CS162
Operating Systems and
Systems Programming

Lecture 14

Memory 2: Virtual Memory (Con’t), Caching and TLBs

October 14th, 2020
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: General Address translation

Virtual Physical
Addresses Addresses
Mmw p———

Untranslated read or write

» Consequently, two views of memory:
— View from the CPU (what program sees, virtual memory)
— View from memory (physical memory)

— Translation box (Memory Management Unit or MMU) converts between the two
views

» Translation = much easier to implement protection!
— If task A cannot even gain access to task B’s data, no way for A to adversely affect B

— Extra benefit: every program can be linked/loaded into same region of user address
space

10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.2

Recall: How to Implement Simple Paging?

Virtual Address: 1

Physical Address

Check Perm)
page#4 |N
Access page #5 | V.RW Access
Error Error

» Page Table (One per process)
— Resides in physical memory

— Contains physical page and permission for each virtual page (e.g. Valid bits, Read, Write, etc)

* Virtual address mapping
— Offset from Virtual address copied to Physical Address
» Example: 10 bit offset = 1024-byte pages
— Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

— Check Page Table bounds and permissions
10/14/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 14.3

Recall: Simple Page Table Example
Example (4 byte pages)

ox00 0000 0000 0x00 [—
b
: c 0 0x04 [
i ox04 .g_ 0000 0100 1 i 0x05!
: —> k
: f 0000 010! .
! ox067 |9 |—>2 1] 0x08
0x08 .P_ 0000 1000 ox0C e
i 0x09?|] f
: k g 0xOE!
0x10 Jg—
Virtual 0000 0110 ===-> 0000 1110 .
Memory 00001001 ====> 0000 0101 c
o
Physical
... Memory.:
10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.4

Recall: What about Sharing?
B o |

Virtual Address

(Process A):
page #0_TVR
age #1 |V,
q
page #3 | V,RWM
page #4 |N
page #5 |V,R

|PageTabIePtrB |" page #0 |V.R

both processes

— They can share information by read and
writing to this page

* However, this mapping not great:
— Process A, R/W at address:
— Process B, RO at address:

Kubiatowicz CS162 © UCB Fall 2020

0x00002xxx

Virtual Address 0x00004xxx
(Process B):
can share linked objects!

10/14/20 Lec 14.5

» This physical page appears in address space of

» Better to map at same virtual address so that you

Recall: Where is page sharing used ?

— The process cannot access it at user level
— But on U->K switch, kernel code can access it AS WELL AS the region for

THIS user

The “kernel region” of every process has the same page table entries

» What does the kernel need to do to access other user processes?

Different processes running same binary!

— Execute-only, but do not need to duplicate code segments

User-level system libraries (execute only)

« Shared-memory segments between different processes
— Can actually share objects directly between processes
» Must map page into same place in address space!
— This is a limited form of the sharing that threads have within a single

process

10/14/20

Kubiatowicz CS162 © UCB Fall 2020

Lec 14.6

Recall: Some simple security measures
* Address Space Randomization

— Position-Independent Code = can place user
code anywhere in address space

» Random start address makes much harder for
attacker to cause jump to code that it seeks to
take over

— Stack & Heap can start anywhere, so randomize
placement

» Kernel address space isolation

— Don’t map whole kernel space into each
process, switch to kernel page table

— Meltdown=map none of kernel into user mode!

Kernel page-table isolation

Kernel space Kernel space

Kernel space

User space User space User space

Kernel mode. User mode

User mode.
Kernel mode

10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.7

Memory Layout for Linux 32-bit (Pre-Meltdown patch!)

p
1c8 <

-

368 <

\

Kernel space
User code CANNOT read from nor write to these addresses,
doing so results in a Segmentation Fault

== TASK_SIZE

Random stack offset

Stack (grows down)

N

[RLIMIT_STACK (e.g., 8MB)

i Random mmap offset

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /1ib/libc.so

program break

T

Heap

start_brk

| Random brk offset

BSS segment
Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer.
Example: static char *gonzo = “God’s own prototype”;

