CS162
Operating Systems and
Systems Programming

Lecture 17

Demand Paging (Finished),
General I/O, Storage Devices

October 26%, 2020
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: Demand Paging Cost Model

» Since Demand Paging like caching, can compute average access time!
(“Effective Access Time”)
— EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
— EAT = Hit Time + Miss Rate x Miss Penalty
+ Example:
— Memory access time = 200 nanoseconds
— Average page-fault service time = 8 milliseconds
— Suppose p = Probability of miss, 1-p = Probably of hit
— Then, we can compute EAT as follows:
EAT =200ns+px8ms
=200ns + p x 8,000,000ns
« If one access out of 1,000 causes a page fault, then EAT = 8.2 us:
— This is a slowdown by a factor of 40!
* What if want slowdown by less than 10%?
— EAT<200ns x 1.1 = p<25x10°
— This is about 1 page fault in 400,000!

10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.2

Recall: Clock Algorithm (Not Recently Used)
7 - \(Single Clock Hand:

Advances only on page fault!

/

Set of all pages 1
{ in Memory]

\
N oo 7
» Clock Algorithm: Arrange physical pages in circle with single clock hand
— Approximate LRU (approximation to approximation to MIN)
— Replace an old page, not the oldest page
* Details:
— Hardware “use” bit per physical page (called “accessed” in Intel architecture):
» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time
» Some hardware sets use bit in the TLB; must be copied back to page TLB entry gets replaced
— On page fault:
» Advance clock hand (not real time)
» Check use bit: 1— used recently; clear and leave alone

0— selected candidate for reEPIacement

10/26/20 Kubiatowicz CS162 © UCE Fall 2020

Check for pages not used recently
Mark pages as not used recently

Lec 17.3

Recall: Second-Chance List Algorithm (VAX/VMS)
o [——LRU victim

Directly S Second
Mapped Pages [] &% Chance List
Marked: RW :l Marked: Invalid
List: FIFo 1Y List: LRU
Page-in New New
From disk Active Pages SC Victims

+ Split memory in two: Active list (RW), SC list (Invalid)
» Access pages in Active list at full speed
» Otherwise, Page Fault

— Always move overflow page from end of Active list to front of Second-chance list
(SC) and mark invalid

— Desired Page On SC List: move to front of Active list, mark RW

— Not on SC list: page in to front of Active list, mark RW; page out LRU victim at

end of SC list

10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.4

Recall: Free List

/7 - ~ Single Clock Hand: Advances as needed to
\/ keep freelist full (“background”)

l Set of all pages l
in Memory
\ /
N\ 7/ 4
~ .- Free Pages
For Processes

» Keep set of free pages ready for use in demand paging
— Freelist filled in background by Clock algorithm or other technique (“Pageout demon”)
— Dirty pages start copying back to disk when enter list

+ Like VAX second-chance list
— If page needed before reused, just return to active set

» Advantage: faster for page fault

— Can always use page (or pages) immediately on fault
10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.5

Reverse Page Mapping (Sometimes called “Coremap”)

* When evicting a page frame, how to know which PTEs to invalidate?
— Hard in the presence of shared pages (forked processes, shared memory, ...)
* Reverse mapping mechanism must be very fast
— Must hunt down all page tables pointing at given page frame when freeing a page
— Must hunt down all PTEs when seeing if pages “active”
+ Implementation options:
— For every page descriptor, keep linked list of page table entries that point to it
» Management nightmare — expensive
— Linux: Object-based reverse mapping
» Link together memory region descriptors instead (much coarser granularity)

10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.6

Allocation of Page Frames (Memory Pages)

* How do we allocate memory among different processes?
— Does every process get the same fraction of memory? Different fractions?
— Should we completely swap some processes out of memory?
» Each process needs minimum number of pages
— Want to make sure that all processes that are loaded into memory can make forward
progress
— Example: IBM 370 — 6 pages to handle SS MOVE instruction:
» instruction is 6 bytes, might span 2 pages
» 2 pages to handle from
» 2 pages to handle to

» Possible Replacement Scopes:

— Global replacement — process selects replacement frame from set of all frames; one
process can take a frame from another

— Local replacement — each process selects from only its own set of allocated frames

