
CS162
Operating Systems and
Systems Programming

Lecture 15

Memory 3: Caching and TLBs (Con’t), Demand Paging

October 19th, 2020
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 15.210/19/20 Kubiatowicz CS162 © UCB Fall 2020

Physical
Address:

OffsetPhysical
Page #

4KB

10 bits 10 bits 12 bits
Virtual
Address:

OffsetVirtual
P2 index

Virtual
P1 index

4 bytes

PageTablePtr

• Tree of Page Tables
– “Magic” 10b-10b-12b pattern!

• Tables fixed size (1024 entries)
– On context-switch: save single PageTablePtr register

(i.e. CR3)
• Valid bits on Page Table Entries

– Don’t need every 2nd-level table
– Even when exist, 2nd-level tables can reside on disk if

not in use 4 bytes

Recall: The two-level page table

Lec 15.310/19/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Caching Applied to Address Translation

• Question is one of page locality: does it exist?
– Instruction accesses spend a lot of time on the same page

(since accesses sequential)
– Stack accesses have definite locality of reference
– Data accesses have less page locality, but still some…

• Can we have a TLB hierarchy?
– Sure: multiple levels at different sizes/speeds

Data Read or Write
(untranslated)

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address

Physical
Address

Yes
Cached?

Lec 15.410/19/20 Kubiatowicz CS162 © UCB Fall 2020

• Compulsory (cold start or process migration, first reference): first
access to a block

– “Cold” fact of life: not a whole lot you can do about it
– Note: If you are going to run “billions” of instruction, Compulsory

Misses are insignificant
• Capacity:

– Cache cannot contain all blocks access by the program
– Solution: increase cache size

• Conflict (collision):
– Multiple memory locations mapped to the same cache location
– Solution 1: increase cache size
– Solution 2: increase associativity

• Coherence (Invalidation): other process (e.g., I/O) updates memory

Recall: A Summary on Sources of Cache Misses

Lec 15.510/19/20 Kubiatowicz CS162 © UCB Fall 2020

• Block is minimum quantum of caching
– Data select field used to select data within block
– Many caching applications don’t have data select field

• Index Used to Lookup Candidates in Cache
– Index identifies the set

• Tag used to identify actual copy
– If no candidates match, then declare cache miss

How is a Block found in a Cache?

Block
offset

Block Address
Tag Index

Set Select

Data Select

Lec 15.610/19/20 Kubiatowicz CS162 © UCB Fall 2020

:

0x50

Valid Bit

:

Cache Tag

Byte 32
0
1
2
3

:

Cache Data
Byte 0Byte 1Byte 31 :

Byte 33Byte 63 :

Byte 992Byte 1023 : 31

Review: Direct Mapped Cache
• Direct Mapped 2N byte cache:

– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2M)

• Example: 1 KB Direct Mapped Cache with 32 B Blocks
– Index chooses potential block
– Tag checked to verify block
– Byte select chooses byte within block

Ex: 0x50 Ex: 0x00
Cache Index

0431
Cache Tag Byte Select

9

Ex: 0x01

Lec 15.710/19/20 Kubiatowicz CS162 © UCB Fall 2020

Cache Index
0431

Cache Tag Byte Select
8

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Mux 01Sel1 Sel0

OR

Hit

Review: Set Associative Cache
• N-way set associative: N entries per Cache Index

– N direct mapped caches operates in parallel
• Example: Two-way set associative cache

– Cache Index selects a “set” from the cache
– Two tags in the set are compared to input in parallel
– Data is selected based on the tag result

Compare Compare

Cache Block Lec 15.810/19/20 Kubiatowicz CS162 © UCB Fall 2020

Review: Fully Associative Cache
• Fully Associative: Every block can hold any line

– Address does not include a cache index
– Compare Cache Tags of all Cache Entries in Parallel

• Example: Block Size=32B blocks
– We need N 27-bit comparators
– Still have byte select to choose from within block

:

Cache Data
Byte 0Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Valid Bit

::

Cache Tag

04
Cache Tag (27 bits long) Byte Select

31

=

=
=

=

=

Ex: 0x01

Lec 15.910/19/20 Kubiatowicz CS162 © UCB Fall 2020

• Example: Block 12 placed in 8 block cache

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

0 1 2 3 4 5 6 7Block
no.