end_data

start_data

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

end_code

o

http://static.duartes.org/img/blogPosts/linuxFlexibleAddressSpacelayout.png

10/14/20

Kubiatowicz CS162 © UCB Fall 2020

Lec 14.8

Summary: Paging

Summary: Paging

: . Page Tabl : - Page Tabl
Virtual memory view “a1$1e 11a1me 717, Physical memory view Virtual memory view “a1$1e 11a101e Physical memory view
0 111 1111
1111 111 P 11110{ 11100 177 11110| 11100
1111 0000 °‘:‘“"‘ 11101| null stack 11101 null
11100 I 11100 [}
* 11011 ::u 110 0000 1110 0000 H 11011 ::II 110 0000
11010| null 11010| null
11001| null 11001 null
1100 0000 11000 null : 11000 null
10111 ::II What happens If 10111 ::II
T 10101l stack grows to 1010l
nu nu
| 10100 null 1110 00007 10100 null
\10011 null \10011 null
10010| 10000 10010| 10000
1000 0000 %10001 TPy — 1000 0000 %10001 2Py E—
10000| 01110 ! 0111 000 10000| 01110 T 0111 000
01111| null 01111| null
01110 null 01110 null
01101| null 0101 000 01101| null 0101 000
01100 null 01100 null
0100 0000 01011 01101 0100 0000 01011 01101
01010(01100 01010(01100
01001(01011 01001(01011
01000(01010 o 01000(01010 g
00111 null COUT 00111 null COUT
code \00110 null 0001 0000 code 00110| null 0001 0000
00101 null 00101 null
0000 0000 ot oo T 0000 0000 0000 0000 Sorod| e T 0000 0000
\00011 00101 — 00011| 00101
page # offset 00010| 00100 page # offset 00010| 00100
00001(00011 00001(00011
10/14/20 Kubiatc 00000| 00010 Lec 14.9 10/14/20 Kul 00000| 00010 Lec 14.10
Summary: Paging How big do things get?
Virtual memory view Fage Tabe Physical memory view + 32-bit address space => 2%2 bytes (4 GB)
1111 1111 : 11110| 11100 — Note: “b” = bit, and “B” = byte
4. /’11101 10111
1110 0000 S ~11100{ 10110 110 0000 — And for memory:
1 ::g::) I:::IIII » “K'(kilo) =210=1024 ~ 103 (But not quite!): Sometimes called “Ki” (Kibi)
1100 0000 Hgg; n":: » “M’(mega) = 220 = (1024)? = 1,048,576 ~ 108 (But not quite!): Sometimes called “Mi” (Mibi)
nul
10111| null » “G"(giga) =2%0=(1024)% =1,073,741,824 ~ 10° (But not quite!): Sometimes called “Gi” (Gibi)
= Toroa| « Typical page size: 4 KB
i \183‘1’2 e Allocate new — how many bits of the address is that ? (remember 210 = 1024)
1000 0000 1 [e—— where — Ans — 4KB = 4x21= 212 = 12 bits of the address
10000) o1tto room! + So how big is the simple page table for each process?
ortio) nul — 2%2/212 = 220 (that's about a million entries) x 4 bytes each =>4 MB
nul . . .
01100| null — When 32-bit machines got started (vax 11/780, intel 80386), 16 MB was a LOT of memory
01011| 01101 — . .
0100 0000 01010| 01100 » How big is a simple page table on a 64-bit processor (x86_64)?
pipedi IR — 264/212 = 252(that’s 4.5x10"% or 4.5 exa-entries)x8 bytes each =
00111 null code ; 36x10'5 bytes or 36 exa-bytes!!!! This is a ridiculous amount of memory!
00110 I ..
0000 0000 code 00101| nun _gggo gggg — This is really a lot of space — for only the page table!!!
— \33;22 0{,';‘.;'1 * The address space is sparse, i.e. has holes that are not mapped to physical memory
page # offset S0010] oa0a — So, most of this space is taken up by page tables mapped to nothing
10/14/20 Kul 00000| 00010 Lec 14.11 10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.12

Page Table Discussion

» What needs to be switched on a context switch?
— Page table pointer and limit
* What provides protection here?
— Translation (per process) and dual-mode!
—Can't let process alter its own page table!
* Analysis
— Pros
» Simple memory allocation
» Easy to share
— Con: What if address space is sparse?
» E.g., on UNIX, code starts at 0, stack starts at (23'-1)
» With 1K pages, need 2 million page table entries!
— Con: What if table really big?

» Not all pages used all the time = would be nice to have working set of
page table in memory

» Simple Page table is way too big!
—Does it all need to be in memory?
—How about multi-level paging?
—or combining paging and segmentation
10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.13

How to Structure a Page Table

* Page Table is a map (function) from VPN to PPN

Virtual Address |:> 1?:132 > Physical Address

+ Simple page table corresponds to a very large lookup table
— VPN is index into table, each entry contains PPN

» What other map structures can you think of?
— Trees?
— Hash Tables?

10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.14

Fix for sparse address space: The two-level page table
. Physical
12 bits Address:

10 bits 10 bits

Virtual
Address:

PageTablePtr

» Tree of Page Tables
— “Magic” 10b-10b-12b pattern! ~ — 4 bytes +—
» Tables fixed size (1024 entries)
— On context-switch: save single PageTablePtr register
(i.e. CR3)
+ Valid bits on Page Table Entries
— Don’t need every 2M-level table
— Even when exist, 2"9-level tables can reside on disk if

not in use
10/14/20 Kubiatowicz CS$162 © UCB Fall 2020 Lec 14.15

— 4 bytes «—

Example: x86 classic 32-bit address translation

Linear Address
31 22 21 121 0
Directory Table | Offset |

/12 4-KByte Page

/10 /10 Page Table > Physical Address
Page Directory

20
—»{ PDE with PS=0

/34
CR3

AN

Fii 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging
gy: Top-level page-table called a “Page Directory”
age Directory Entries”
* CR3'provides physical address of the page directory
— This is what we have called the “PageTablePtr” in previous slides

— Change in CR3 changes the whole translation table!
10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.16

* Intel termi

Administrivia

* Midterm 2: Coming up on Thursday 10/29

— Topics: up until Lecture 17: Scheduling, Deadlock, Address Translation, Virtual
Memory, Caching, TLBs, Demand Paging, I/0

— Will REQUIRE you to have your zoom proctoring setup working
» You must have screen sharing, audio, and your camera working

What is in a Page Table Entry (PTE)?

