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Recall: Demand Paging Cost Model
• Since Demand Paging like caching, can compute average access time! 

(“Effective Access Time”)
– EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
– EAT = Hit Time + Miss Rate x Miss Penalty

• Example:
– Memory access time = 200 nanoseconds
– Average page-fault service time = 8 milliseconds
– Suppose p = Probability of miss, 1-p = Probably of hit
– Then, we can compute EAT as follows:

EAT = 200ns + p x 8 ms
= 200ns + p x 8,000,000ns

• If one access out of 1,000 causes a page fault, then EAT = 8.2 μs:
– This is a slowdown by a factor of 40!

• What if want slowdown by less than 10%?
– EAT < 200ns x 1.1  p < 2.5 x 10-6

– This is about 1 page fault in 400,000!
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Recall: Clock Algorithm (Not Recently Used)

Set of all pages
in Memory

Single Clock Hand:
Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

• Clock Algorithm: Arrange physical pages in circle with single clock hand
– Approximate LRU (approximation to approximation to MIN)
– Replace an old page, not the oldest page

• Details:
– Hardware “use” bit per physical page (called “accessed” in Intel architecture):

» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time
» Some hardware sets use bit in the TLB; must be copied back to page TLB entry gets replaced

– On page fault:
» Advance clock hand (not real time)
» Check use bit: 1 used recently; clear and leave alone

0 selected candidate for replacement
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Recall: Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid)
• Access pages in Active list at full speed
• Otherwise, Page Fault

– Always move overflow page from end of Active list to front of Second-chance list 
(SC) and mark invalid

– Desired Page On SC List: move to front of Active list, mark RW
– Not on SC list: page in to front of Active list, mark RW; page out LRU victim at 

end of SC list

Directly
Mapped Pages

Marked: RW
List: FIFO

Second 
Chance List

Marked: Invalid
List: LRU

LRU victim

Page-in
From disk

New
Active Pages

New
SC Victims
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Recall: Free List

• Keep set of free pages ready for use in demand paging
– Freelist filled in background by Clock algorithm or other technique (“Pageout demon”)
– Dirty pages start copying back to disk when enter list

• Like VAX second-chance list
– If page needed before reused, just return to active set

• Advantage: faster for page fault
– Can always use page (or pages) immediately on fault

Set of all pages
in Memory

Single Clock Hand:  Advances as needed to 
keep freelist full (“background”)

D

D

Free Pages
For Processes
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• When evicting a page frame, how to know which PTEs to invalidate?
– Hard in the presence of shared pages (forked processes, shared memory, …)

• Reverse mapping mechanism must be very fast
– Must hunt down all page tables pointing at given page frame when freeing a page
– Must hunt down all PTEs when seeing if pages “active”

• Implementation options:
– For every page descriptor, keep linked list of page table entries that point to it

» Management nightmare – expensive
– Linux: Object-based reverse mapping

» Link together memory region descriptors instead (much coarser granularity)

Reverse Page Mapping (Sometimes called “Coremap”)
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Allocation of Page Frames (Memory Pages)
• How do we allocate memory among different processes?

– Does every process get the same fraction of memory?  Different fractions?
– Should we completely swap some processes out of memory?

• Each process needs minimum number of pages
– Want to make sure that all processes that are loaded into memory can make forward 

progress
– Example:  IBM 370 – 6 pages to handle SS MOVE instruction:

» instruction is 6 bytes, might span 2 pages
» 2 pages to handle from
» 2 pages to handle to

• Possible Replacement Scopes:
– Global replacement – process selects replacement frame from set of all frames; one 

process can take a frame from another
– Local replacement – each process selects from only its own set of allocated frames
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Fixed/Priority Allocation
• Equal allocation (Fixed Scheme): 

– Every process gets same amount of memory
– Example: 100 frames, 5 processes  process gets 20 frames

• Proportional allocation (Fixed Scheme)
– Allocate according to the size of process
– Computation proceeds as follows:𝑠௜ = size of process 𝑝௜ and S ൌ ∑𝑠௜𝑚 = total number of physical frames in the system𝑎௜ = (allocation for 𝑝௜) ൌ ௦೔ௌ ൈ 𝑚

• Priority Allocation:
– Proportional scheme using priorities rather than size

» Same type of computation as previous scheme
– Possible behavior: If process pi generates a page fault, select for replacement a frame from a 

process with lower priority number

• Perhaps we should use an adaptive scheme instead???
– What if some application just needs more memory?
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Page-Fault Frequency Allocation
• Can we reduce Capacity misses by dynamically 

changing the number of pages/application?

