CS162
Operating Systems and
Systems Programming

Lecture 16

Memory 4: Demand Paging Policies

October 21st, 2020
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall 61C: Average Memory Access Time

» Used to compute access time probabilistically:

AMAT = Hit Rate; x Hit Time , + Miss Rate,; x Miss Time
Hit Rate,, + Miss Rate, =1

Hit Time, = Time to get value from L1 cache.

Miss Time , = Hit Time , + Miss Penalty,,

Miss Penalty,; = AVG Time to get value from lower level (DRAM)

So, AMAT = Hit Time, + Miss Rate; x Miss Penalty,,

Q
=
(3]
@
O
=
—

What about more levels of hierarchy?
AMAT = Hit Time , + Miss Rate, x Miss Penalty,,

Miss Penalty,, = AVG time to get value from lower level (L2)
= Hit Time, + Miss Rate , x Miss Penalty,,
Miss Penalty,, = Average Time to fetch from below L2 (DRAM)

AMAT = Hit Time, +
Miss Rate, x (Hit Time, + Miss Rate, x Miss Penalty,,)

* And so on ... (can do this recursively for more levels!)

L2 Cache

10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.2
Recall: Caching Applied to Address Translation Management & Access to the Memory Hierarchy
Physical Managed in :
Address o 9 Managed in Software - OS
Physical s Hardware
Memory Processor
TLB —
gllsl |8
% §_ % Secondary
al ||® T Secondary Stg_"al?e
Data Read or Write .l:J — ? 2 5| | | Memory s(t;;alf)e (Disk)
(untranslated) 2l Ie o 2 2? (DRAM)
+ Question is one of page locality: does it exist? & g | [[Z3
— Instruction accesses spend a lot of time on the same page (accesses sequential) =
— Stack accesses have definite locality of reference ! d in Hard
— Data accesses have less page locality, but still some... ccessed In Fiaraware —_— R
+ Can we have a TLB hierarchy? Speed(ns): 031 3 1030 | 100 0.1 ms) (10 ms)
— Sure: multiple levels at different sizes/speeds Size (bytes): | 100Bs|[10kBs 100kBs MBs || GBs 10098 TBs
Lec 16.4

10/21/20

Kubiatowicz CS162 © UCB Fall 2020 Lec 16.3

10/21/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Demand Paging Mechanisms

* PTE makes demand paging implementatable
— Valid = Page in memory, PTE points at physical page
— Not Valid = Page not in memory; use info in PTE to find it on
disk when necessary
» Suppose user references page with invalid PTE?
— Memory Management Unit (MMU) traps to OS
» Resulting trap is a “Page Fault”
— What does OS do on a Page Fault?:
» Choose an old page to replace
» If old page modified (“D=1"), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location
— TLB for new page will be loaded when thread continued!
— While pulling pages off disk for one process, OS runs another
process from ready queue
» Suspended process sits on wait queue
10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.5

10/21/20

Recall: Steps in Handling a Page Fault

page is on
backing store

\\/

operating

system
®

reference
trap

@

load M I

®

restart page table
instruction

free frame

® ®

reset page bring in
table missing page

physical
memory
ubiatowicz a UZU

Lec 16.6

Some questions we need to answer!

+ During a page fault, where does the OS get a free frame?
— Keeps a free list
— Unix runs a “reaper” if memory gets too full
» Schedule dirty pages to be written back on disk
» Zero (clean) pages which haven’t been accessed in a while
— As a last resort, evict a dirty page first

* How can we organize these mechanisms?
— Work on the replacement policy

* How many page frames/process?
— Like thread scheduling, need to “schedule” memory resources:
» Utilization? fairness? priority?
— Allocation of disk paging bandwidth

10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.7

10/21/20

Working Set Model

* As a program executes it transitions through a sequence
of “working sets” consisting of varying sized subsets of
the address space

Address

Time

Kubiatowicz CS162 © UCB Fall 2020

Lec 16.8

Cache Behavior under WS model

new working set fits

—
—

o

Cache Size
» Amortized by fraction of time the Working Set is active
 Transitions from one WS to the next
+ Capacity, Conflict, Compulsory misses
Applicable to memory caches and pages. Others ?