10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.7

Fixed/Priority Allocation

» Equal allocation (Fixed Scheme):
— Every process gets same amount of memory
— Example: 100 frames, 5 processes — process gets 20 frames
» Proportional allocation (Fixed Scheme)
— Allocate according to the size of process
— Computation proceeds as follows:
s; = size of process p; and S =Y s;
m = total number of physical frames in the system
a; = (allocation for p;) = % Xm

* Priority Allocation:
— Proportional scheme using priorities rather than size
» Same type of computation as previous scheme
— Possible behavior: If process p; generates a page fault, select for replacement a frame from a
process with lower priority number

» Perhaps we should use an adaptive scheme instead???
— What if some application just needs more memory?

10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.8

Page-Fault Frequency Allocation

» Can we reduce Capacity misses by dynamically
changing the number of pages/application?

increase number
of frames

upper bound

page-fault rate

lower bound
decrease number
of frames

number of frames

 Establish “acceptable” page-fault rate
—If actual rate too low, process loses frame
—If actual rate too high, process gains frame

* Question: What if we just don’t have enough memory?

10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.9

Thrashing

« If a process does not have “enough” pages, the

page-fault rate is very high.
This leads to:

—low CPU utilization

— operating system spends most of its time
swapping to disk
* Thrashing = a process is busy swapping pages
in and out with little or no actual progress

thrashing

CPU utilization

degree of multiprogramming

* Questions:
— How do we detect Thrashing?
— What is best response to Thrashing?

10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.10

Locality In A Memory-Reference Pattern

34 — e .

* Program Memory Access Patterns have
temporal and spatial locality

— Group of Pages accessed along a given I Lorgid)
time slice called the “Working Set” - ‘

— Working Set defines minimum number I
of pages for process to behave well i

» Not enough memory for Working Set =
Thrashing

— Better to swap out process? e

execution time ——»

10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.11

Working-Set Model

page reference table

...26157777516234123444343444183234443444...
A | A |

[1 r2

WS(t,) = {1,2,5,6,7)

WSi(t,) = {3,4}
* A = working-set window = fixed number of page references
— Example: 10,000 instructions

WSi (working set of Process Pi) = total set of pages referenced in the
most recent A (varies in time)

— if A too small will not encompass entire locality
—if A too large will encompass several localities
—if A = o0 = will encompass entire program
D = X|WSi| = total demand frames
* if D> m = Thrashing
— Policy: if D > m, then suspend/swap out processes

— This can improve overall system behavior by a lot!
10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.12

What about Compulsory Misses?

* Recall that compulsory misses are misses that occur the first time that a

page is seen
— Pages that are touched for the first time
— Pages that are touched after process is swapped out/swapped back in
+ Clustering:
— On a page-fault, bring in multiple pages “around” the faulting page

— Since efficiency of disk reads increases with sequential reads, makes
sense to read several sequential pages

» Working Set Tracking:
— Use algorithm to try to track working set of application
— When swapping process back in, swap in working set

Linux Memory Details?

Memory management in Linux considerably more complex than the
examples we have been discussing

Memory Zones: physical memory categories
— ZONE_DMA: < 16MB memory, DMAable on ISA bus
— ZONE_NORMAL: 16MB — 896MB (mapped at 0xC0000000)
— ZONE_HIGHMEM: Everything else (> 896MB)
Each zone has 1 freelist, 2 LRU lists (Active/Inactive)
Many different types of allocation
— SLAB allocators, per-page allocators, mapped/unmapped
Many different types of allocated memory:
— Anonymous memory (not backed by a file, heap/stack)
— Mapped memory (backed by a file)
Allocation priorities
— Is blocking allowed/etc