• Establish “acceptable” page-fault rate
– If actual rate too low, process loses frame
– If actual rate too high, process gains frame

• Question: What if we just don’t have enough memory?
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Thrashing
• If a process does not have “enough” pages, the 

page-fault rate is very high.  
This leads to:

– low CPU utilization
– operating system spends most of its time 

swapping to disk
• Thrashing  a process is busy swapping pages 

in and out with little or no actual progress
• Questions:

– How do we detect Thrashing?
– What is best response to Thrashing?
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Locality In A Memory-Reference Pattern
• Program Memory Access Patterns have 

temporal and spatial locality
– Group of Pages accessed along a given 

time slice called the “Working Set”
– Working Set defines minimum number 

of pages for process to behave well
• Not enough memory for Working Set 

Thrashing
– Better to swap out process?
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Working-Set Model

•   working-set window  fixed number of page references 
– Example:  10,000 instructions

• WSi (working set of Process Pi) = total set of pages referenced in the 
most recent  (varies in time)

– if  too small will not encompass entire locality
– if  too large will encompass several localities
– if  =   will encompass entire program

• D = |WSi|  total demand frames 
• if D > m  Thrashing

– Policy: if D > m, then suspend/swap out processes
– This can improve overall system behavior by a lot!
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What about Compulsory Misses?
• Recall that compulsory misses are misses that occur the first time that a 

page is seen
– Pages that are touched for the first time
– Pages that are touched after process is swapped out/swapped back in

• Clustering:
– On a page-fault, bring in multiple pages “around” the faulting page
– Since efficiency of disk reads increases with sequential reads, makes 

sense to read several sequential pages
• Working Set Tracking:

– Use algorithm to try to track working set of application
– When swapping process back in, swap in working set
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Linux Memory Details?
• Memory management in Linux considerably more complex than the 

examples we have been discussing
• Memory Zones: physical memory categories

– ZONE_DMA: < 16MB memory, DMAable on ISA bus
– ZONE_NORMAL: 16MB  896MB (mapped at 0xC0000000)
– ZONE_HIGHMEM: Everything else (> 896MB)

• Each zone has 1 freelist, 2 LRU lists (Active/Inactive)
• Many different types of allocation

– SLAB allocators, per-page allocators, mapped/unmapped
• Many different types of allocated memory:

– Anonymous memory (not backed by a file, heap/stack)
– Mapped memory (backed by a file)

• Allocation priorities
– Is blocking allowed/etc
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Linux Virtual memory map (Pre-Meltdown)
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Pre-Meltdown Virtual Map (Details)
• Kernel memory not generally visible to user

– Exception: special VDSO (virtual dynamically linked shared objects) facility 
that maps kernel code into user space to aid in system calls (and to provide 
certain actual system calls such as gettimeofday())

• Every physical page described by a “page” structure
– Collected together in lower physical memory
– Can be accessed in kernel virtual space
– Linked together in various “LRU” lists

• For 32-bit virtual memory architectures:
– When physical memory < 896MB

» All physical memory mapped at 0xC0000000
– When physical memory >= 896MB

» Not all physical memory mapped in kernel space all the time
» Can be temporarily mapped with addresses > 0xCC000000

• For 64-bit virtual memory architectures:
– All physical memory mapped above 0xFFFF800000000000
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Post Meltdown Memory Map
• Meltdown flaw (2018, Intel x86, IBM Power, ARM)

– Exploit speculative execution to observe contents of kernel memory
1: // Set up side channel (array flushed from cache)
2: uchar array[256 * 4096];
3: flush(array); // Make sure array out of cache

4: try { // … catch and ignore SIGSEGV (illegal access)
5: uchar result = *(uchar *)kernel_address;// Try access!
6: uchar dummy = array[result * 4096]; // leak info!
7: } catch(){;} // Could use signal() and setjmp/longjmp

8: // scan through 256 array slots to determine which loaded

– Some details:
» Reason we skip 4096 for each value: avoid hardware cache prefetch
» Note that value detected by fact that one cache line is loaded
» Catch and ignore page fault: set signal handler for SIGSEGV, can use setjump/longjmp…. 