Another model of Locality: Zipf

P access(rank) = 1/rank

N

—~20%

3 e

©

2 15% 0.8 o

3 - 06T

® 10% o

= —pop a=1 04 &

9 | 1S

-‘g 5% 17 —Hit Rate(cache) 0.2 &

g_ 0% TT TT TTT TTT TT TT TT TT TT TT T T 0 LIJ
Clo_ 1 4 7 101316 1922 2528 31 34 37 40 43 46 49

Rank
Likelihood of accessing item of rank ris a 1/r2

Although rare to access items below the top few, there are so
many that it yields a “heavy tailed” distribution

Substantial value from even a tiny cache
Substantial misses from even a very large cache

10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.9 10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.10
Demand Paging Cost Model What Factors Lead to Misses in Page Cache?
Since Demand Paging like caching, can compute average access time! + Compulsory Misses:
(“Effective Access Time”) — Pages that have never been paged into memory before
— EAT = Hit Rate x Hit Time + Miss Rate x Miss Time — How might we remove these misses?
— EAT = Hit Time + Miss Rate x Miss Penalty » Prefetching: loading them into memory before needed
Example: » Need to predict future somehow! More later
— Memory access time = 200 nanoseconds + Capacity Misses: . . .
— Average page-fault service time = 8 milliseconds — Not enough memory. Must somehow increase available memory size.
— Suppose p = Probability of miss, 1-p = Probably of hit — Can we do this? o
— Then, we can compute EAT as follows: » One option: Increase amount of DRAM (not quick fix!)
. ' » Another option: If multiple processes in memory: adjust percentage of memo
EAT =200ns +px8ms allocated t% each one! Plep - aduste 9 i
=200ns + p x 8,000,000ns » Conflict Misses:
If one access out of 1,000 causes a page fault, then EAT = 8.2 ps: — Technically, conflict misses don’t exist in virtual memory, since it is a “fully-
— This is a slowdown by a factor of 40! associative” cache
What if want slowdown by less than 10%? * Policy Misses:
— EAT <200ns x 1.1 = p<2.5x 10 — Caused when pages were in memory, but kicked out prematurely because of
— This is about 1 page fault in 400,000! the replacement policy _
— How to fix? Better replacement policy
10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.11 10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.12

Administrivia (1/2)
* Midterm 2: Coming up next Thursday (10/29)
— Timing: 5-7PM unless talked to us about a conflict
» Conflicts with CS170 — same as last time, take CS170 exam after CS162
» Other conflicts — have to have already talked to us about them...

— Topics: up until Lecture 17: Scheduling, Deadlock, Address Translation, Virtual
Memory, Caching, TLBs, Demand Paging, I/0

— Will REQUIRE you to have your zoom proctoring setup working
» You must have screen sharing, audio, and your camera working
» Make sure to get your setup debugged and ready!
* Review Session: Tuesday (10/27)
— Timing: 7-9PM, Zoom details announced in Piazza
+ Kubi Office Hours: M/W 2:00-3:00
— Let me know if this doesn’t work...

10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.13

Administrivia (2/2)
» Peer evaluations for Project 1
—You get 20 points for each other partner (in a group of 4, you get 20 x 3 = 60 pts)
» For instance: happy with all partners, give them each 20 points
» Less happy with one of them, give 18 to one, 21 to other two, etc...
» Everything validated by TA in the end of the class, of course

— The project grades are a zero-sum game; if you do not contribute to the project,
your points might be distributed to those who do

» Peer evaluations are not about giving yourself points (at all)

— They are about you evaluating your partners (and they evaluate you!)

