CS162
Operating Systems and
Systems Programming

Lecture 15

Memory 3: Caching and TLBs (Con’t), Demand Paging

October 19th, 2020
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: The two-level page table
Physical
Address:

10 bits 10 bits 12 bits

Virtual
Address:

PageTablePtr

» Tree of Page Tables
— “Magic” 10b-10b-12b pattern!
» Tables fixed size (1024 entries)
— On context-switch: save single PageTablePtr register
(i.e. CR3)
+ Valid bits on Page Table Entries
— Don’t need every 2M-level table
— Even when exist, 2"9-level tables can reside on disk if

not in use
10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.2

—> 4 bytes «—

—> 4 bytes «—

10/19/20

Recall: Caching Appli/e\d to Address Translation

Physical

Physical
Memory

Data Read or Write
(untranslated)
» Question is one of page locality: does it exist?

— Instruction accesses spend a lot of time on the same page
(since accesses sequential)

— Stack accesses have definite locality of reference
— Data accesses have less page locality, but still some...
» Can we have a TLB hierarchy?
— Sure: multiple levels at different sizes/speeds
Kubiatowicz CS162 © UCB Fall 2020 Lec 15.3

Recall: A Summary on Sources of Cache Misses

« Compulsory (cold start or process migration, first reference): first
access to a block

—“Cold” fact of life: not a whole lot you can do about it

—Note: If you are going to run “billions” of instruction, Compulsory
Misses are insignificant

» Capacity:
— Cache cannot contain all blocks access by the program
— Solution: increase cache size
+ Conflict (collision):
—Multiple memory locations mapped to the same cache location
— Solution 1: increase cache size
— Solution 2: increase associativity
» Coherence (Invalidation): other process (e.g., I/0) updates memory

10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.4

How is a Block found in a Cache?

Review: Direct Mapped Cache

« Direct Mapped 2N byte cache:
— The uppermost (32 - N) bits are always the Cache Tag
| P N =3 — The lowest M bits are the Byte Select (Block Size = 2M)
\ ; « Example: 1 KB Direct Mapped Cache with 32 B Blocks
Y — Index chooses potential block
— Tag checked to verify block
Set Select — Byte select chooses byte within block
31 9 4 0
+ Block is minimum quantum of caching Data Select L Cache Tag | Cache Index | Byte Select |
. cL Ex: 0x50 Ex: 0x01 Ex: 0x00
— Data select field used to select data within block
—Many caching applications don’t have data select field Valid Bit Cache Tag Cache Data J
R ; i Carhe ...Byte 31)...00 LByte 1.).Bytd 0. 1.0
Index Used to Lookup Candidates in Cache TS Byte 63 B3] §
—Index identifies the set L e o 5
» Tag used to identify actual copy 3
—If no candidates match, then declare cache miss
Byte 1023 Byte 992 | 31
10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.5 10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.6
Review: Set Associative Cache Review: Fully Associative Cache
* N-way set associative: N entries per Cache Index » Fully Associative: Every block can hold any line
—N direct mapped caches operates in parallel — Address does not include a cache index
+ Example: Two-way set associative cache — Compare Cache Tags of all Cache Entries in Parallel
—Cache Index selects a “set” from the cache « Example: Block Size=32B blocks
—Bwto tags iln t?edsbet arg cor’m)a:ed to inﬁut in parallel —We need N 27-bit comparators
—Dgja Is selected based on the tag resu 0 — Still have byte select to choose from within block
| Cache Tag | Cache Index | Byte Select | 31 4 0
| Cache Tag (27 bits long) | Byte Select |
Valid Cache Tag Cache Data Cache Data Cache Tag Valid Ex: 0x01
Cache Block 0 Cache Block 0
Cache Tag Valid Bit Cache Data
| ! - I e Y » —@— Byte 31 * |Bytel | Byte 0
1 : @ Byte 63 * | Byte 33| Byte 32
- g - === == 1 ()
’ Compar Sell A
©— —©
10/19/20 Hit l Cache Block Lec 157 10/19/20

Kubiatowicz CS162 © UCB Fall 2020

Lec 15.8

Where does a Block Get Placed in a Cache?