+ What is in a Page Table Entry (or PTE)?
— Pointer to next-level page table or to actual page
— Permission bits: valid, read-only, read-write, write-only
* Example: Intel x86 architecture PTE:
— Address same format previous slide (10, 10, 12-bit offset)
— Intermediate page tables called “Directories”

' Page Frame Number Free - 9|3
.» Make su.re th get your setup debugged and ready! (Physical Page Number) (08) o|lalD|A 8 5 ulwlp
* Review Session: 10/27 31-12 M9 876543210
— Details TBA o)
] . , P: Present (same as “valid” bit in other architectures)
» US Election coming up: Don’t forget to Vote! W: Writeable
— Voting is one of the most important things you can do if you are allowed U: User accessible ,
. o PWT: Page write transparent: external cache write-through
— Don’t miss the opportunity! PCD: Page cache disabled (page cannot be cached)
— Be safe, of course A: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently
PS: Page Size: PS=1=4MB page (directory only).
Bottom 22 bits of virtual address serve as offset
10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.17 10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.18
Examples of how to use a PTE Sharing with multilevel page tables
* How do we use the PTE? 10 bits 10 bits 12 bits EEioret |
— Invalid PTE can imply different things: Virtual
» Region of address space is actually invalid or Address:
» Page/directory is just somewhere else than memory ’
— Validity checked first
» OS can use other (say) 31 bits for location info
» Usage Example: Demand Paging
— Keep only active pages in memory
— Place others on disk and mark their PTEs invalid
» Usage Example: Copy on Write
— UNIX fork gives copy of parent address space to child
» Address spaces disconnected after child created
— How to do this cheaply? -
» Make copy of parent’s page tables (point at same memory) u
» Mark entries in both sets of page tables as read-only
» Page fault on write creates two copies
» Usage Example: Zero Fill On Demand
- 'l:l/leV\ll(d;_lt_aEpages m:.l(sjt carry Po :nformation (say be éeroed) - Entire regions of the address
— Mar s as invalid; page fault on use gets zeroed page - —
— Often, OS creates zeroed pages in background space can be efficiently shared —
Lec 14.19 10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.20

10/14/20 Kubiatowicz CS162 © UCB Fall 2020

Summary: Two-Level Paging

Virtual memory view Page Table Page Tables Physical memory view
1111 1111 (level 1) (level 2)
stack 11| 11101
1111 0000 T 10{ 11100 1110 0000
: 8 01/ 10111
00| 10110
1100 0000
111 11| null
k3 110 10{ 10000
1 101 01/ 01111
Rean J,_.mo 00| 01110
1000 0000 i ort \:
| heap |

001 0111 000

000 11{ 01101
M 10| 01100
- o o
00| 01010
0100 0000 =

0101 000

11{ 00101
10| 00100

—
| —— 0001 0000

IR 0000 0000

P}
LCUUCT

page2 #
0006 3000

pagel # offset

]
COGE

10/14/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 14.21

Summary: Two-Level Paging

Virtual memory view Page Table Page Tables Physical memory view
(level 1) (level 2)
stack 11{ 11101
10{ 11100 1110 0000
i 01 10111
00| 10110
111| @ 11] null
1 110| null [T070000]
101| null 01] 01111
1001 0000 —r nul 00| 01110
(0x90) 1 071 null 1000 0000
010 @
001| nutt (0x80)
0oo| ® 1101101
10{ 01100
01/ 01011
00| 01010
11{ 00101
10{ 00100 code
01| 00011
code 00| 00010 0001 0000
IR 0000 0000

10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.22
Multi-level Translation: Segments + Pages What about Sharing (Complete Segment)?
* What about a tree of tables? Process A: page 70 JVR
— Lowest level page table = memory still allocated with bitmap bage #1_JVR
— Higher levels often segmented page #2_ | V.RW
» Could have any number of levels. Example (top segment): page #3 | VRW
Virtual page #4 N
Address: Base3| Limit3 | N K page o VR
page#0 |VR Base4| Limit4 |V K] Shared Segment
— Base5| Limit5 | N Q
Base0] Limi ace 1R [ERERIOTe.] Base6[Limit6 [N| o
Basel YV Physical Address Base7[Limit7 [V ;
page #3 | VR, —
Base3| Limit3\ N page #4 [N e Base3| Limit3 | N
Base4| Limit4 page#5 |V.R o Base4| Limit4 | V.
Base5| Limit5 — Base5| Limit5 [N
Base6| Limit6 | N Base6| Limit6 | N
Base7/| Limit7 | V __,Access Access Base7| Limit7 | V
Error Error
+ What must be saved/restored on context switch? Process B:
— Contents of top-level segment registers (for this example)
— Pointer to top-level table (page table)
10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.23 10/14/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 14.24

10/14/20

Multi-level Translation Analysis

* Pros:
—Only need to allocate as many page table entries as we need for
application
» In other wards, sparse address spaces are easy
— Easy memory allocation
— Easy Sharing
» Share at segment or page level (need additional reference counting)
» Cons:
— One pointer per page (typically 4K — 16K pages today)
—Page tables need to be contiguous
» However, the 10b-10b-12b configuration keeps tables to exactly one
page in size
—Two (or more, if >2 levels) lookups per reference
» Seems very expensive!

Kubiatowicz CS162 © UCB Fall 2020 Lec 14.25

10/14/20

Recall: Dual-Mode Operation

Can a process modify its own translation tables? NO!