— Don't give yourself points (we will just ignore them and rescale your partners)
* US Election coming up: Don’t forget to Vote!

— Voting is one of the most important things you can do if you are allowed

— Don’t miss the opportunity!

— Be safe, of course

10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.14

Page Replacement Policies

* Why do we care about Replacement Policy?
— Replacement is an issue with any cache
— Particularly important with pages
» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out
FIFO (First In, First Out)

- ;I.'hrow out oldest page. Be fair — let every page live in memory for same amount of
ime.

— Bad - throws out heavily used pages instead of infrequently used
RANDOM:

— Pick random page for every replacement

— Typical solution for TLB’s. Simple hardware

— Pretty unpredictable — makes it hard to make real-time guarantees
MIN (Minimum):

— Replace page that won’t be used for the longest time

— Great (provably optimal), but can’t really know future...

— But past is a good predictor of the future ...

10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.15

Replacement Policies (Con’t)

* LRU (Least Recently Used):
— Replace page that hasn’t been used for the longest time

— Programs have locality, so if something not used for a while,
unlikely to be used in the near future.

— Seems like LRU should be a good approximation to MIN.
* How to implement LRU? Use a list:

Head —|Page 6—{Page 7—*Page 1|—*|Page 2

Tail (LRU)

— On each use, remove page from list and place at head
— LRU page is at tail
* Problems with this scheme for paging?
— Need to know immediately when page used so that can change position in list...
— Many instructions for each hardware access
* In practice, people approximate LRU (more later)
10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.16

10/21/20

Example: FIFO (strawman)

Suppose we have 3 page frames, 4 virtual pages, and following
reference stream:
-ABCABDADBCB

Consider FIFO Page replacement:

Ref:]A |IB |[C |[A |B |[D |A |[D [B |C |B
Page:
1 A D
2 A
3
FIFO: 7 faults

When referencing D, replacing A is bad choice, since need A again
right away

Kubiatowicz CS162 © UCB Fall 2020 Lec 16.17

10/21/20

Example: MIN / LRU

» Suppose we have the same reference stream:
-ABCABDADBCB
» Consider MIN Page replacement:

Ref:]A |B |C |A |B |D C |B

Page:
1 A
2
3 D

* MIN: 5 faults

—¥Vhere will D be brought in? Look for page not referenced farthest in
uture

» What will LRU do?

— Same decisions as MIN here, but won't always be true!

Kubiatowicz CS162 © UCB Fall 2020 Lec 16.18

Is LRU guaranteed to perform well?

+ Consider the following: ABCDABCDABCD
* LRU Performs as follows (same as FIFO here):

Ref:]A |B |C |D |[A /B |C |D |[A B |C |D
Page:

1 A D

2 A D

3 A D

— Every reference is a page fault!

+ Fairly contrived example of working set of N+1 on N frames

10/21/20

Kubiatowicz CS162 © UCB Fall 2020 Lec 16.19

10/21/20

When will LRU perform badly?
* Consider the following: ABCDABCDABCD
* LRU Performs as follows (same as FIFO here):

Ref:]A |B |[C |[D |A (B |C |D |[A |B |C |D
Page:
1 A D
2 A D
3 A D
— Every reference is a page fault!
« MIN Does much better:
ret:JA B |[Cc [D |[A |B [C [D |[A [B |[C |D
Page:
1 A
2
3 D
T Saa ToT Tz Lec 16.20

Graph of Page Faults Versus The Number of Frames

)
T T

number of page faults
S
T

NnoE O ®
T

| I L ! I L
1 2 3 4 5 6
number of frames

* One desirable property: When you add memory the miss rate
drops (stack property)
—Does this always happen?
—Seems like it should, right?
* No: Bélady’s anomaly
— Certain replacement algorithms (FIFO) don’t have this obvious

Adding Memory Doesn’t Always Help Fault Rate

* Does addin memo'r\}/ reduce number of page faults?
—Yes for LRU and M
—Not necessarily for FIFO! (Called Bélady’s anomaly)