* Example: Block 12 placed in 8 block cache
32-Block Address Space:

Block 1111111111222222222233
no. 01234567890123456789012345678901

Direct mapped: Set associative: Fully associative:
block 12 can go block 12 can go block 12 can go
only into block 4 anywhere in set 0 anywhere

(12 mod 8) (12 mod 4)

Block 01234567 Block 01234567 Block 01234567
no. no. no.

Set Set Set Set
01 2 3

10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.9

Which block should be replaced on a miss?

» Easy for Direct Mapped: Only one possibility
» Set Associative or Fully Associative:
—Random
—LRU (Least Recently Used)

« Miss rates for a workload:

2-way 4-way 8-way
Size LRU Random LRU Random LRU Random

16KB 52% 57% 4.7% 53% 44% 5.0%
64KB 1.9% 2.0% 15% 1.7% 1.4% 1.5%
256 KB1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.10

Review: What happens on a write?

« Write through: The information is written to both the block in the cache
and to the block in the lower-level memory

« Write back: The information is written only to the block in the cache

—Modified cache block is written to main memory only when it is
replaced

—Question is block clean or dirty?
* Pros and Cons of each?

—WT:

» PRO: read misses cannot result in writes

» CON: Processor held up on writes unless writes buffered
- WB:

» PRO: repeated writes not sent to DRAM

processor not held up on writes

» CON: More complex
Read miss may require writeback of dirty data

10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.11

Physically-Indexed vs Virtually-Indexed Caches
+ Physically-Indexed Caches

— Address handed to cache after translation Cache
— Page Table holds physical addresses [Physically = Memory
— Benefits: indexed] | 8
» Every piece of data has single place in cache [Physically I %
» Cache can stay unchanged on context switch addressed] physical =3
— Challenges: Page Table
» TLB is in critical path of lookup!
— Pretty Common today (e.g. x86 processors)
+ Virtually-Indexed Caches virtual Qache
— Address handed to cache before translation [i\':zteli(ae"g]
— Page Table holds virtual addresses (one option)
— Benefits: offset
» TLB not in critical path of lookup, so can be faster ._'
— Challenges: virtaa TLB == Memory
» Same data could be mapped in multiple places of cache %
» May need to flush cache on context switch Vitually |2
- addressed] e
- We will stick with Physically Addressed Caches for now! vitual | page Table

10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.12

Administrivia

* Midterm 2: Coming up on Thursday 10/29

— Topics: up until Lecture 17: Scheduling, Deadlock, Address Translation, Virtual
Memory, Caching, TLBs, Demand Paging, 1/0

— Will REQUIRE you to have your zoom proctoring setup working
» You must have screen sharing, audio, and your camera working
» Make sure to get your setup debugged and ready!

» Review Session: 10/27

— Details TBA

+ Kubi Office Hours: M/W 2:00-3:00

— Let me know if this doesn’t work...

» US Election coming up: Don’t forget to Vote!

— Voting is one of the most important things you can do if you are allowed
— Don’t miss the opportunity!
— Be safe, of course

What TLB Organization Makes Sense?

Cache
[Physically
indexed]

TLB

Memory

* Needs to be really fast
— Critical path of memory access
» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)
— Seems to argue for Direct Mapped or Low Associativity
* However, needs to have very few conflicts!
— With TLB, the Miss Time extremely high! (PT traversal)
— Cost of Conflict (Miss Time) is high
— Hit Time — dictated by clock cycle
« Thrashing: continuous conflicts between accesses
— What if use low order bits of page as index into TLB?
» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?
— What if use high order bits as index?
» TLB mostly unused for small programs

10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.13 10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.14
H 1 . g 1 . . H . 13 ”
TLB organization: include protection Example: R3000 pipeline includes TLB “stages
* How big does TLB actually have to be? o
—Usually small: 128-512 entries (larger now) MIPS Tsooo P'pe""el bediReg | | [wn |
—Not very big, can support higher associativity Inst Fetch 9 |ALUTEA | Memory | Write Reg
. .. | TLB ‘ I-Cache ‘ RF | Operation \ | WB |
» Small TLBs usually organized as fully-associative cache
. . | EA.| TLB | D-Cache |
—Lookup is by Virtual Address
—Returns Physical Address + other info LB
* What happens when fully-associative is too slow? 64 entry, on-chip, fully associative, software TLB fault handler
—Puta sm?II (4-1§ er:try) direct-mapped cache in front Virtual Address Space
—Called a “TLB Slice
* Example for MIPS R3000: [asip | [T V. Page Number | offset]
Virtual Address | Physical Address | Dirty | Ref | Valid |Access|ASID T 20 2
0xFAO00 0x0003 Y N Y R/W 34 0xx User segment (caching based on PT/TLB entry)
0x0040 0x0010 N Y Y R 0 100 Kernel physical space, cached
0x0041 0x0011 N Y Y R 0 ::)1 Kernel p_hysical space, uncached
x Kernel virtual space
Allows context switching among
64 user processes without TLB flush
10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.15 10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.16