— If it could, could get access to all of physical memory (no protection!)
To Assist with Protection, Hardware provides at least two modes (Dual-Mode
Operation):

— “Kernel” mode (or “supervisor” or “protected”)

— “User” mode (Normal program mode)

— Mode set with bit(s) in control register only accessible in Kernel mode

— Kernel can easily switch to user mode; User program must invoke an exception of some
sort to get back to kernel mode (more in moment)

Note that x86 model actually has more modes:
— Traditionally, four “rings” representing priority; most OSes use only two:
» Ring 0 = Kernel mode, Ring 3 = User mode
» Called “Current Privilege Level” or CPL
— Newer processors have additional mode for hypervisor (“Ring -1”)
Certain operations restricted to Kernel mode:
— Modifying page table base (CR3 in x86), and segment descriptor tables
» Have to transition into Kernel mode before you can change them!

— Also, all page-table pages must be mapped only in kernel mode
Kubiatowicz CS162 © UCB Fall 2020

Lec 14.26

10/14/20

Making it real: X86 Memory model with segmentation (16/32-bit)

Logical Address
(orFarPointer) _ gegment Selector from

[
Seg;ew instruction: mov eax, gs(0x0)
Selector Offset Linear Address
I I I

Space

2-level page table
(in 10-10-12 bit address
inear Address
R Physical
[Space
Segment
Segment Page Table Page
| gn. | Descriptor | R R I A K R N A
Page Directory > Phy, Addr,
> Lin. Addr — | :
I — Entry -
"‘ L= Entry
Segment i I
Base Address \. —
"1 page Second level
Combined address called “table”
g »
Is. 32-bit “linear First level
Virtual address | called “directory” ‘

Segmentation | Paging |

Kubiatowicz CS162 © UCB Fall 2020 Lec 14.27

X86 Segment Descriptors (32-bit Protected Mode)

» Segments are implicit in the instruction (e.g. code segments) or part of the instruction

* What is in a segment register?

— There are 6 registers: SS, CS, DS, ES, FS, GS

| Segment selector [13 bits] |6‘| RPL |

— A pointer to the actual segment description: Segment Register

— GIL selects between GDT and LDT tables (global vs local descriptor tables)
— RPL: Requestor’s Privilege Level (RPL of CS = Current Privilege Level)

» Two registers: GDTR/LDTR hold pointers to global/local descriptor tables in memory

10/14/20

— Descriptor format (64 bits): P28 s o
Base address (24-31) IG A|Liﬂi(16—19) PIDPLISI Type I Base address (16-23)

O o B B B a ERSENS
Base address (Bt 0-15)

Segment Limit (Bit 0-15)

DB: Default operand size (0: 16bit, 1: 32bit)
A: Freely available for use by software
: Segment present

G: Granularity of segment [Limit Size] (0: 16bit, 1: 4KiB unit)

P
DPL: Descriptor Privilege Level: Access requires Max(CPL,RPL)<DPL

S: System Segment (0: System, 1: code or data)

Typeg Code, Data, Segment

Kubiatowicz CS162 © UCB Fall 2020 Lec 14.28

How are segments used?

One set of global segments (GDT) for everyone, different set of local
segments (LDT) for every process

In legacy applications (16-bit mode):
— Segments provide protection for different components of user programs
— Separate segments for chunks of code, data, stacks
» RPL of Code Segment =CPL (Current Privilege Level)
— Limited to 64K segments
Modern use in 32-bit Mode:

— Even though there is full segment functionality, segments are set up as
“flattened”, i.e. every segment is 4GB in size

— One exception: Use of GS (or FS) as a pointer to “Thread Local Storage” (TLS)

» A thread can make accesses to TLS like this:
mov eax, gs(0x0)

Modern use in 64-bit (“long”) mode
— Most segments (SS, CS, DS, ES) have zero base and no length limits
— Only FS and GS retain their functionality TLS

Kubiatowicz CS162 © UCB Fall 2020

X86_64: Four-level page table!

9 bits 9 bits 9 bits 9 bits

12 bits

48-bit Virtual
Address:

PageTablePtr

4096-byte pages (12 bit offset)
Page tables also 4k bytes (pageable)

Physical
Address:
(40-50 bits)

Lec 14.29 10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.30
From x86_64 architecture specification Larger page sizes supported as well
Linear Address
47 39 38 nggrzgmess 2120 12 11 0 H;Mu T =% 2 22 24 -
[PML4 [Directory Pr | Directory Table Offset | Linear Address Linear Address
- /g / ‘ a7 39 38 3029 2120 0 47 39 38 3029 [
5 9 V19 4KByte Pago [PML4” T Directory Pr_| D;eclory O;S;I [_‘mu Dl‘mdory Prr | ovvs/n;o
Physical Addr I® 7
2-MByte Page 1
T]
. - 40 »-| Physical Addr
21?;3'%‘;‘;‘1/' il 6 Page Table PML¢ ,;:?&;Dl,%m,y_ »| POE with PS=1 \ 4 - i i i:?ﬁ;‘,’?ﬁfz’v' 1-GByte Page
/l Page-Directory Sy [] A PageDirectory 't Physical Addr
»PDPTE 4 I BOPTE 1 »{POPTE win P3=1 | % !
Ao ‘ E Jo 4440 A L
A 40 a0 a0
> PML4E — /40 »| PMLIE = PMLE
CR T -
——— Ve “
Jo Figure 2-1, L 0 — =
oR Figure 4-9. Linear-Address Translation to a 2-MByte Page using 4-Level Paging Figure 4-10. Linear-Address Translation to a 1-GByte Page using 4-Level Paging
Figure 4-8. Linear-Address Translation to a 4-KByte Page using 4-Level Paging
)] Larger page sizes (2MB, 1GB) make sense since memory is now cheap
 All current x86 processor support a 64 bit operation — Great for kernel, large libraries, etc
* 64-bit words (so ints are 8 bytes) but 48-bit addresses _ Use limited primarily by internal fragmentation...
Kubiatowicz CS162 © UCB Fall 2020 Lec 14.31 10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.32

IA64: 64bit addresses: Six-level page table?!?