Set
0

Set
1

Set
2

Set
3

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7Block
no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

Where does a Block Get Placed in a Cache?

Lec 15.1010/19/20 Kubiatowicz CS162 © UCB Fall 2020

• Easy for Direct Mapped: Only one possibility
• Set Associative or Fully Associative:

– Random
– LRU (Least Recently Used)

• Miss rates for a workload:
2-way 4-way 8-way

Size LRU Random LRU Random LRU Random
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Which block should be replaced on a miss?

Lec 15.1110/19/20 Kubiatowicz CS162 © UCB Fall 2020

• Write through: The information is written to both the block in the cache
and to the block in the lower-level memory

• Write back: The information is written only to the block in the cache
– Modified cache block is written to main memory only when it is

replaced
– Question is block clean or dirty?

• Pros and Cons of each?
– WT:

» PRO: read misses cannot result in writes
» CON: Processor held up on writes unless writes buffered

– WB:
» PRO: repeated writes not sent to DRAM

processor not held up on writes
» CON: More complex

Read miss may require writeback of dirty data

Review: What happens on a write?

Lec 15.1210/19/20 Kubiatowicz CS162 © UCB Fall 2020

Physically-Indexed vs Virtually-Indexed Caches
• Physically-Indexed Caches

– Address handed to cache after translation
– Page Table holds physical addresses
– Benefits:

» Every piece of data has single place in cache
» Cache can stay unchanged on context switch

– Challenges:
» TLB is in critical path of lookup!

– Pretty Common today (e.g. x86 processors)
• Virtually-Indexed Caches

– Address handed to cache before translation
– Page Table holds virtual addresses (one option)
– Benefits:

» TLB not in critical path of lookup, so can be faster
– Challenges:

» Same data could be mapped in multiple places of cache
» May need to flush cache on context switch

• We will stick with Physically Addressed Caches for now!

CPU
Cache
[Virtually
indexed]

Memory

[Virtually
addressed]

Page Table

TLB

offset

virtual

virtual

virtual

ph
ys

ic
al

CPU Cache
[Physically

indexed]
Memory

[Physically
addressed]

Page Table

TLB

offset

physicalvirtual

physical ph
ys

ic
al

Lec 15.1310/19/20 Kubiatowicz CS162 © UCB Fall 2020

Administrivia
• Midterm 2: Coming up on Thursday 10/29

– Topics: up until Lecture 17: Scheduling, Deadlock, Address Translation, Virtual
Memory, Caching, TLBs, Demand Paging, I/O

– Will REQUIRE you to have your zoom proctoring setup working
» You must have screen sharing, audio, and your camera working
» Make sure to get your setup debugged and ready!

• Review Session: 10/27
– Details TBA

• Kubi Office Hours: M/W 2:00-3:00
– Let me know if this doesn’t work…

• US Election coming up: Don’t forget to Vote!
– Voting is one of the most important things you can do if you are allowed
– Don’t miss the opportunity!
– Be safe, of course

Lec 15.1410/19/20 Kubiatowicz CS162 © UCB Fall 2020

What TLB Organization Makes Sense?

• Needs to be really fast
– Critical path of memory access

» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)

– Seems to argue for Direct Mapped or Low Associativity
• However, needs to have very few conflicts!

– With TLB, the Miss Time extremely high! (PT traversal)
– Cost of Conflict (Miss Time) is high
– Hit Time – dictated by clock cycle

• Thrashing: continuous conflicts between accesses
– What if use low order bits of page as index into TLB?

» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?

– What if use high order bits as index?
» TLB mostly unused for small programs

CPU TLB
Cache

[Physically
indexed]

Memory

Lec 15.1510/19/20 Kubiatowicz CS162 © UCB Fall 2020

TLB organization: include protection
• How big does TLB actually have to be?