Reducing translation time for physically-indexed caches
Virtual Address

* As described, TLB lookup is in serial with [Voage no.] oﬁlo s;]
cache lookup I
— Consequently, speed of TLB can impact TLB Lookup
speed of access to cache
VR o |
Rights }
* Machines with TLBs go one step further: E orfset]
overlap TLB lookup with cache access pageno. | offset

— Works because offset available early Physical Address
— Offset in virtual address exactly covers the “cache index” and “byte select”
— Thus can select the cached byte(s) in parallel to perform address translation

virual aocress: [RRNORESTIT]

physical address: | tag / page #

10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.17

10/19/20

Overlapping TLB & Cache Access

* Here is how this might work with a 4K cache:

assoc

lookup ind
32 [TLB ‘—‘ MCEX | 4K Cache 1K

20 ——4 bytes——|

[page # [disp [oo]
Hit/
Miss

FN FN Data Hit/
Miss

» What if cache size is increased to 8KB?
— Overlap not complete
— Need to do something else. See CS152/252

* Another option: Virtual Caches would make this faster
— Tags in cache are virtual addresses

— Translation only happens on cache misses

Kubiatowicz CS162 © UCB Fall 2020 Lec 15.18

Current Intel x86 (Skylake, Cascade Lake)

Front End

10/19/20

Kubiatowicz Memory Subsystem Lec 15.19

10/19/20

Current Example: Memory Hierarchy

* Caches (all 64 B line size)
— L1 I-Cache: 32 KiB/core, 8-way set assoc.
— L1 D Cache: 32 KiB/core, 8-way set assoc., 4-5 cycles load-to-use, Write-back policy

— L2 Cache: 1 MiB/core, 16-way set assoc., Inclusive, Write-back policy, 14 cycles
latency

— L3 Cache: 1.375 MiB/core, 11-way set assoc., shared across cores, Non-inclusive
victim cache, Write-back policy, 50-70 cycles latency

« TLB

— L1 ITLB, 128 entries; 8-way set assoc. for 4 KB pages
» 8 entries per thread; fully associative, for 2 MiB / 4 MiB page

— L1 DTLB 64 entries; 4-way set associative for 4 KB pages
» 32 entries; 4-way set associative, 2 MiB / 4 MiB page translations:
» 4 entries; 4-way associative, 1G page translations:

— L2 STLB: 1536 entries; 12-way set assoc. 4 KiB + 2 MiB pages
» 16 entries; 4-way set associative, 1 GiB page translations:

Kubiatowicz CS162 © UCB Fall 2020 Lec 15.20

10/19/20

What happens on a Context Switch?

Need to do something, since TLBs map virtual addresses to physical
addresses

— Address Space just changed, so TLB entries no longer valid!
Options?
— Invalidate TLB: simple but might be expensive
» What if switching frequently between processes?
— Include ProcessID in TLB
» This is an architectural solution: needs hardware
What if translation tables change?
— For example, to move page from memory to disk or vice versa...
— Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!
— Called “TLB Consistency”
Aside: with Virtually-Indexed cache, need to flush cache!
— Rember, everyone has their own version of the address “0”!