64bit Virtual 7 bits 9 bits 9bits 9bits 9 bits 9 bits 12 bits
Address:

No!

Too slow
Too many almost-empty tables

10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.33

Alternative: Inverted Page Table

» With all previous examples (“Forward Page Tables”)
— Size of page table is at least as large as amount of virtual memory allocated
to processes
— Physical memory may be much less
» Much of process space may be out on disk or not in use

Hash
Table
* Answer: use a hash table

— Called an “Inverted Page Table”

— Size is independent of virtual address space

— Directly related to amount of physical memory

— Very attractive option for 64-bit address spaces

» PowerPC, UltraSPARC, |1A64

» Cons:

— Complexity of managing hash chains: Often in hardware!

— Poor cache locality of page table

10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.34

Address Translation Comparison

_ Advantages Disadvantages

Fast context switching
(segment map maintained by External fragmentation
CPU)

Simple Segmentation

Large table size (~ virtual
memory)
Internal fragmentation

. . No external fragmentation
Paging (Single-Level) Fast and easy allocation
Table size ~ # of pages in
virtual memory

Fast and easy allocation

FECEE SR emEa Multiple memory references

Multi-Level Paging per page access

Hash function more complex
No cache locality of page
table

Table size ~ # of pages in

Inverted Page Table :
physical memory

10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.35

How is the Translation Accomplighed?
Virtual Physical

Address_e|s MMU Addresseﬁ

+ The MMU must translate virtual address to physical address on:
— Every instruction fetch
— Every load
— Every store
* What does the MMU need to do to translate an address?
— 1-level Page Table
» Read PTE from memory, check valid, merge address
» Set “accessed” bit in PTE, Set “dirty bit” on write
— 2-level Page Table
» Read and check first level
» Read, check, and update PTE
— N-level Page Table ...

* MMU does page table Tree Traversal to translate each address
10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.36

Where and What is the MMU ?

e e e e S 3(*'7- -
i/ poo¢ © ov® p N Physical
! N Pid\ang 1
: ?&"d‘ “e@d % Memory
i | Processor > > PRI Y
! MMU Cache(s) cummp (o0
'] (core) |e < NV
1 () page
] PTER 1 N tables
L < data @ mem[VtoP(m)] > J

The processor requests READ Virtual-Address to memory system
— Through the MMU to the cache (to the memory)

Some time later, the memory sgstem responds with the data stored at the physical
address (resulting from virtual - physical) translation

— Fast on a cache hit, slow on a miss
So what is the MMU doing?

On every reference (I-fetch, Load, Store) read (multiple levels of) page table entries
to get physical frame or FAULT

— Through the caches to the memory

— Then read/write the physical location

Recall: CS61c¢ Caching Concept

| ,_-;{ OHE =
= Q — =
. TS J '@ >4

vi

» Cache: a repository for copies that can be accessed more quickly than the original
—Make frequent case fast and infrequent case less dominant

» Caching underlies many techniques used today to make computers fast

— Can cache: memory locations, address translations, pages, file blocks, file
names, network routes, etc...

* Only good if:
—Frequent case frequent enough and
— Infrequent case not too expensive

» Important measure: Average Access time =
(Hit Rate x Hit Time) + (Miss Rate x Miss Time)

10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.37 10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.38
Recall: In Machine Structures (eg. 61C) ... Another Major Reason to Deal with Caching
+ Caching is the key to memory system performance Virtual Offset
Main Address:
Memory page 2(1) ViR
rocessor Access time = 100ns (DRAM) EZEZ? L!m:1 V ﬁm’*) Ofoet
Base? Limi page #3_| VR, Physical Address
Main Base3 Lim!t3 N page #4 [N
-) | cacne Memory Based| Limitd page #5 | VR, Check Pedn
rocessor|€ >| (SRAM) [€—>x (DRAM) Base6| Limit6 | N
Base7| Limit7 [V —Access Access
1 ns 100ns Error Error
Average Memory Access Time (AMAT) + Cannot afford to translate on every access
= (Hit Rate x HitTime) + (Miss Rate x MissTime) — At least three DRAM accesses per actual DRAM access
Where HitRate + MissRate = 1 —Or: perhaps /O if page table partially on disk!
HitRate = 90% => AMAT = (0.9 x 1) + (0.1 x 101)=11.1 ns ¢ Egggs‘év?ngérv%gag EVRVXGVSC%‘SQ’S‘S?C%N“Q to make memory
HitRate = 99% => AMAT = (099 X 1) + (001 X 101)=201 ns « Solution? Cache translations!
MissTime , includes HitTime ,+MissPenalty, , = HitTime , +AMAT , —Translation Cache: TLB (“Translation Lookaside Buffer”)
10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.39 10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.40

Why Does Caching Help? Locality!