Ref:
I:,ageABCDABEABCDE

1 A D E

3 [B
4 D [
» After adding memory:

—With FIFO, contents can be completely different
—In contrast, with LRU or MIN, contents of memory with X pages are a

10/21/20 property! Kubiatowicz CS162 © UCB Fall 2020 Lec 16.21 10/21/20 SUbset Of COntentSKl}{)\gngzz(g; 62 (g CeB Fall 2020 Lec 16.22
Approximating LRU: Clock Algorithm Clock Algorithm: More details
-
V4 ~ Single Clock Hand: —-— .
/ (Advances only on page fault! s \(Slngle Clock Hand
Set of all Check for pages not used recently /
{ einoM?amF:)ageS | Mark pages as not used recently * Will always find a page or loop forever? [Set of all pages |
y / — Even if all use bits set, will eventually loop | in Memory
\ all the way around = FIFO
S o - / * What if hand moving slowly? \ ~ /7
- Clock Algorithm: Arrange physical pages in circle with single clock hand — Good sign or bad sign? -

— Approximate LRU (approximation to approximation to MIN)
— Replace an old page, not the oldest page
* Details:
— Hardware “use” bit per physical page (called “accessed” in Intel architecture):
» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time
» Some hardware sets use bit in the TLB; must be copied back to page TLB entry gets replaced
— On page fault:
» Advance clock hand (not real time)
» Check use bit: 1— used recently; clear and leave alone

0— selected candidate for reEPIacement

10/21/20 Kubiatowicz CS162 © UCE Fall 2020 Lec 16.23

10/21/20

» Not many page faults
» or find page quickly
What if hand is moving quickly?
— Lots of page faults and/or lots of reference bits set
One way to view clock algorithm:
— Crude partitioning of pages into two groups: young and old
— Why not partition into more than 2 groups?

Kubiatowicz CS162 © UCB Fall 2020 Lec 16.24

N Chance version of Clock Algorithm

« N chance algorithm: Give page N chances
— OS keeps counter per page: # sweeps
— On page fault, OS checks use bit:
» 1 — clear use and also clear counter (used in last sweep)
» 0 — increment counter; if count=N, replace page
— Means that clock hand has to sweep by N times without page being used before
page is replaced
* How do we pick N?
— Why pick large N? Better approximation to LRU
» If N ~ 1K really good approximation
— Why pick small N? More efficient
» Otherwise might have to look a long way to find free page
« What about “modified” (or “dirty”) pages?
— Takes extra overhead to replace a dirty page, so give dirty pages an extra
chance before replacing?
— Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)
10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.25

Recall: Meaning of PTE bits

» Which bits of a PTE entry are useful to us for the Clock Algorithm?
Remember Intel PTE:

e e Page mumper |08 [°[°[A2 ["["]
31-12 119 876543210

— The “Present” bit (called “Valid” elsewhere):
» P==0: Page is invalid and a reference will cause page fault
» P==1: Page frame number is valid and MMU is allowed to proceed with translation
— The “Writable” bit (could have opposite sense and be called “Read-only”):
» W==0: Page is read-only and cannot be written.
» W==1: Page can be written
— The “Accessed” bit (called “Use” elsewhere):
» A==0: Page has not been accessed (or used) since last time software set A—>0
» A==1: Page has been accessed (or used) since last time software set A—>0
— The “Dirty” bit (called “Modified” elsewhere):
» D==0: Page has not been modified (written) since PTE was loaded
» D==1: Page has changed since PTE was loaded

10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.26

Clock Algorithms Variations

» Do we really need hardware-supported “modified” bit?
— No. Can emulate it using read-only bit
» Need software DB of which pages are allowed to be written (needed this anyway)

» We will tell MMU that pages have more restricted permissions than the actually do to
force page faults (and allow us notice when page is written)

— Algorithm (Clock-Emulated-M):

» Initially, mark all pages as read-only (W—0), even writable data pages.
Further, clear all software versions of the “modified” bit — 0 (page not dirty)

» Writes will cause a page fault. Assuming write is allowed, OS sets software
“modified” bit — 1, and marks page as writable (W—1).