• Patch: Need different page tables for user and kernel
– Without PCID tag in TLB, flush TLB twice on syscall (800% overhead!)
– Need at least Linux v 4.14 which utilizes PCID tag in new hardware to avoid flushing 

when change address space
• Fix: better hardware without timing side-channels

– Will be coming, but still in works
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Recall: Five Components of a Computer

Diagram from “Computer 
Organization and Design” by 
Patterson and Hennessy
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Requirements of I/O
• So far in CS 162, we have studied:

– Abstractions: the APIs provided by the OS to applications running in a process
– Synchronization/Scheduling: How to manage the CPU

• What about I/O?
– Without I/O, computers are useless (disembodied brains?)
– But… thousands of devices, each slightly different

» How can we standardize the interfaces to these devices?
– Devices unreliable: media failures and transmission errors

» How can we make them reliable???
– Devices unpredictable and/or slow

» How can we manage them if we don’t know what they will do or how they will 
perform?
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Recall: OS Basics: I/O

Storage

Processor

OS Hardware Virtualization

Hardware

Software

Memory

Process 1

ISA

OS Memory

Protection 
Boundary

Networks Displays

Inputs

Process 2 Process 3

• OS provides common 
services in form of I/O

Ctrlr
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Recall: Range of Timescales

Jeff Dean: 
“Numbers 
Everyone Should 
Know”
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Example: Device Transfer Rates in Mb/s (Sun Enterprise 6000)

• Device rates vary over 12 
orders of magnitude!!!

• System must be able to 
handle this wide range

– Better not have high 
overhead/byte for fast devices

– Better not waste time waiting 
for slow devices
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In a Picture

• I/O devices you recognize are supported by I/O Controllers
• Processors accesses them by reading and writing IO registers as if they 

were memory
– Write commands and arguments, read status and results

Core
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Storage 
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Read / 
Write

Read / 
Write wires
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Modern I/O Systems

network
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What’s a bus?

• Common set of wires for communication among hardware devices plus 
protocols for carrying out data transfer transactions

– Operations: e.g., Read, Write
– Control lines, Address lines, Data lines
– Typically multiple devices

• Protocol: initiator requests access, arbitration to grant, identification of 
recipient, handshake to convey address, length, data

• Very high BW close to processor (wide, fast, and inflexible), low BW with 
high flexibility out in I/O subsystem
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Why a Bus?
• Buses let us connect 𝑛 devices over a single set of wires, connections, 

and protocols– 𝑂 𝑛ଶ relationships with 1 set of wires (!)

• Downside: Only one transaction at a time
– The rest must wait
– “Arbitration” aspect of bus protocol ensures the rest wait
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PCI Bus Evolution

• PCI started life out
as a bus

• But a parallel bus has many limitations
– Multiplexing address/data for many requests
– Slowest devices must be able to tell what’s happening (e.g., for arbitration)
– Bus speed is set to that of the slowest device
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PCI Express “Bus”
• No longer a parallel bus
• Really a collection of fast serial channels or “lanes”
• Devices can use as many as they need to achieve a desired bandwidth
• Slow devices don’t have to share with fast ones

• One of the successes of device abstraction in Linux was the ability to 
migrate from PCI to PCI Express

– The physical interconnect changed completely, but the old API still worked
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Example: PCI Architecture
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How does the Processor Talk to the Device?

• CPU interacts with a Controller
– Contains a set of registers that can be read and written
– May contain memory for request queues, etc.

• Processor accesses registers in two ways: 
– Port-Mapped I/O: in/out instructions

» Example from the Intel architecture: out 0x21,AL
– Memory-mapped I/O: load/store instructions

» Registers/memory appear in physical address space
» I/O accomplished with load and store instructions

Device
Controller

read
write

control
status

Addressable
Memory
and/or

QueuesRegisters
(port 0x20)

Hardware
Controller

Memory Mapped
Region: 0x8f008020

Bus
Interface
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Interrupt Request
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Port-Mapped I/O in Pintos Speaker Driver
Pintos: threads/io.hPintos: devices/speaker.c

Lec 17.3210/26/20 Kubiatowicz CS162 © UCB Fall 2020

Example: Memory-Mapped Display Controller
• Memory-Mapped:

– Hardware maps control registers and display memory into 
physical address space

» Addresses set by HW jumpers or at boot time
– Simply writing to display memory (also called the “frame 

buffer”) changes image on screen
» Addr: 0x8000F000 — 0x8000FFFF

– Writing graphics description to cmd queue
» Say enter a set of triangles describing some scene
» Addr: 0x80010000 — 0x8001FFFF