Kubiatowicz CS162 © UCB Fall 2020

Lec 15.21

Putting Everything Together: Address Translation

Physical
Virtual Address: Memory:

| PageTablePtr PhysicalAddre

Page Table
(13t level)

Page Table
(2 level)

10/19/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 15.22

10/19/20

Putting Everything Together: TLB

Physical
Virtual Address: Memory:

S —)

[PageTablfptr p—""] Physic re

Page #
\ s
Page Table

(15t level) ——
Page Table
(2nd level)

I

TLB:

.:_

L]
Kubiatowicz CS162 © UCB Fall 2020

Lec 15.23

Putting Everything Together: Cache

Physical
Virtual Address: Memory:

VIrtdal VIItUal
[P inde P2 index Offset

I@Wf = Physic re

Page Table
(15t level)

Page Table
(2 level)

NHLIEE

10/19/20

Lec 15.24

Page Fault

* The Virtual-to-Physical Translation fails
— PTE marked invalid, Priv. Level Violation, Access violation, or does not exist
— Causes an Fault/ Trap
» Not an interrupt because synchronous to instruction execution
— May occur on instruction fetch or data access
— Protection violations typically terminate the instruction

+ Other Page Faults engage operating system to fix the situation and retry the
instruction

— Allocate an additional stack page, or

— Make the page accessible - Copy on Write,

— Bring page in from secondary storage to memory — demand paging
» Fundamental inversion of the hardware / software boundary

10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.25

10/19/20

Demand Paging

* Modern programs require a lot of physical memory
—Memory per system growing faster than 25%-30%/year

» But they don’t use all their memory all of the time
—90-10 rule: programs spend 90% of their time in 10% of their code
— Wasteful to require all of user’s code to be in memory

» Solution: use main memory as “cache” for disk

Processor
1

Control cachin g Tertiary

econdi|Main Secondary | Storag¢
@ 3 evel ||Memory |Storage (Tape)
Datapatl| |2 @ ache||(DRAM) |(Disk)
S SRAM l
Kubiatowicz CS162 © UCB Fall 2020 Lec 15.26

Page Fault = Demand Paging

Process physical address

virtual address

- page#

instriyiion- MMU K> famet

NG PT \\
offset ﬁ

exception‘-/page fault] -

rame#

Ogerajing System offset

,,,,n""'/Ldeate PT entry
Page Fault Handler

oad page from disk

scheduler

10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.27

10/19/20

Demand Paging as Caching, ...

What “block size? - 1 page (e.g, 4 KB)
What “organization” ie. direct-mapped, set-assoc., fully-associative?
— Fully associative since arbitrary virtual — physical mapping
How do we locate a page?
— First check TLB, then page-table traversal
What is page replacement policy? (i.e. LRU, Random...)
— This requires more explanation... (kinda LRU)
What happens on a miss?
— Go to lower level to fill miss (i.e. disk)
What happens on a write? (write-through, write back)
— Definitely write-back — need dirty bit!

Kubiatowicz CS162 © UCB Fall 2020 Lec 15.28

lllusion of Infinite Memory

0 2
Page

— Table Physical Disk

Virtual Memory 50068

Memory 512 MB

4 6B

+ Disk is larger than physical memory =
— In-use virtual memory can be bigger than physical memory
— Combined memory of running processes much larger than physical memory
» More programs fit into memory, allowing more concurrency
* Principle: Transparent Level of Indirection (page table)
— Supports flexible placement of physical data
» Data could be on disk or somewhere across network
— Variable location of data transparent to user program
» Performance issue, not correctness issue
10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.29

Review: What isin a PTE?

+ What is in a Page Table Entry (or PTE)?

— Pointer to next-level page table or to actual page

— Permission bits: valid, read-only, read-write, write-only
» Example: Intel x86 architecture PTE:

— 2-level page tabler (10, 10, 12-bit offset)

— Intermediate page tables called “Directories”

Page Frame Number Free - | o] |
(Physical Page Number) (0S) 0w]P Ag 5 e
31412 119 876543210
P: Present (same as “valid” bit in other architectures)
W: Writeable

U: User accessible
PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)
A: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently
PS: Page Size: PS=1=4MB page (directory only).
Bottom 22 bits of virtual address serve as offset
10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.30

Demand Paging Mechanisms

+ PTE makes demand paging implementatable
— Valid = Page in memory, PTE points at physical page
— Not Valid = Page not in memory; use info in PTE to find it on
disk when necessary
» Suppose user references page with invalid PTE?
— Memory Management Unit (MMU) traps to OS
» Resulting trap is a “Page Fault” v
— What does OS do on a Page Fault?:
» Choose an old page to replace
» If old page modified (“D=1"), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location
— TLB for new page will be loaded when thread continued!
— While pulling pages off disk for one process, OS runs another
process from ready queue
» Suspended process sits on wait queue
10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.31