10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.13 10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.14
Linux Virtual memory map (Pre-Meltdown) Pre-Meltdown Virtual Map (Details)
+ Kernel memory not generally visible to user
_/\OXFFFFFFFH OxFFFFFFFFFFFFFFFE — Exception: special VDSO (virtual dynamically linked shared objects) facility
m Kernel i Kernel that maps kernel code into user space to aid in system calls (and to provide
o g?]GMB | | Addresses 'é 64 TiB Addresses certain actual system calls such as gettimeofday())
\/(chooﬁzlggo ¥ Physical Every physical page described by a “page” structure
OxFFFF800000000000 — Collected together in lower physical memory
o _ . Empty — Can be accessed in kernel virtual space
= anonical Hole Space — Linked together in various “LRU" lists
s User » For 32-bit virtual memory architectures:
m Addresses 0x00007FFFFFFFFFFIF — When physical memory < 896MB
g iu:: User » All physical memory mapped at 0xC0000000
Q ACGIEsEEs — When physical memory >= 896 MB
U » Not all physical memory mapped in kernel space all the time
\/OXOOOOOOOO 0x0000000000000000 » Can be temporarily mapped with addresses > 0xCC000000
v o « For 64-bit virtual memory architectures:
32-Bit Virtual Address Space 64-Bit Virtual Address Space _ All physical memory mapped above 0xFFFF800000000000
10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.15 10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.16

Post Meltdown Memory Map

* Meltdown flaw (2018, Intel x86, IBM Power, ARM)
— Exploit speculative execution to observe contents of kernel memory

: // Set up side channel (array flushed from cache)
: uchar array[256 * 4096];
: flush(array) ; // Make sure array out of cache

: try { // .. catch and ignore SIGSEGV (illegal access)
uchar result = * (uchar *)kernel address;// Try access!

: uchar dummy = array[result * 4096]; / leak info!

: } catch(){; } // Could use signal() and setjmp/longjmp

© Noauk WNH

: // scan through 256 array slots to determine which loaded

— Some details:
» Reason we skip 4096 for each value: avoid hardware cache prefetch
» Note that value detected by fact that one cache line is loaded
» Catch and ignore page fault: set signal handler for SIGSEGV, can use setjump/longjmp....

« Patch: Need different page tables for user and kernel
— Without PCID tag in TLB, flush TLB twice on syscall (800% overhead!)

— Need at least Linux v 4.14 which utilizes PCID tag in new hardware to avoid flushing
when change address space

» Fix: better hardware without timing side-channels
— Will be coming, but still in works

10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.17

Recall: Five Components of a Computer

g Computer

Datapath

Diagram from “Computer e — 3
Organization and Design” by %, Processor Memory -
Patterson and Hennessy ——

10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.18

Requirements of 1/0

» So farin CS 162, we have studied:
— Abstractions: the APIs provided by the OS to applications running in a process
— Synchronization/Scheduling: How to manage the CPU

* What about I/O?
— Without I/0, computers are useless (disembodied brains?)
— But... thousands of devices, each slightly different
» How can we standardize the interfaces to these devices?
— Devices unreliable: media failures and transmission errors
» How can we make them reliable???
— Devices unpredictable and/or slow

» How can we manage them if we don’t know what they will do or how they will
perform?

10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.19

Recall: OS Basics: I/0

Software OS Hardware Virtualization

Hardware [SA

Processor
‘] OS Memory

1
mﬂ :
Networks Displays
le—N—>

=S
- -

10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.20

* OS provides common
services in form of 1/0

Protection

Recall: Range of Timescales

L1l cache reference 0.5 ns
Branch mispredict 5 ns
Jeff Deqn: L2 cache reference 7 ns
" Mutex lock/unlock 25 ns
Numbers Main memory reference 100 ns
Everlyone Should Compress 1K bytes with Zippy 3,000 ns
" Send 2K bytes over 1 Gbps network 20,000 ns
Know Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from disk 20,000,000 ns
Send packet CA->Netherlands->CA 150,000,000 ns

10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.21

Example: Device Transfer Rates in Mb/s (Sun Enterprise 6000)

* Device rates vary over 12
orders of magnitude!!!