Probability
of reference

Recall: Memory Hierarchy

» Caching: Take advantage of the principle of locality to:
— Present the illusion of having as much memory as in the cheapest technology
— Provide average speed similar to that offered by the fastest technology

Page table lives here
(perhaps cached)

Address Translation
needs to occur here

0 Address Space 2n-1 Tocessor
» Temporal Locality (Locality in Time): S —
: — Y= I
—Keep recently accessed data items closer to processor E N I
= o]
« Spatial Locality (Locality in Space): gl |g| (3 Secondary
. I3 ® . Secondary Storage
— Move contiguous blocks to the upper levels Core - mam Storage (Disk)
e B emory
Lower Level FARES g g Qo (DRAM) (8S0)
To Processor | Upper Level Memory % |9 8 25
Memory ",_.: % 3 - ®
12}
Blk X
from Processor Blk Y Speed (ns): 0.3 1 3 1030 100 oy o
Size (bytes): 100Bs 10kBs 100kBs ~ MBs GBs 100GBs TBs
10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.41 10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.42
How do we make Address Translation Fast? Translation Look-Aside Buffer
» Cache results of recent transiations ! « Record recent Virtual Page # to Physical Frame # translation
~ Different from a traditional cache - If present, have the physical address without reading any of the page
— Cache Page Table Entries using Virtual Page # as the key tables II!
- o +7 Physical — Even if the translation involved multiple levels
aX e Memo — Caches the end-to-end result
w2 w2 & mory
P > > PN 3o<? » Was invented by Sir Maurice Wilkes — prior to caches
rocessor MMU Cache(s) > o™ . .
(core) | < S — When you come up with a new concept, you get to name it!
page . P, .
PTER @ ¥ — People realized “if it's good for page tables, why not the rest of the data in
) i memory?”
V_Pg M, : <Phs Frame #,, V, .. > .
V*P: W+ <phe Freme .. V. ok * On a TLB miss, the page tables may be cached, so only go to memory
= = when both miss
V_Pg M, : <Phs_Frame #,, V, .. >
Kubiatowicz CS162 © UCB Fall 2020 Lec 14.43 10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.44

10/14/20

Caching Applied t/o\Address Translation

Physical

Physical
Memory

Data Read or Write
(untranslated)
» Question is one of page locality: does it exist?

— Instruction accesses spend a lot of time on the same page
(since accesses sequential)

— Stack accesses have definite locality of reference
— Data accesses have less page locality, but still some...
« Can we have a TLB hierarchy?
— Sure: multiple levels at different sizes/speeds
10/14/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 14.45

10/14/20

What kind of Cache for TLB?

Set Size (k) - Associativity

A
[|
[T | |
| |
|
|

tag data ” []

line size (L)

of
Sets (N)

» Remember all those cache design parameters and trade-offs?
— Amountof Data=N*L*K
— Tag is portion of address that identifies line (w/o line offset)
— Write Policy (write-thru, write-back), Eviction Policy (LRU, ...)

Kubiatowicz CS162 © UCB Fall 2020 Lec 14.46

How might organization of TLB differ
from that of a conventional instruction
or data cache?

» Let's do some review ...

10/14/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 14.47

10/14/20

A Summary on Sources of Cache Misses

Compulsory (cold start or process migration, first reference): first
access to a block

—“Cold” fact of life: not a whole lot you can do about it

—Note: If you are going to run “billions” of instruction, Compulsory
Misses are insignificant

Capacity:
— Cache cannot contain all blocks access by the program
— Solution: increase cache size
Conflict (collision):
—Multiple memory locations mapped to the same cache location
— Solution 1: increase cache size
— Solution 2: increase associativity
Coherence (Invalidation): other process (e.g., I/0) updates memory

Kubiatowicz CS162 © UCB Fall 2020 Lec 14.48

How is a Block found in a Cache?

Review: Direct Mapped Cache

« Direct Mapped 2N byte cache:
[Block Address T Block — The uppermost (32 - N) bits are always the Cache Tag
[Tag [Index | offset | — The lowest M bits are the Byte Select (Block Size = 2M)
\) * Example: 1 KB Direct Mapped Cache with 32 B Blocks
v — Index chooses potential block
Set Select — Tag checked to verify block
;lByte select chooses byte within bI(9)ck . 0
. . . Data Select | Cache Tag | CacheIndex | Byte Select |
* Block is minimum quantum of caching —— Ex: 0x01 Ex: 0x00
— Data select field used to select data within block L
—Many caching applications don’'t have data select field Valid Bit Cache Tag Cache Data
X . O PP .)...].Byte 31)...:5. [.Byte 1. [.Bytd0.].0
* Index Used to Lookup Candidates in Cache 0x50 Byte 63| ** | Byte 33| Byte 32| 14—
Index identifies the set | e e 5
. . 3
» Tag used to identify actual copy
—If no candidates match, then declare cache miss
Byte 1023 Byte 992 | 31
10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.49 10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.50
Review: Set Associative Cache Review: Fully Associative Cache
* N-way set associative: N entries per Cache Index » Fully Associative: Every block can hold any line
—N direct mapped caches operates in parallel — Address does not include a cache index
+ Example: Two-way set associative cache — Compare Cache Tags of all Cache Entries in Parallel
—Cache Index selects a “set” from the cache « Example: Block Size=32B blocks
—Ewto tags ||n t?edsgt arg cor’?rf)a;ed to |nﬁut in parallel —We need N 27-bit comparators
3 ~atals selected based on he iag resu 0 — Still have byte select to choose from within block
| Cache Tag | Cache Index | Byte Select | 31 4
| Cache Tag (27 bits long) | Byte Select |
Valid Cache Tag Cache Data Cache Data Cache Tag Valid Ex: 0x01
Cache Block 0 Cache Block 0
Cache Tag Valid Bit Cache Data
a41-F--=----tt-------- I e Y » —@— Byte 31 * |Bytel | Byte 0
1 : = Byte 63| °° | Byte 33| Byte 32
- g - === == 1 ()
’ Compar Sell A
—o—
10/14/20 Hit l Cache Block Lec 14.51 10/14/20