Origins of Paging

Keep most of the
address space on disk

Disks provide most
of the storage

[

|
Actively swap Relatively small
pages to/from memory, for many

processes

Keep memory full
of the frequently
accesses pages/v @\
i 1

10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.32

Many clients on dumb
terminals running
different programs

Very Different Situation Today

Powerful system

Huge memory
Huge disk

Single user

A Picture on one machine

Processes: 407 total, 2 running, 405 sleeping, 2135 threads 22:10:3!
Load Avg: 1.26, 1.26, 8.98 CPU usage: 1.35% user, 1.59% sys, 97.5% idle

SharedLibs: 292M resident, 54M data, 43M linkedit.

MenRegions: 155071 total, 4489M resident, 124M private, 1891M shared.

PhysMem: 13G used (35184 wired), 27184 unused.

VM: 1819G vsize, 1372M framework vsize, 68020510(0) swapins, 71200348() swapouts.

Networks: packets: 40629441/21G in, 21395374/7747M out.

Disks: 17026780/555G read, 15757470/638G written.

PID COMMAND SCPU TIME #WQ #PORTS MEM PURG CMPRS PGRP PPID STATE

90498 bash 0. 0: o 21 1086K 0B 564K 90498 90497 sleeping
90497 login [} 103 1236K 0B 1226K 98497 90496 sleeping
90496 Terminal) 1 378- 103M- 16M 134 90496 1 sleeping
89197 siriknowledg 0. 2 a5 2664K 08B 1528K 89197 1 sleeping
89193 com.apple.DF 0. 1 68 2688K 0B 1700K 89193 1 sleeping
82655 LookupViewSe 0. 1169 13 @B 8064K 82655 1 sleeping
82453 PAH_Extensio 0. 1235 15N B 7996K 82453 1 sleeping
75819 tzlinkd 0. 2 14 452K 08 444K 75819 1 sleeping
75787 MTLCompilerS 0. 2 24 9032k 08 9020K 75787 1 sleeping
75776 secd 0. 2 36 3208 0B 2328K 75776 1 sleeping
75098 DiskUnmountW 0. 2 34 1420K 08 728K 75098 1 sleeping
75093 MTLCompilerS 0. 2 2 5924K 08B 5912K 75093 1 sleeping
74938 ssh-agent 0. o 21 908K 08 892K 74938 1 sleeping
74063 Google Chrom . 1 678 192M 0B 51 54320 54320 sleeping

* Memory stays about 75% used, 25% for dynamics
* Alot of itis shared 1.9 GB

10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.33 10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.34
Many Uses of Virtual Memory and “Demand Paging” ... Classic: Loading an executable into memory
« Extend the stack disk (huge) memory
— Allocate a page and zero it
» Extend the heap (sbrk of old, today mmap) -
* Process Fork -
— Create a copy of the page table —
— Entries refer to parent pages — NO-WRITE -
— Shared read-only pages remain shared exe
— Copy page on write ~ @
.« Exec +exe o .
L . . . — lives on disk in the file system
— Only bring in parts of the binary in active use - co?tains cgntentg IOf code & data segments, relocation
_ . entries and symbols
Do this on d_erlnand . . — OS loads it into memory, initializes registers (and initial stack
+ MMAP to explicitly share region (or to access a file as RAM) pointer)
— program sets up stack and heap upon initialization:
crte (C runtime init)
Kubiatowicz CS162 © UCB Fall 2020 Lec 15.35 10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.36

10/19/20

Create Virtual Address Space of the Process

% process VAS memory
~ N kernel user page
[frames
_______ _
ot
-sbrk user
heap pagetable
data kernel
~ code code &
data

+ Utilized pages in the VAS are backed by a page block on disk

— Called the backing store or swap file
— Typically in an optimized block store, but can think of it like a file

Create Virtual Address Space of the Process

disk (huge, TB)

v
ﬂ stack
| coe | heap -

process VAS (GBs) memory

kernel
- frames

heap user
data
|
data pagetable
_ﬁ E kernel
code code &
data

» User Page table maps entire VAS
+ All the utilized regions are backed on disk
— swapped into and out of memory as needed