» System must be able to
handle this wide range

— Better not have high
overhead/byte for fast devices

—
HyperTransport (32-pair) _
PCl Express 2.0 (<c2) [N
Infiniband (DR 12x) [
Serial ATA (SATA-300) [
gigabit ethernct |

scsi bus [N
— Better not waste time waiting Frowre |
for slow devices hard o« |
[moderi
[mouse
0.00001 0.001 01 10 1000 100000 1E-
10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.22

In a Picture
Read/_ _ ____
Write
Processor 'E O
Core =] /0 = ‘
— = le—— 1
P I N I Controllers e
Q o Q interrupts |'
78 [Q 1
| |$| |3 Read - | Secondary
al 1o) Storage
\Write
Core] & o (Disk)
x| D (S} o[
S| o] |9 38
73 QD 8 85
T g. > ~ ©
al 1o ©

« 1/0O devices you recognize are supported by I/O Controllers

* Processors accesses them by reading and writing |0 registers as if they
were memory

— Write commands and arguments, read status and results

10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.23

Modern 1/O Systems

dis
graphics ‘

—_—
Rudus/enion SCSlI controller
controller controller 7
== 34
:)
T

monitor

o000

L 1 L_PCl bus

‘ IDE disk controller

By
expansion bus \m‘“&
interface —

keyboard

10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.24

What's a bus?

Gt

+ Common set of wires for communication among hardware devices plus
protocols for carrying out data transfer transactions

— Operations: e.g., Read, Write
— Control lines, Address lines, Data lines
— Typically multiple devices

» Protocol: initiator requests access, arbitration to grant, identification of
recipient, handshake to convey address, length, data

» Very high BW close to processor (wide, fast, and inflexible), low BW with
high flexibility out in 1/0 subsystem

10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.25

10/26/20

Why a Bus?

* Buses let us connect n devices over a single set of wires, connections,
and protocols

- 0(n?) relationships with 1 set of wires (1)

» Downside: Only one transaction at a time
— The rest must wait
— “Arbitration” aspect of bus protocol ensures the rest wait

Kubiatowicz CS162 © UCB Fall 2020 Lec 17.26

PCI Bus Evolution

« PCI started life out
as a bus

» But a parallel bus has many limitations
— Multiplexing address/data for many requests
— Slowest devices must be able to tell what's happening (e.g., for arbitration)
— Bus speed is set to that of the slowest device

10/26/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 17.27

10/26/20

PCI Express “Bus”

* No longer a parallel bus

+ Really a collection of fast serial channels or “lanes”

« Devices can use as many as they need to achieve a desired bandwidth
» Slow devices don’t have to share with fast ones

» One of the successes of device abstraction in Linux was the ability to
migrate from PCI to PCI Express

— The physical interconnect changed completely, but the old API still worked

Kubiatowicz CS162 © UCB Fall 2020 Lec 17.28

Example: PCI Architecture

. Memory

RAM | CPU
Bus
y
l Host Bridge
7'y 'y PCI #0
ISA Bridge PCI Bridge
—_ | I < PCI #1
ISA
Controller PCI Slots USB SATA @
Controller | | Controller

Device: S

How does the Processor Talk to the Device?

Processor Memory Bus
Memo

Adapto

to
Address +

Controller

Other Devices Data Bus Hardware

Interrupt IIInterfac Controller
Controller Interrupt Request

A\ddressabld
Memory
; ; and/or
» CPU interacts with a Controller Regist
f f . CYBEE Queues
— Contains a set of registers that can be read and written (port 0X20)M=mory Mapped

— May contain memory for request queues, etc.

Region: 0x8f008020)

* Processor accesses registers in two ways:
— Port-Mapped I/O: in/out instructions
» Example from the Intel architecture: out @x21,AL
— Memory-mapped I/O: load/store instructions
» Registers/memory appear in physical address space
» 1/0 accomplished with load and store instructions

10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.29 10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.30
Port-Mapped I/O in Pintos Speaker Driver Example: Memory-Mapped Display Controller
Pintos: devices/speaker.c Pintos: threads/io.h .
kst o e T * Memory-Mapped:
. static inline uints — Hardware maps control registers and display memory into 0x80020000 | Graphics
g (i o) o e physical address space Command
S e & SRR See [TA32-v2a] "IN". » Addresses set by HW jumpers or at boot time el
cted peaker t uint8_t data; . e . “ 0x80010000 .
asm volatile (“inb %, %0° : "-a® (data) : "Nd" (port)); — Simply writing to display memory (also called the “frame Display
rum sntn Leved olA Jevel dm disable 05 e buffer’) changes image on screen Memory
y ;::‘,‘l;i,ifIZ:ZZ:ZZZ;K,_M p— » Addr: 0x8000F000 — 0x8000FFFF 0x800OF000
y e e — Writing graphics description to cmd queue
¢ [trites bte DA to poRT- » Say enter a set of triangles describing some scene 0x0007Fo04 |ICOmMMmand
outb (uint16_t port, uints_t data) » Addr: 0x80010000 — 0x8001FFFF 0x0007F000 | Status
speaker_off (); { " . .
) /% See [1A32-v2b] "OUT" — Writing to the command register may cause on-board graphics
asm volatile ("outb %b@, %wl" : : "a” (data), "Nd" (port)); hardware to do something -
’ » Say render the above scene
e S » Addr: 0x0007F004 ‘\ Physical
r_dtsable 0; + Can protect with address translation >L) Address
SPEAKER_PORT_GATE) & ~SPEAKER_GATE_ENADLE) ; & ' Space