–Usually small: 128-512 entries (larger now)
–Not very big, can support higher associativity

• Small TLBs usually organized as fully-associative cache
–Lookup is by Virtual Address
–Returns Physical Address + other info

• What happens when fully-associative is too slow?
–Put a small (4-16 entry) direct-mapped cache in front
–Called a “TLB Slice”

• Example for MIPS R3000:

0xFA00 0x0003 Y N Y R/W 34
0x0040 0x0010 N Y Y R 0
0x0041 0x0011 N Y Y R 0

Virtual Address Physical Address Dirty Ref Valid Access ASID

Lec 15.1610/19/20 Kubiatowicz CS162 © UCB Fall 2020

Example: R3000 pipeline includes TLB “stages”

Inst Fetch Dcd/ Reg ALU / E.A Memory Write Reg
TLB I-Cache RF Operation WB

E.A. TLB D-Cache

MIPS R3000 Pipeline

ASID V. Page Number Offset
12206

0xx User segment (caching based on PT/TLB entry)
100 Kernel physical space, cached
101 Kernel physical space, uncached
11x Kernel virtual space

Allows context switching among
64 user processes without TLB flush

Virtual Address Space

TLB
64 entry, on-chip, fully associative, software TLB fault handler

Lec 15.1710/19/20 Kubiatowicz CS162 © UCB Fall 2020

• As described, TLB lookup is in serial with
cache lookup

– Consequently, speed of TLB can impact
speed of access to cache

• Machines with TLBs go one step further:
overlap TLB lookup with cache access

– Works because offset available early
– Offset in virtual address exactly covers the “cache index” and “byte select”
– Thus can select the cached byte(s) in parallel to perform address translation

Virtual Address

TLB Lookup

V Access
Rights PA

V page no. offset
10

P page no. offset
10

Physical Address

OffsetVirtual Page #

indextag / page # byte

virtual address:

physical address:

Reducing translation time for physically-indexed caches

Lec 15.1810/19/20 Kubiatowicz CS162 © UCB Fall 2020

• Here is how this might work with a 4K cache:

• What if cache size is increased to 8KB?
– Overlap not complete
– Need to do something else. See CS152/252

• Another option: Virtual Caches would make this faster
– Tags in cache are virtual addresses
– Translation only happens on cache misses

TLB 4K Cache

10 2
00

4 bytes

index 1 K

page # disp
20

assoc
lookup

32

Hit/
Miss

FN Data Hit/
Miss

=FN

Overlapping TLB & Cache Access

Lec 15.1910/19/20 Kubiatowicz CS162 © UCB Fall 2020

Current Intel x86 (Skylake, Cascade Lake)

Lec 15.2010/19/20 Kubiatowicz CS162 © UCB Fall 2020

Current Example: Memory Hierarchy
• Caches (all 64 B line size)

– L1 I-Cache: 32 KiB/core, 8-way set assoc.
– L1 D Cache: 32 KiB/core, 8-way set assoc., 4-5 cycles load-to-use, Write-back policy
– L2 Cache: 1 MiB/core, 16-way set assoc., Inclusive, Write-back policy, 14 cycles

latency
– L3 Cache: 1.375 MiB/core, 11-way set assoc., shared across cores, Non-inclusive

victim cache, Write-back policy, 50-70 cycles latency
• TLB

– L1 ITLB, 128 entries; 8-way set assoc. for 4 KB pages
» 8 entries per thread; fully associative, for 2 MiB / 4 MiB page

– L1 DTLB 64 entries; 4-way set associative for 4 KB pages
» 32 entries; 4-way set associative, 2 MiB / 4 MiB page translations:
» 4 entries; 4-way associative, 1G page translations:

– L2 STLB: 1536 entries; 12-way set assoc. 4 KiB + 2 MiB pages
» 16 entries; 4-way set associative, 1 GiB page translations:

Lec 15.2110/19/20 Kubiatowicz CS162 © UCB Fall 2020

What happens on a Context Switch?
• Need to do something, since TLBs map virtual addresses to physical

addresses
– Address Space just changed, so TLB entries no longer valid!

• Options?
– Invalidate TLB: simple but might be expensive

» What if switching frequently between processes?
– Include ProcessID in TLB

» This is an architectural solution: needs hardware
• What if translation tables change?