» Whenever page written back to disk, clear “modified” bit — 0, mark read-only

10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.27

Clock Algorithms Variations (continued)

* Do we really need a hardware-supported “use” bit?
— No. Can emulate it similar to above (e.g. for read operation)
» Kernel keeps a “use” bit and “modified” bit for each page
— Algorithm (Clock-Emulated-Use-and-M):

» Mark all pages as invalid, even if in memory.
Clear emulated “use” bits — 0 and “modified” bits — 0 for all pages (not used, not dirty)

» Read or write to invalid page traps to OS to tell use page has been used

» OS sets “use” bit — 1 in software to indicate that page has been “used”.
Further:
1) If read, mark page as read-only, W—0 (will catch future writes)
2) If write (and write allowed), set “modified” bit — 1, mark page as writable (W—1)

» When clock hand passes, reset emulated “use” bit — 0 and mark page as invalid again
» Note that “modified” bit left alone until page written back to disk
* Remember, however, clock is just an approximation of LRU!

— Can we do a better approximation, given that we have to take page faults on some
reads and writes to collect use information?

— Need to identify an old page, not oldest page!

— Answer: second chance list
10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.28

Second-Chance List Algorithm (VAX/VMS)
o [——LRU victim

Second
Chance List

Directly S
Mapped Pages [&

Marked: RW Marked: Invalid
List: FIF0 L% List: LRU
Page-in New New
From disk Active Pages SC Victims

» Split memory in two: Active list (RW), SC list (Invalid)
» Access pages in Active list at full speed
» Otherwise, Page Fault

— Always move overflow page from end of Active list to front of Second-chance list
(SC) and mark invalid

— Desired Page On SC List: move to front of Active list, mark RW

— Not on SC list: page in to front of Active list, mark RW; page out LRU victim at
end of SC list

Second-Chance List Algorithm (continued)

How many pages for second chance list?
—1f0= FIFO
— If all = LRU, but page fault on every page reference
Pick intermediate value. Resultis:
— Pro: Few disk accesses (page only goes to disk if unused for a long time)
— Con: Increased overhead trapping to OS (software / hardware tradeoff)
With page translation, we can adapt to any kind of access the program makes

— Later, we will show how to use page translation / protection to share memory
between threads on widely separated machines
History: The VAX architecture did not include a “use” bit.
Why did that omission happen???
— Strecker (architect) asked OS people, they said they didn’t need it, so didn’t
implement it
— He later got blamed, but VAX did OK anyway

10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.29 10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.30
Free List Reverse Page Mapping (Sometimes called “Coremap”)
7 - ~ \/ Single Clock Hand: Advances as needed to * When evicting a page frame, how to know which PTEs to invalidate?
/ \ keep freelist full ("background”) — Hard in the presence of shared pages (forked processes, shared memory, ...)
Set of all pages * Reverse mapping mechanism must be very fast
l in Memory l — Must hunt down all page tables pointing at given page frame when freeing a page
\ / — Must hunt down all PTEs when seeing if pages “active”
\ - _ V4 e =7 * Implementation options:
J— fee rages _
— o Processes For every page descriptor, keep linked list of page table entries that point to it

» Keep set of free pages ready for use in demand paging
— Freelist filled in background by Clock algorithm or other technique (“Pageout demon”)
— Dirty pages start copying back to disk when enter list

+ Like VAX second-chance list
— If page needed before reused, just return to active set

» Advantage: faster for page fault
— Can always use page (or pages) immediately on fault

10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.31

» Management nightmare — expensive
— Linux: Object-based reverse mapping
» Link together memory region descriptors instead (much coarser granularity)

10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.32

Allocation of Page Frames (Memory Pages)