» For every process

10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.37 10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.38
Create Virtual Address Space of the Process Provide Backing Store for VAS
, VAS , VAS
disk (huge, TB) [per process] ~ PT memory disk (huge, TB) [per process] memory
~_ kernel ~ kernel .,
e stack N user page Lo, ’—£ I stack N user page
[S— SEES —— frames [S— SEE - frames
ote heap - e
- heap user - - . user
e data / pagetable data - / pagetable
P s P |_code | / E kernel &" / E kernel
code code & code &
o data o data
» User Page table maps entire VAS » User Page table maps entire VAS
— Resident pages to the frame in memory they occupy + Resident pages mapped to memory frames
— The portion of it that the HW needs to access must be + For all other pages, OS must record where to find them
resident in memory on disk
Lec 15.39 10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.40

10/19/20

Kubiatowicz CS162 © UCB Fall 2020

What Data Structure Maps
Non-Resident Pages to Disk?

e FindBlock(PID, page#) — disk_block

Provide Backing Store for VAS

disk (huge, TB)

VAS 1

PTA1

— Some OSs utilize spare space in PTE for paged blocks T . memory
— Like the PT, but purely software N~ kernel
. k
+ Where to store it? | stack | _ | _stack | S
— In memory — can be compact representation if swap storage stack H heap | e /// SZZ;
s contiguous on disk o 1 Tgam || heap rames
— Could use hash table (like Inverted PT) P .. VAS 2 PT2 /déa
| | Cdma [e[[B bagetabl
+ Usually want backing store for resident pages too s hL__kernel code
1| stack
* May map code segment directly to on-disk image | ANV TTTTTT code &
— Saves a copy of code to swap file . data
heap
* May share code segment with multiple instances of the | data /
rogram .
progra code 7
10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.41 10/19/20 Kub! gucs Fall 2020 Lec 15.42
On page Fault ... On page Fault ... find & start load
disk (huge, TB) disk (huge, TB) VAS 1 PT 1
T memory
stack stack
‘ Seak H heap . user Seak H heap - user
page page
heap [\aata frames heap m frames
RN user i R user
& \c‘c\)de 5 Y pagetable . \c\c\)de R 4 pagetable
O A kernel o ﬁ coce
code code &
& data data
heap heap
data / active process & PT i data / active process & PT
code 7 : code 7
Kul oucs Fall 2020 Lec 15.43 10/19/20 Kub! oucs Fall 2020 Lec 15.44

10/19/20

On page Fault ... schedule other P or T

disk (huge, TB)

M~

On page Fault ... update PTE

disk (huge, TB)

stack

stack
stack [_heap e ;:‘;; stack ™ heap | T ;:Z;
heap ["§ : frames heap [E Sovu | frames
- . VAS 2
NN S - user NN e user
\\Qc\)\de 4 m P pagetable \\E\c\)de Y m pagetable
i|| stack ernel i stack kernel
data data
heap heap
data / active process & PT data / active process & PT
. /| . /|
code code
10/19/20 Ku oo Fall 2020 Lec 15.45 10/19/20 Kubi oo Fall 2020 Lec 15.46
Eventually reschedule faulting thread Summary: Steps in Handling a Page Fault
page is on
disk (huge, TB) VAS 1 PT 1 backing store o
memory _/
\—/ LCIE operating
stack stack system @
. ference
‘ stack r heap | T user re et
‘ ‘\ = it page O,
heap “EEREEEN| T frames
e vAs2 PP /d{ e B
o [N e 22 | Al ®
\ kernel // code pagetable restart | page table
K 7 K | instruction
3 i Ci:ﬂne& free frame
1 ° ® ®
data reset page bring in
table missing page
/ active process & PT
/ physical
memory
oucs Fall 2020 Lec 15.47 10/19/20 ubiatowicz all 2020 Lec 15.48

10/19/20

Some questions we need to answer!