Kubiatowicz CS162 © UCB Fall 2020 Lec 14.52

Where does a Block Get Placed in a Cache?

* Example: Block 12 placed in 8 block cache
32-Block Address Space:

Block 1111111111222222222233
no. 01234567890123456789012345678901

Set associative:
block 12 can go
anywhere in set 0

Fully associative:
block 12 can go
anywhere

Direct mapped:
block 12 can go
only into block 4

Which block should be replaced on a miss?

+ Easy for Direct Mapped: Only one possibility
» Set Associative or Fully Associative:
—Random
—LRU (Least Recently Used)

* Miss rates for a workload:

2-way 4-way
Size LRU Random LRU Random LRU Random

8-way

(12 mod 8) (12 mod 4)
Block 01234567 Block 01234567 Block 01234567 16KB 52% 57% 47% 53% 4.4% 5.0%
' ' ' 64KB 1.9% 20% 15% 1.7% 1.4% 1.5%
256 KB1.15% 1.17% 1.13% 1.13% 1.12% 1.12%
Set Set Set Set
01 2 3
10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.53 10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.54
Review: What happens on a write? Questions about caches ?
« Write through: The information is written to both the block in ; ;
the cache and to the block in the lower-level memory HO\.N d?es operating system behavior affect cache performance?
« Write back: The information is written only to the block in the Switching threads?
cache Switching contexts?
—Modified cache block is written to main memory only PSRN ”
when it is replaced Cache design? What addresses are used?
—Question is block clean or dirty? What does our understanding of caches tell us about TLB organization?
* Pros and Cons of each?
- WT:
» PRO: read misses cannot result in writes
» CON: Processor held up on writes unless writes
buffered
—-WB:
» PRO: repeated writes not sent to DRAM
processor not held up on writes
» CON: More complex
Read miss may require writeback of dirty data
10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.55 10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.56

What TLB Organization Makes Sense?

TLB Cache

Memory

* Needs to be really fast
— Critical path of memory access
» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)
— Seems to argue for Direct Mapped or Low Associativity
* However, needs to have very few conflicts!
— With TLB, the Miss Time extremely high! (PT traversal)
— Cost of Conflict (Miss Time) is high
— Hit Time — dictated by clock cycle
» Thrashing: continuous conflicts between accesses
— What if use low order bits of page as index into TLB?
» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?
— What if use high order bits as index?
» TLB mostly unused for small programs

TLB organization: include protection

* How big does TLB actually have to be?
—Usually small: 128-512 entries (larger now)
—Not very big, can support higher associativity

« Small TLBs usually organized as fully-associative cache
—Lookup is by Virtual Address
—Returns Physical Address + other info

* What happens when fully-associative is too slow?
—Put a small (4-16 entry) direct-mapped cache in front
—Called a “TLB Slice”

» Example for MIPS R3000:

Virtual Address | Physical Address | Dirty | Ref | Valid |Access |ASID

0xFA00 0x0003 Y N Y RW | 34
0x0040 0x0010 N Y Y R 0
0x0041 0x0011 N Y Y R 0

10/14/20 Kubiatowicz C$162 © UCB Fall 2020 Lec 14.57 10/14/20 Kubiatowicz C$162 © UCB Fall 2020 Lec 14.58
Example: R3000 pipeline includes TLB “stages” Example: Pentium-M TLBs (2003)
MIPS R3000 Pipeline e Four different TLBs
[InstFetch | Dcd/Reg [ALU / EA | Memory | Write Reg | — Instruction TLB for 4K pages
| LB | kCache | RF | Operation | | we | » 128 entries, 4-way set associative
| EA.[TLB | D-Cache | — Instruction TLB for large pages
TLB » 2 entries, fully associative
64 entry, on-chip, fully associative, software TLB fault handler —Data TLB for 4K pages
Virtual Address Space » 128 entries, 4-way set associative
—Data TLB for large pages
[asip |[]]] v.Page Number | offset | » 8 entries, 4-way set associative
6 12 .
2 » All TLBs use LRU replacement policy
0xx User segment (caching based on PT/TLB entry) * Why different TLBs for instruction, data, and page sizes?
100 Kernel physical space, cached
101 Kernel physical space, uncached
11x Kernel virtual space
Allows context switching among
64 user processes without TLB flush
10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.59 10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.60

Intel Nahelem (2008)

« L1 DTLB
— 64 entries for 4 K pages and
— 32 entries for 2/4 M pages,
« L1ITLB
— 128 entries for 4 K pages using 4-way associativity and
— 14 fully associative entries for 2/4 MiB pages
« unified 512-entry L2 TLB for 4 KiB pages, 4-way associative.