* How do we allocate memory among different processes?
— Does every process get the same fraction of memory? Different fractions?
— Should we completely swap some processes out of memory?
» Each process needs minimum number of pages
— Want to make sure that all processes that are loaded into memory can make forward
progress
— Example: IBM 370 — 6 pages to handle SS MOVE instruction:
» instruction is 6 bytes, might span 2 pages
» 2 pages to handle from
» 2 pages to handle to

» Possible Replacement Scopes:

— Global replacement — process selects replacement frame from set of all frames; one
process can take a frame from another

— Local replacement — each process selects from only its own set of allocated frames

Fixed/Priority Allocation

» Equal allocation (Fixed Scheme):

— Every process gets same amount of memory
— Example: 100 frames, 5 processes — process gets 20 frames

» Proportional allocation (Fixed Scheme)

— Allocate according to the size of process
— Computation proceeds as follows:
s; = size of process p; and S =Y s;
m = total number of physical frames in the system

. Si
a; = (allocation for p;) = El Xxm

* Priority Allocation:

— Proportional scheme using priorities rather than size
» Same type of computation as previous scheme
— Possible behavior: If process p; generates a page fault, select for replacement a frame from a
process with lower priority number

» Perhaps we should use an adaptive scheme instead???

— What if some application just needs more memory?

10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.33 10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.34
Page-Fault Frequency Allocation Thrashing
« Can we reduce Capacity misses by dynamically + If a process does not have “enough” pages, the
changing the number of pages/application? page-fault rate is very high.
This leads to:
—low CPU utilization g resting
— operating system spends most of its time 2
2 increase rumber swapping to disk 5
: upper bound » Thrashing = a process is busy swapping pages
g in and out with little or no actual progress p———
i Zoeil::ase number ¢ QueStionS:
chframes — How do we detect Thrashing?
pumperetframes — What is best response to Thrashing?
 Establish “acceptable” page-fault rate
—If actual rate too low, process loses frame
—If actual rate too high, process gains frame
* Question: What if we just don’t have enough memory?
10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.35 10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.36

Locality In A Memory-Reference Pattern

e

» Program Memory Access Patterns have
temporal and spatial locality ~

— Group of Pages accessed along a given I bipidogegy)
time slice called the “Working Set” - ‘

— Working Set defines minimum number I
of pages for process to behave well] e —

» Not enough memory for Working Set =
Thrashing

— Better to swap out process? .

execution time ——»

10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.37

10/21/20

Working-Set Model

page reference table
...26157777516234123444343444183234443444...

A A

t
WS(t,) ={1,2,5,6,7}

1 r2

WS(t,) = (3.4}
A = working-set window = fixed number of page references
— Example: 10,000 instructions

WSi (working set of Process Pi) = total set of pages referenced in the
most recent A (varies in time)

— if A too small will not encompass entire locality
—if A too large will encompass several localities
—if A = o0 = will encompass entire program
D = 3|WSi| = total demand frames
if D > m = Thrashing
— Policy: if D > m, then suspend/swap out processes

— This can improve overall system behavior by a lot!
Kubiatowicz CS162 © UCB Fall 2020

Lec 16.38

What about Compulsory Misses?

* Recall that compulsory misses are misses that occur the first time that a
page is seen

— Pages that are touched for the first time

— Pages that are touched after process is swapped out/swapped back in
* Clustering:

— On a page-fault, bring in multiple pages “around” the faulting page

— Since efficiency of disk reads increases with sequential reads, makes
sense to read several sequential pages

* Working Set Tracking:
— Use algorithm to try to track working set of application
— When swapping process back in, swap in working set

10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.39

10/21/20

Linux Memory Details?