+ During a page fault, where does the OS get a free frame?
— Keeps a free list

— Unix runs a “reaper” if memory gets too full
» Schedule dirty pages to be written back on disk

Working Set Model

* As a program executes it transitions through a sequence
of “working sets” consisting of varying sized subsets of
the address space

» Zero (clean) pages which haven’t been accessed in a while
— As a last resort, evict a dirty page first -
H ize th hanisms? 2 -
* How can we organize these mechanisms? A
— Work on the replacement policy g S G
| - -
* How many page frames/process?
— Like thread scheduling, need to “schedule” memory resources: []
» Utilization? fairness? priority?
— Allocation of disk paging bandwidth Time
10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.49 10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.50
Cache Behavior under WS model Another model of Locality: Zipf
14 P access(rank) = 1/rank
%\20% \ 1 °
7] 08¢
)) 15% o
9 new working set fits ‘] =
@ g et § - 06T
< e 10% 7 1 043
= X —pop a= - 04 2
T 2 T o g
-‘g 5% 17 —Hit Rate(cache) - 025
K 1 4 7 101316 19222528 31 34 37 40 43 46 49
0 Cache Si Rank
iz . N .
ache ize * Likelihood of accessing item of rank ris a 1/r2
: Amortlléed by fraction of time the Working Set is active « Although rare to access items below the top few, there are so
+ Transitions from one WS to the next many that it yields a “heavy tailed” distribution
+ Capacity, Conflict, Compulsory misses + Substantial value from even a tiny cache
+ Applicable to memory caches and pages. Others ? » Substantial misses from even a very large cache
Kubiatowicz CS162 © UCB Fall 2020 Lec 15.51 10/19/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 15.52

10/19/20

Demand Paging Cost Model

» Since Demand Paging like caching, can compute average

access time! (“Effective Access Time”)
— EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
— EAT = Hit Time + Miss Rate x Miss Penalty
+ Example:
— Memory access time = 200 nanoseconds
— Average page-fault service time = 8 milliseconds
— Suppose p = Probability of miss, 1-p = Probably of hit
— Then, we can compute EAT as follows:
EAT =200ns+px8ms
=200ns + p x 8,000,000ns
+ If one access out of 1,000 causes a page fault, then
EAT =8.2 us:
— This is a slowdown by a factor of 40!
* What if want slowdown by less than 10%?
- EAT <200ns x 1.1 = p<2.5x10°
— This is about 1 page fault in 400,000!

10/19/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 15.53

10/19/20

Page Replacement Policies

Why do we care about Replacement Policy?
— Replacement is an issue with any cache
— Particularly important with pages
» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out
FIFO (First In, First Out)
— Throw out oldest page. Be fair — let every page live in memory for same amount of

time.

— Bad — throws out heavily used pages instead of infrequently used

RANDOM:

— Pick random page for every replacement
— Typical solution for TLB’s. Simple hardware
— Pretty unpredictable — makes it hard to make real-time guarantees

MIN (Minimum):

— Replace page that won’t be used for the longest time
— Great (provably optimal), but can’t really know future...
— But past is a good predictor of the future ...

Kubiatowicz CS162 © UCB Fall 2020 Lec 15.54

Summary (1/2)

* The Principle of Locality:

— Program likely to access a relatively small portion of the address space at any

instant of time.
» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space
* Three (+1) Major Categories of Cache Misses:
— Compulsory Misses: sad facts of life. Example: cold start misses.
— Conflict Misses: increase cache size and/or associativity
— Capacity Misses: increase cache size
— Coherence Misses: Caused by external processors or I/O devices
» Cache Organizations:
— Direct Mapped: single block per set
— Set associative: more than one block per set
— Fully associative: all entries equivalent

10/19/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 15.55

10/19/20

Summary (2/2)

“Translation Lookaside Buffer” (TLB)
— Small number of PTEs and optional process IDs (< 512)
— Often Fully Associative (Since conflict misses expensive)
— On TLB miss, page table must be traversed and if located PTE is invalid, cause

Page Fault

— On change in page table, TLB entries must be invalidated
Demand Paging: Treating the DRAM as a cache on disk
— Page table tracks which pages are in memory

— Any attempt to access a page that is not in memory generates a page fault,
which causes OS to bring missing page into memory

Replacement policies
— FIFO: Place pages on queue, replace page at end
— MIN: Replace page that will be used farthest in future
— LRU: Replace page used farthest in past

Kubiatowicz CS162 © UCB Fall 2020 Lec 15.56