10/26/20° Kubiatowicz C§162 © UCB Fall 2020

Lec 17.31

10/26/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 17.32

10/26/20

There’s more than just a CPU in there!

iy
INTEL(R) CORE™ i7
. i7-6700K
| SR2LO 4.00GHZ

Kubiatowicz CS162 © UCB Fall 2020 Lec 17.33

10/26/20

Chip-scale Features of 2015 x86 (Sky Lake)
+ Significant pieces:
— Four OOO cores with deeper buffers
» Intel MPX (Memory Protection Extensions)
» Intel SGX (Software Guard Extensions)
» Issue up to 6 p-ops/cycle
— GPU, System Agent (Mem, Fast I/O)
— Large shared L3 cache with on-chip ring bus
» 2 MB/core instead of 1.5 MB/core
» High-BW access to L3 Cache
* Integrated 1/O
— Integrated memory controller (IMC)
» Two independent channels of DRAM
— High-speed PCI-Express (for Graphics cards)

— Direct Media Interface (DMI) Connection to PCH (Platform
Control Hub)

Kubiatowicz CS162 © UCB Fall 2020

Lec 17.34

10/26/20

Sky Lake 1/0: PCH

‘ — : « Platform Controller Hub .
loielxcores o eony W _— — Connected to processor with
, proprietary bus
DMIGen3. » Direct Media Interface
[PCie Gen3 MM intet* 100 Series Chipset : » Types of I/O on PCH:
w_ Intel* CM230 Series Chipset — _ USB, Ethernet

—Thunderbolt 3
— Audio, BIOS support

— More PCI Express (lower
speed than on Processor)

— SATA (for Disks)

Sky Lake
System Configuration

T
&
o
3
3
g
5
€
&

Kubiatowicz CS162 © UCB Fall 2020 Lec 17.35

10/26/20

Operational Parameters for I/O

« Data granularity: Byte vs. Block

— Some devices provide single byte at a time (e.g., keyboard)
— Others provide whole blocks (e.g., disks, networks, etc.)

» Access pattern: Sequential vs. Random
— Some devices must be accessed sequentially (e.g., tape)

— Others can be accessed “randomly” (e.g., disk, cd, etc.)
» Fixed overhead to start transfers

— Some devices require continual monitoring
— Others generate interrupts when they need service

+ Transfer Mechanism: Programmed IO and DMA

Kubiatowicz CS162 © UCB Fall 2020 Lec 17.36

Transferring Data To/From Controller

* Programmed I/O:
— Each byte transferred via processor in/out or load/store
— Pro: Simple hardware, easy to program
— Con: Consumes processor cycles proportional to data size

1. device driver is told
to transfer disk data CPU
to buffer at address X

2. device driver tells
disk controller to
transfer C bytes
from disk to buffer

 Direct Memory Access:
— Give controller access to memory bus
— Ask it to transfer

5. DMA controller
transfers bytes to
buffer X, increasing
memory address

Transferring Data To/From Controller

* Programmed |/O:
— Each byte transferred via processor in/out or load/store
— Pro: Simple hardware, easy to program
— Con: Consumes processor cycles proportional to data size

1. device driver is told
to transfer disk data
to buffer at address X

2. device driver tells
disk controller to
transfer C bytes,
from disk to byfer

 Direct Memory Access:
— Give controller access to memory bus
— Ask it to transfer