– For example, to move page from memory to disk or vice versa…
– Must invalidate TLB entry!

» Otherwise, might think that page is still in memory!
– Called “TLB Consistency”

• Aside: with Virtually-Indexed cache, need to flush cache!
– Rember, everyone has their own version of the address “0”!

Lec 15.2210/19/20 Kubiatowicz CS162 © UCB Fall 2020

Putting Everything Together: Address Translation

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

Page Table
(1st level)

Page Table
(2nd level)

Physical
Memory:

Offset
Physical Address:

Physical
Page #

Lec 15.2310/19/20 Kubiatowicz CS162 © UCB Fall 2020

Page Table
(2nd level)

PageTablePtr

Page Table
(1st level)

Putting Everything Together: TLB

Offset

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

Physical
Memory:

Physical Address:

…

TLB:

Physical
Page #
Physical
Page #

Lec 15.2410/19/20 Kubiatowicz CS162 © UCB Fall 2020

Page Table
(2nd level)

PageTablePtr

Page Table
(1st level)

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

…

TLB:

Putting Everything Together: Cache

Offset

Physical
Memory:

Physical Address:

…

tag: block:
cache:

index bytetag

Physical
Page #

Lec 15.2510/19/20 Kubiatowicz CS162 © UCB Fall 2020

Page Fault
• The Virtual-to-Physical Translation fails

– PTE marked invalid, Priv. Level Violation, Access violation, or does not exist
– Causes an Fault / Trap

» Not an interrupt because synchronous to instruction execution
– May occur on instruction fetch or data access
– Protection violations typically terminate the instruction

• Other Page Faults engage operating system to fix the situation and retry the
instruction

– Allocate an additional stack page, or
– Make the page accessible - Copy on Write,
– Bring page in from secondary storage to memory – demand paging

• Fundamental inversion of the hardware / software boundary

Lec 15.2610/19/20 Kubiatowicz CS162 © UCB Fall 2020

Demand Paging
• Modern programs require a lot of physical memory

– Memory per system growing faster than 25%-30%/year
• But they don’t use all their memory all of the time

– 90-10 rule: programs spend 90% of their time in 10% of their code
– Wasteful to require all of user’s code to be in memory

• Solution: use main memory as “cache” for disk

O
n-C

hip
C

ache

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache
(SRAM)

Tertiary
Storage
(Tape)

pagingcaching

Lec 15.2710/19/20 Kubiatowicz CS162 © UCB Fall 2020

Page Fault Demand Paging

virtual address

MMU
PT

instruction

physical address
page#

frame#

offsetpage fault

Operating System

exception

Page Fault Handler

load page from disk

update PT entry

Process

scheduler

retry
frame#

offset

Lec 15.2810/19/20 Kubiatowicz CS162 © UCB Fall 2020

Demand Paging as Caching, …
• What “block size”? - 1 page (e.g, 4 KB)
• What “organization” ie. direct-mapped, set-assoc., fully-associative?

– Fully associative since arbitrary virtual physical mapping
• How do we locate a page?

– First check TLB, then page-table traversal
• What is page replacement policy? (i.e. LRU, Random…)

– This requires more explanation… (kinda LRU)
• What happens on a miss?

– Go to lower level to fill miss (i.e. disk)
• What happens on a write? (write-through, write back)

– Definitely write-back – need dirty bit!

Lec 15.2910/19/20 Kubiatowicz CS162 © UCB Fall 2020

Page
Table

TLB

Illusion of Infinite Memory

• Disk is larger than physical memory
– In-use virtual memory can be bigger than physical memory
– Combined memory of running processes much larger than physical memory

» More programs fit into memory, allowing more concurrency
• Principle: Transparent Level of Indirection (page table)

– Supports flexible placement of physical data
» Data could be on disk or somewhere across network

– Variable location of data transparent to user program
» Performance issue, not correctness issue

Physical
Memory
512 MB

Disk
500GB

Virtual
Memory
4 GB

Lec 15.3010/19/20 Kubiatowicz CS162 © UCB Fall 2020

Review: What is in a PTE?
• What is in a Page Table Entry (or PTE)?