Memory management in Linux considerably more complex than the
examples we have been discussing

Memory Zones: physical memory categories
— ZONE_DMA: < 16MB memory, DMAable on ISA bus
— ZONE_NORMAL: 16MB — 896MB (mapped at 0xC0000000)
— ZONE_HIGHMEM: Everything else (> 896MB)
Each zone has 1 freelist, 2 LRU lists (Active/Inactive)
Many different types of allocation
— SLAB allocators, per-page allocators, mapped/unmapped
Many different types of allocated memory:
— Anonymous memory (not backed by a file, heap/stack)
— Mapped memory (backed by a file)
Allocation priorities
— Is blocking allowed/etc

Kubiatowicz CS162 © UCB Fall 2020 Lec 16.40

Linux Virtual memory map (Pre-Meltdown)

NXFFFFFFFF OxFFFFFFFFFFFFFFFF
Kernel @ Kernel
896MB =)
9 Ph | | Addresses X 64 TiB Addresses
\', ysica = Physical
0xC0000000
X O0xFFFF800000000000
“Canonical Hole” Empty
= Space
° User
[
@ Addresses 0x00007FFFFFFFFFFF
2 s}
[a] —d
5 User
o Addresses
\/OXOOOOOOOO 0x0000000000000000

32-Bit Virtual Address Space 64-Bit Virtual Address Space

10/21/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 16.41

Pre-Meltdown Virtual Map (Details)

+ Kernel memory not generally visible to user

— Exception: special VDSO (virtual dynamically linked shared objects) facility
that maps kernel code into user space to aid in system calls (and to provide
certain actual system calls such as gettimeofday())

» Every physical page described by a “page” structure
— Collected together in lower physical memory
— Can be accessed in kernel virtual space
— Linked together in various “LRU” lists
For 32-bit virtual memory architectures:
— When physical memory < 896MB
» All physical memory mapped at 0xC0000000
— When physical memory >= 896MB
» Not all physical memory mapped in kernel space all the time
» Can be temporarily mapped with addresses > 0xCC000000
For 64-bit virtual memory architectures:
— All physical memory mapped above 0xFFFF800000000000

10/21/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 16.42

Post Meltdown Memory Map

* Meltdown flaw (2018, Intel x86, IBM Power, ARM)
— Exploit speculative execution to observe contents of kernel memory

: // Set up side channel (array flushed from cache)
: uchar array[256 * 40961 ;
: flush(array) ; // Make sure array out of cache

: try { // .. catch and ignore SIGSEGV (illegal access)
uchar result = * (uchar *)kernel address;// Try access!

: char = arrayl[result * 4096]; leak info!

: } catch(){ } // Could use signal() and setjmp/longjmp

© Noauk WNH

: // scan through 256 array slots to determine which loaded

— Some details:
» Reason we skip 4096 for each value: avoid hardware cache prefetch
» Note that value detected by fact that one cache line is loaded

» Catch and ignore page fault: set signal handler for SIGSEGV, can use setjump/longjmp....

» Patch: Need different page tables for user and kernel
— Without PCID tag in TLB, flush TLB twice on syscall (800% overhead!)

— Need at least Linux v 4.14 which utilizes PCID tag in new hardware to avoid flushing

when change address space
» Fix: better hardware without timing side-channels
— Will be coming, but still in works

10/21/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 16.43

Summary

* Replacement policies
— FIFO: Place pages on queue, replace page at end
— MIN: Replace page that will be used farthest in future
— LRU: Replace page used farthest in past
 Clock Algorithm: Approximation to LRU
— Arrange all pages in circular list
— Sweep through them, marking as not “in use”
— If page not “in use” for one pass, than can replace
 Nth-chance clock algorithm: Another approximate LRU
— Give pages multiple passes of clock hand before replacing
» Second-Chance List algorithm: Yet another approximate LRU
—Pivli;:ie pages into two groups, one of which is truly LRU and managed on page
aults.
» Working Set:
— Set of pages touched by a process recently
» Thrashing: a process is busy swapping pages in and out
— Process will thrash if working set doesn’t fit in memory

— Need to swap out a process

10/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 16.44