Current Intel x86 (Skylake, Cascade Lake)

Front End

sasfeyclo

10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.61 10/14/20 Kubiatowicz _memory Subsystem Lec 14.62
Current Example: Memory Hierarchy What happens on a Context Switch?
+ Caches (all 64 B line size) * Need to do something, since TLBs map virtual addresses to
— L1 I-Cache: 32 KiB/core, 8-way set assoc. physical addresses
— L1 D Cache: 32 KiB/core, 8-way set assoc., 4-5 cycles load-to-use, — Address Space just changed, so TLB entries no longer valid!
Write-back policy .
A . . * Options?
— L2 Cache: 1 MiB/core, 16-way set assoc., Inclusive, Write-back] . . .
policy, 14 cycles latency — Invalidate TLB: simple but might be expensive
— L3 Cache: 1.375 MiB/core, 11-way set assoc., shared across cores, » What if switching frequently between processes?
Non-inclusive victim cache, Write-back policy, 50-70 cycles latency — Include ProcessID in TLB
+ TLB » This is an architectural solution: needs hardware
- L1ITLB, 12 ies; 8- . for 4 KB . .
. 8 entries; 8-way set assoG. for & 15 pages * What if translation tables change?
» 8 entries per thread; fully associative, for 2 MiB / 4 MiB page . .
— L1 DTLB 64 entries; 4-way set associative for 4 KB pages —For e>.<ample, to move page from memory to disk or vice versa...
» 32 entries; 4-way set associative, 2 MiB / 4 MiB page translations: — Must invalidate TLB entry!
» 4 entries; 4-way associative, 1G page translations: » Otherwise, might think that page is still in memory!
— L2 STLB: 1536 entries; 12-way set assoc. 4 KiB + 2 MiB pages — Called “TLB Consistency”
» 16 entries; 4-way set associative, 1 GiB page translations:
10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.63 10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.64

Putting Everything Together: Address Translation

Physical

Virtual Address: Memory:

| PageTablePtr PhysicalAddre

Page Table
(13t level)

Page Table
(2 level)

10/14/20

Putting Everything Together: TLB

Physical
Virtual Address: Memory:
— 1)
[PageTablfptr p—""] Physic re
\ Page #
-
|
Page Table |
(15t level) —
Page Table
(2nd level)
TLB:

Kubiatowicz CS162 © UCB Fall 2020 Lec 14.65 10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.66
Putting Everything Together: Cache Page Fault
_ Physical * The Virtual-to-Physical Translation fails
Virtual Address: Memory:) \
VITTar T vinTat — PTE marked invalid, Priv. Level Violation, Access violation, or does not exist
[P1 indexd P2 index Offset
— — Causes an Fault / Trap
» Not an interrupt because synchronous to instruction execution
AN — May occur on instruction fetch or data access
l@ﬂl""» Physic: re — Protection violations typically terminate the instruction
N » Other Page Faults engage operating system to fix the situation and retry the
instruction
Page Table — Allocate an additional stack page, or
L= — Make the page accessible - Copy on Write,
2???;2%’9 — Bring page in from secondary storage to memory — demand paging
e » Fundamental inversion of the hardware / software boundary
|
|
-
10/14/20 Lec 14.67 10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.68

Next Up: What happens when ...

Process virtual address physical address
page#
instr MMU > frame#
=

L=

/f it \‘ offset
exception page fau

rame#

Operajing System offset

" update PT entry
Page Fault Handler

oad page from disk

scheduler

10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.69

Summary (1/3)

* Page Tables

— Memory divided into fixed-sized chunks of memory

— Virtual page number from virtual address mapped through page table to physical
page number

— Offset of virtual address same as physical address

— Large page tables can be placed into virtual memory

« Multi-Level Tables

— Virtual address mapped to series of tables
— Permit sparse population of address space

* Inverted Page Table

10/14/20

— Use of hash-table to hold translation entries
— Size of page table ~ size of physical memory rather than size of virtual memory

Kubiatowicz CS162 © UCB Fall 2020 Lec 14.70

Summary (2/3)

* The Principle of Locality:

— Program likely to access a relatively small portion of the address space at any
instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space
* Three (+1) Major Categories of Cache Misses:
— Compulsory Misses: sad facts of life. Example: cold start misses.
— Conflict Misses: increase cache size and/or associativity
— Capacity Misses: increase cache size
— Coherence Misses: Caused by external processors or I/O devices
» Cache Organizations:
— Direct Mapped: single block per set
— Set associative: more than one block per set
— Fully associative: all entries equivalent

10/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 14.71

10/14/20

Summary (3/3)

* “Translation Lookaside Buffer” (TLB)

—Small number of PTEs and optional process IDs (< 512)
— Fully Associative (Since conflict misses expensive)

—On TLB miss, page table must be traversed and if located PTE is
invalid, cause Page Fault

—On change in page table, TLB entries must be invalidated
—TLB is logically in front of cache (need to overlap with cache access)

» Next Time: What to do on a page fault?

Kubiatowicz CS162 © UCB Fall 2020 Lec 14.72