– Writing to the command register may cause on-board graphics 
hardware to do something

» Say render the above scene
» Addr: 0x0007F004

• Can protect with address translation

Display
Memory

0x8000F000

0x80010000

Physical 
Address
Space

Status0x0007F000
Command0x0007F004

Graphics
Command
Queue

0x80020000
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There’s more than just a CPU in there!
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Chip-scale Features of 2015 x86 (Sky Lake)
• Significant pieces:

– Four OOO cores with deeper buffers
» Intel MPX (Memory Protection Extensions)
» Intel SGX (Software Guard Extensions)
» Issue up to 6 -ops/cycle

– GPU, System Agent (Mem, Fast I/O)
– Large shared L3 cache with on-chip ring bus

» 2 MB/core instead of 1.5 MB/core
» High-BW access to L3 Cache

• Integrated I/O
– Integrated memory controller (IMC)

» Two independent channels of DRAM
– High-speed PCI-Express (for Graphics cards)
– Direct Media Interface (DMI) Connection to PCH (Platform 

Control Hub)
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Sky Lake I/O: PCH

• Platform Controller Hub
– Connected to processor with 

proprietary bus
» Direct Media Interface

• Types of I/O on PCH:
– USB, Ethernet
– Thunderbolt 3
– Audio, BIOS support
– More PCI Express (lower 

speed than on Processor)
– SATA (for Disks)Sky Lake

System Configuration
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Operational Parameters for I/O
• Data granularity: Byte vs. Block

– Some devices provide single byte at a time (e.g., keyboard)
– Others provide whole blocks (e.g., disks, networks, etc.)

• Access pattern: Sequential vs. Random
– Some devices must be accessed sequentially (e.g., tape)
– Others can be accessed “randomly” (e.g., disk, cd, etc.)

» Fixed overhead to start transfers
– Some devices require continual monitoring
– Others generate interrupts when they need service

• Transfer Mechanism: Programmed IO and DMA
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• Programmed I/O:
– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer 

data blocks to/from 
memory directly

• Sample interaction with DMA controller
(from OSC book):

Transferring Data To/From Controller

1

2

3
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• Programmed I/O:
– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer 

data blocks to/from 
memory directly

• Sample interaction with DMA controller
(from OSC book):

Transferring Data To/From Controller

4

5

6
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I/O Device Notifying the OS
• The OS needs to know when:

– The I/O device has completed an operation
– The I/O operation has encountered an error

• I/O Interrupt:
– Device generates an interrupt whenever it needs service
– Pro: handles unpredictable events well
– Con: interrupts relatively high overhead 

• Polling:
– OS periodically checks a device-specific status register

» I/O device puts completion information in status register
– Pro: low overhead
– Con: may waste many cycles on polling if infrequent or unpredictable I/O operations

• Actual devices combine both polling and interrupts
– For instance – High-bandwidth network adapter: 

» Interrupt for first incoming packet
» Poll for following packets until hardware queues are empty
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Kernel Device Structure
The System Call Interface
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Recall: Device Drivers
• Device Driver: Device-specific code in the kernel that interacts directly with 

the device hardware
– Supports a standard, internal interface
– Same kernel I/O system can interact easily with different device drivers
– Special device-specific configuration supported with the ioctl() system call

• Device Drivers typically divided into two pieces:
– Top half: accessed in call path from system calls

» implements a set of standard, cross-device calls like open(), close(), read(),
write(), ioctl(), strategy()

» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep until finished

– Bottom half: run as interrupt routine
» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete
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Recall: Life Cycle of An I/O Request

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Kernel I/O
Subsystem

User
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Conclusion
• I/O Devices Types:

– Many different speeds (0.1 bytes/sec to GBytes/sec)
– Different Access Patterns:

» Block Devices, Character Devices, Network Devices
– Different Access Timing:

» Blocking, Non-blocking, Asynchronous
• I/O Controllers: Hardware that controls actual device

– Processor Accesses through I/O instructions, load/store to special physical 
memory

• Notification mechanisms
– Interrupts
– Polling: Report results through status register that processor looks at 

periodically 
• Device drivers interface to I/O devices

– Provide clean Read/Write interface to OS above
– Manipulate devices through PIO, DMA & interrupt handling
– Three types: block, character, and network