– Pointer to next-level page table or to actual page
– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:
– 2-level page tabler (10, 10, 12-bit offset)
– Intermediate page tables called “Directories”

P: Present (same as “valid” bit in other architectures)
W: Writeable
U: User accessible

PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)

A: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently

PS: Page Size: PS=14MB page (directory only).
Bottom 22 bits of virtual address serve as offset

Page Frame Number
(Physical Page Number)

Free
(OS) 0

PS D A

PC
D

PW
T U W P

01234567811-931-12

Lec 15.3110/19/20 Kubiatowicz CS162 © UCB Fall 2020

• PTE makes demand paging implementatable
– Valid Page in memory, PTE points at physical page
– Not Valid Page not in memory; use info in PTE to find it on

disk when necessary
• Suppose user references page with invalid PTE?

– Memory Management Unit (MMU) traps to OS
» Resulting trap is a “Page Fault”

– What does OS do on a Page Fault?:
» Choose an old page to replace
» If old page modified (“D=1”), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location

– TLB for new page will be loaded when thread continued!
– While pulling pages off disk for one process, OS runs another

process from ready queue
» Suspended process sits on wait queue

Demand Paging Mechanisms

Lec 15.3210/19/20 Kubiatowicz CS162 © UCB Fall 2020

Origins of Paging

Disks provide most
of the storage

Relatively small
memory, for many
processes

P

. . .

Many clients on dumb
terminals running
different programs

Keep memory full
of the frequently
accesses pages

Keep most of the
address space on disk

Actively swap
pages to/from

Lec 15.3310/19/20 Kubiatowicz CS162 © UCB Fall 2020

Very Different Situation Today

Powerful system
Huge memory
Huge disk
Single user

Lec 15.3410/19/20 Kubiatowicz CS162 © UCB Fall 2020

A Picture on one machine

• Memory stays about 75% used, 25% for dynamics
• A lot of it is shared 1.9 GB

Lec 15.3510/19/20 Kubiatowicz CS162 © UCB Fall 2020

• Extend the stack
– Allocate a page and zero it

• Extend the heap (sbrk of old, today mmap)
• Process Fork

– Create a copy of the page table
– Entries refer to parent pages – NO-WRITE
– Shared read-only pages remain shared
– Copy page on write

• Exec
– Only bring in parts of the binary in active use
– Do this on demand

• MMAP to explicitly share region (or to access a file as RAM)

Many Uses of Virtual Memory and “Demand Paging” …

Lec 15.3610/19/20 Kubiatowicz CS162 © UCB Fall 2020

Classic: Loading an executable into memory

• .exe
– lives on disk in the file system
– contains contents of code & data segments, relocation

entries and symbols
– OS loads it into memory, initializes registers (and initial stack

pointer)
– program sets up stack and heap upon initialization:

crt0 (C runtime init)

disk (huge) memory

code

data

info

exe

Lec 15.3710/19/20 Kubiatowicz CS162 © UCB Fall 2020

Create Virtual Address Space of the Process

• Utilized pages in the VAS are backed by a page block on disk
– Called the backing store or swap file
– Typically in an optimized block store, but can think of it like a file

disk (huge) memory

code

data

heap

stack

kernel

process VAS

sbrk

kernel
code &
data

user page
frames

user
pagetable

Lec 15.3810/19/20 Kubiatowicz CS162 © UCB Fall 2020

Create Virtual Address Space of the Process

• User Page table maps entire VAS
• All the utilized regions are backed on disk

– swapped into and out of memory as needed
• For every process

disk (huge, TB) memory

code

data

heap

stack

kernel

process VAS (GBs)

kernel
code &
data

user page
frames

user
pagetable

code

data

heap

stack

Lec 15.3910/19/20 Kubiatowicz CS162 © UCB Fall 2020

Create Virtual Address Space of the Process

• User Page table maps entire VAS
– Resident pages to the frame in memory they occupy
– The portion of it that the HW needs to access must be

resident in memory

disk (huge, TB) memory

code

data

heap

stack

kernel

VAS
[per process]

kernel
code &
data

user page
frames

user
pagetable

code

data

heap

stack

PT

Lec 15.4010/19/20 Kubiatowicz CS162 © UCB Fall 2020

Provide Backing Store for VAS

• User Page table maps entire VAS
• Resident pages mapped to memory frames
• For all other pages, OS must record where to find them

on disk

disk (huge, TB) memory

code

data

heap

stack

kernel

kernel
code &
data

user page
frames

user
pagetable

code

data

heap

stack

VAS
[per process]

Lec 15.4110/19/20 Kubiatowicz CS162 © UCB Fall 2020

What Data Structure Maps
Non-Resident Pages to Disk?

