytes (4 GB)
1111 1111 : 11110| 11100 — Note: “b” = bit, and “B” = byte
4. /’11101 10111
1110 0000 S ~11100{ 10110 110 0000 — And for memory:
1 ::8::) ::IIII » “K'(kilo) =210=1024 ~ 103 (But not quite!): Sometimes called “Ki” (Kibi)
1100 0000 Hgg; n":: » “M’(mega) = 220 = (1024)? = 1,048,576 ~ 108 (But not quite!): Sometimes called “Mi” (Mibi)
nul
10111| null » “G"(giga) =230 =(1024)% =1,073,741,824 ~ 10° (But not quite!): Sometimes called “Gi” (Gibi)
= joaol « Typical page size: 4 KB
i \183‘1’2 e Allocate new — how many bits of the address is that ? (remember 210 = 1024)
1000 0000 %188;2 10000 |——— pages where — Ans — 4KB = 4x210 =212 = 12 bits of the address
10000) o1tto room! + So how big is the simple page table for each process?
01110| null - = at’s about a million entries) x es each =
ottto] - null 232/212 = 220 (that's about Il t 4b h =>4 MB
nul . . .
01100| null — When 32-bit machines got started (vax 11/780, intel 80386), 16 MB was a LOT of memory
01011| 01101 — . .
0100 0000 01010| 01100 » How big is a simple page table on a 64-bit processor (x86_64)?
8}88‘1, 31312, — 264/212= 252(that’s 4.5x10"5 or 4.5 exa-entries)x8 bytes each =
00111 null code ; 36x10'5 bytes or 36 exa-bytes!!!! This is a ridiculous amount of memory!
00110 I ..
0000 0000 code 00101| nun _gggo gggg — This is really a lot of space — for only the page table!!!
— \33;22 0{,';‘.;'1 * The address space is sparse, i.e. has holes that are not mapped to physical memory
page # offset S0010] oa0a — So, most of this space is taken up by page tables mapped to nothing
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Page Table Discussion

What needs to be switched on a context switch?
— Page table pointer and limit
What provides protection here?
— Translation (per process) and dual-mode!
—Can't let process alter its own page table!
Analysis
— Pros
» Simple memory allocation
» Easy to share
— Con: What if address space is sparse?
» E.g., on UNIX, code starts at 0, stack starts at (23'-1)
» With 1K pages, need 2 million page table entries!
— Con: What if table really big?

» Not all pages used all the time = would be nice to have working set of
page table in memory

Simple Page table isway too big!
—Does it all need to be in memory?
—How about multi-level paging?

—or combining paging and segmentation
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Summary

* Segment Mapping
— Segment registers within processor
— Segment ID associated with each access
» Often comes from portion of virtual address
» Can come from bits in instruction instead (x86)
— Each segment contains base and limit information
» Offset (rest of address) adjusted by adding base
* Page Tables
— Memory divided into fixed-sized chunks of memory
— Virtual page number from virtual address mapped through page table to
physical page number
— Offset of virtual address same as physical address
— Large page tables can be placed into virtual memory
* Next Time: Multi-Level Tables
— Virtual address mapped to series of tables
— Permit sparse population of address space
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