5. DMA controller
transfers bytes to
buffer X, increasing
memory address

data blocks to/from onddocrossing G &t addresa X data blocks to/from enddocroasing G atadresg
: when) DMAbus/ X ; . when) DMA/bus/ x——
memory directly " fmmechyouon | SR RO meiai] o o) memory directly R e O T
. . . 71% T P . . . ‘)%1_() Il
« Sample interaction with DMA controller * i3 el « Sample interaction with DMA controller Y “PenE
(from OSC book): Edk | DM s (from OSC book): Beae | D ey
controller 4. d\skhcgntro\\egifnds controller 4. d\skhcgntro\\eéaends
G @k\ aomtioer O G @k\ aontoer O
S oo
‘glsgl dES& @55) dls&
10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.37 10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.38
/O Device Notifying the OS Kernel Device Structure
* The OS needs to know when: | The System Call Interface |
—The 1/O device has completed an operation 4 4 4 4 4 4 4 4 4 4 4 4
—The 1/O operation has encountered an error 4 A\ 4 \ \ 4 Y \ 4 \ 4 A AN 4 \ 4 \ 4 Y
110 |n’FerrUpt: '] ' Process Memory Fil Device N ki
—Device generates an interrupt whenever it needs service Management | | Management ilesystems Control etworking
—Pro: handles unpredictable events well s v = Ta = 5
— Con: interrupts relatively high overhead CINEUITEEY, IAiE] LSS e eI S &N ivi
 Polling: P yha multitasking memory the VFS __ device access _COnnectivity
— OS periodically checks a device-specific status register File System Network
» 1/O device yuts completion information in status register ypes
: i’ P 9 Architecture 1] ‘ (] i Subsystem
—Pro: low overhead Dependent Memory Device
— Con: may waste many cycles on polling if infrequent or unpredictable 1/0 operations p Manager Control "
Y y cy ng C Code g Block IF drivers
* Actual devices combine both polling and interrupts Devices
—For instance — High-bandwidth network adapter: EEEN EREEN
» Interrupt for first incoming packet =
» Poll for following packets until hardware queues are empty
10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.39 10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.40

Recall: Device Drivers

+ Device Driver: Device-specific code in the kernel that interacts directly with
the device hardware

— Supports a standard, internal interface
— Same kernel 1/0 system can interact easily with different device drivers
— Special device-specific configuration supported with the ioct1() system call

» Device Drivers typically divided into two pieces:
— Top half: accessed in call path from system calls

Recall: Life Cycle of An I/0O Request

User
Program

Kernel 110
Subsystem

request /0

user
process

/0 completed,
input data available, or
output completed

T
system call

/0 subsystem

send request to device
driver, block process If
appropriate

retum from system call

transfer data
(i appropriate) to process,
retum completion

.. ;...................... ETTTTTTTITTTTTTITT) CYTET)
» implements a set of standard, cross-device calls like open(), close(), read(), Device Driver p”Tg“?“H e sl 0
write(), ioctl(), strategy() Top Half e e arver Change 0110 subsystem
» This is the kernel's interface to the device driver e e s e | RN P
» Top half will start !/O to device, may put thread to sleep until finished Device Driver wmomomonmes izt [
— Bottom half: run as interrupt routine Bottom Half e
» Gets input or transfers next block of output e
» May wake sleeping threads if /O now complete] doice L
Device Riiol R ECLLLE BT
Hardware
[time >
10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.41 10/26/20 Kubiatowicz CS762 © UCB Fall 2020 Lec 17.42
Conclusion

I/0O Devices Types:

— Many different speeds (0.1 bytes/sec to GBytes/sec)
— Different Access Patterns:
» Block Devices, Character Devices, Network Devices
— Different Access Timing:
» Blocking, Non-blocking, Asynchronous
1/0 Controllers: Hardware that controls actual device

— Processor Accesses through 1/O instructions, load/store to special physical
memory

* Notification mechanisms
— Interrupts

— Polling: Report results through status register that processor looks at
periodically

 Device drivers interface to 1/0 devices
— Provide clean Read/Write interface to OS above
— Manipulate devices through PIO, DMA & interrupt handling
— Three types: block, character, and network

10/26/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 17.43