• FindBlock(PID, page#) → disk_block
– Some OSs utilize spare space in PTE for paged blocks
– Like the PT, but purely software

• Where to store it?
– In memory – can be compact representation if swap storage

is contiguous on disk
– Could use hash table (like Inverted PT)

• Usually want backing store for resident pages too

• May map code segment directly to on-disk image
– Saves a copy of code to swap file

• May share code segment with multiple instances of the
program

Lec 15.4210/19/20 Kubiatowicz CS162 © UCB Fall 2020

Provide Backing Store for VAS
disk (huge, TB)

memory

kernel
code &
data

user
page
frames

user
pagetablecode

data

heap

stack

code

data

heap

stack
kernel

VAS 1 PT 1

code

data

heap

stack
kernel

VAS 2 PT 2
heap

stack

data

Lec 15.4310/19/20 Kubiatowicz CS162 © UCB Fall 2020

On page Fault …
disk (huge, TB)

memory

kernel
code
& data

user
page
frames

user
pagetablecode

data

heap

stack

code

data

heap

stack
kernel

VAS 1 PT 1

code

data

heap

stack
kernel

VAS 2 PT 2
heap

stack

data

active process & PT

Lec 15.4410/19/20 Kubiatowicz CS162 © UCB Fall 2020

On page Fault … find & start load
disk (huge, TB)

memory

kernel
code &
data

user
page
frames

user
pagetablecode

data

heap

stack

code

data

heap

stack
kernel

VAS 1 PT 1

code

data

heap

stack
kernel

VAS 2 PT 2
heap

stack

data

active process & PT

Lec 15.4510/19/20 Kubiatowicz CS162 © UCB Fall 2020

On page Fault … schedule other P or T
disk (huge, TB)

memory

kernel
code &
data

user
page
frames

user
pagetablecode

data

heap

stack

code

data

heap

stack
kernel

VAS 1 PT 1

code

data

heap

stack
kernel

VAS 2 PT 2
heap

stack

data

active process & PT

Lec 15.4610/19/20 Kubiatowicz CS162 © UCB Fall 2020

On page Fault … update PTE
disk (huge, TB)

memory

kernel
code &
data

user
page
frames

user
pagetablecode

data

heap

stack

code

data

heap

stack
kernel

VAS 1 PT 1

code

data

heap

stack
kernel

VAS 2 PT 2
heap

stack

data

active process & PT

Lec 15.4710/19/20 Kubiatowicz CS162 © UCB Fall 2020

Eventually reschedule faulting thread
disk (huge, TB)

memory

kernel
code &
data

user
page
frames

user
pagetablecode

data

heap

stack

code

data

heap

stack
kernel

VAS 1 PT 1

code

data

heap

stack
kernel

VAS 2 PT 2
heap

stack

data

active process & PT

Lec 15.4810/19/20 Kubiatowicz CS162 © UCB Fall 2020

Summary: Steps in Handling a Page Fault

Lec 15.4910/19/20 Kubiatowicz CS162 © UCB Fall 2020

Some questions we need to answer!
• During a page fault, where does the OS get a free frame?

– Keeps a free list
– Unix runs a “reaper” if memory gets too full

» Schedule dirty pages to be written back on disk
» Zero (clean) pages which haven’t been accessed in a while

– As a last resort, evict a dirty page first

• How can we organize these mechanisms?
– Work on the replacement policy

• How many page frames/process?
– Like thread scheduling, need to “schedule” memory resources:

» Utilization? fairness? priority?
– Allocation of disk paging bandwidth

Lec 15.5010/19/20 Kubiatowicz CS162 © UCB Fall 2020

Working Set Model
• As a program executes it transitions through a sequence

of “working sets” consisting of varying sized subsets of
the address space

Time

Ad
dr

es
s

Lec 15.5110/19/20 Kubiatowicz CS162 © UCB Fall 2020

Cache Behavior under WS model

• Amortized by fraction of time the Working Set is active
• Transitions from one WS to the next
• Capacity, Conflict, Compulsory misses
• Applicable to memory caches and pages. Others ?

H
it

R
at

e

Cache Size

new working set fits

0

1

Lec 15.5210/19/20 Kubiatowicz CS162 © UCB Fall 2020

Another model of Locality: Zipf

• Likelihood of accessing item of rank r is α 1/ra

• Although rare to access items below the top few, there are so
many that it yields a “heavy tailed” distribution

• Substantial value from even a tiny cache
• Substantial misses from even a very large cache

0

0.2

0.4

0.6

0.8

1

0%

5%

10%

15%

20%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Es
tim

at
ed

 H
it

R
at

e

Po
pu

la
rit

y
(%

 a
cc

es
se

s)
Rank

P access(rank) = 1/rank

pop a=1

Hit Rate(cache)

Lec 15.5310/19/20 Kubiatowicz CS162 © UCB Fall 2020

Demand Paging Cost Model
• Since Demand Paging like caching, can compute average

access time! (“Effective Access Time”)
– EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
– EAT = Hit Time + Miss Rate x Miss Penalty

• Example:
– Memory access time = 200 nanoseconds
– Average page-fault service time = 8 milliseconds
– Suppose p = Probability of miss, 1-p = Probably of hit
– Then, we can compute EAT as follows:

EAT = 200ns + p x 8 ms
= 200ns + p x 8,000,000ns

• If one access out of 1,000 causes a page fault, then
EAT = 8.2 μs:
– This is a slowdown by a factor of 40!

• What if want slowdown by less than 10%?
– EAT < 200ns x 1.1 p < 2.5 x 10-6

– This is about 1 page fault in 400,000!
Lec 15.5410/19/20 Kubiatowicz CS162 © UCB Fall 2020

Page Replacement Policies
• Why do we care about Replacement Policy?

– Replacement is an issue with any cache
– Particularly important with pages

» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

• FIFO (First In, First Out)
– Throw out oldest page. Be fair – let every page live in memory for same amount of

time.
– Bad – throws out heavily used pages instead of infrequently used

• RANDOM:
– Pick random page for every replacement
– Typical solution for TLB’s. Simple hardware
– Pretty unpredictable – makes it hard to make real-time guarantees

• MIN (Minimum):
– Replace page that won’t be used for the longest time
– Great (provably optimal), but can’t really know future…
– But past is a good predictor of the future …

Lec 15.5510/19/20 Kubiatowicz CS162 © UCB Fall 2020

Summary (1/2)
• The Principle of Locality:

– Program likely to access a relatively small portion of the address space at any
instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

• Three (+1) Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life. Example: cold start misses.
– Conflict Misses: increase cache size and/or associativity
– Capacity Misses: increase cache size
– Coherence Misses: Caused by external processors or I/O devices

• Cache Organizations:
– Direct Mapped: single block per set
– Set associative: more than one block per set
– Fully associative: all entries equivalent

Lec 15.5610/19/20 Kubiatowicz CS162 © UCB Fall 2020

Summary (2/2)
• “Translation Lookaside Buffer” (TLB)

– Small number of PTEs and optional process IDs (< 512)
– Often Fully Associative (Since conflict misses expensive)
– On TLB miss, page table must be traversed and if located PTE is invalid, cause

Page Fault
– On change in page table, TLB entries must be invalidated

• Demand Paging: Treating the DRAM as a cache on disk
– Page table tracks which pages are in memory
– Any attempt to access a page that is not in memory generates a page fault,

which causes OS to bring missing page into memory
• Replacement policies

– FIFO: Place pages on queue, replace page at end
– MIN: Replace page that will be used farthest in future
– LRU: Replace page used farthest in past

