
CS162
Operating Systems and
Systems Programming

Lecture 17

Demand Paging (Finished),
General I/O, Storage Devices

October 26th, 2020
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 17.210/26/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Demand Paging Cost Model
• Since Demand Paging like caching, can compute average access time!

(“Effective Access Time”)
– EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
– EAT = Hit Time + Miss Rate x Miss Penalty

• Example:
– Memory access time = 200 nanoseconds
– Average page-fault service time = 8 milliseconds
– Suppose p = Probability of miss, 1-p = Probably of hit
– Then, we can compute EAT as follows:

EAT = 200ns + p x 8 ms
= 200ns + p x 8,000,000ns

• If one access out of 1,000 causes a page fault, then EAT = 8.2 μs:
– This is a slowdown by a factor of 40!

• What if want slowdown by less than 10%?
– EAT < 200ns x 1.1  p < 2.5 x 10-6

– This is about 1 page fault in 400,000!

Lec 17.310/26/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Clock Algorithm (Not Recently Used)

Set of all pages
in Memory

Single Clock Hand:
Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

• Clock Algorithm: Arrange physical pages in circle with single clock hand
– Approximate LRU (approximation to approximation to MIN)
– Replace an old page, not the oldest page

• Details:
– Hardware “use” bit per physical page (called “accessed” in Intel architecture):

» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time
» Some hardware sets use bit in the TLB; must be copied back to page TLB entry gets replaced

– On page fault:
» Advance clock hand (not real time)
» Check use bit: 1 used recently; clear and leave alone

0 selected candidate for replacement
Lec 17.410/26/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid)
• Access pages in Active list at full speed
• Otherwise, Page Fault

– Always move overflow page from end of Active list to front of Second-chance list
(SC) and mark invalid

– Desired Page On SC List: move to front of Active list, mark RW
– Not on SC list: page in to front of Active list, mark RW; page out LRU victim at

end of SC list

Directly
Mapped Pages

Marked: RW
List: FIFO

Second
Chance List

Marked: Invalid
List: LRU

LRU victim

Page-in
From disk

New
Active Pages

New
SC Victims

Lec 17.510/26/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Free List

• Keep set of free pages ready for use in demand paging
– Freelist filled in background by Clock algorithm or other technique (“Pageout demon”)
– Dirty pages start copying back to disk when enter list

• Like VAX second-chance list
– If page needed before reused, just return to active set

• Advantage: faster for page fault
– Can always use page (or pages) immediately on fault

Set of all pages
in Memory

Single Clock Hand: Advances as needed to
keep freelist full (“background”)

D

D

Free Pages
For Processes

Lec 17.610/26/20 Kubiatowicz CS162 © UCB Fall 2020

• When evicting a page frame, how to know which PTEs to invalidate?
– Hard in the presence of shared pages (forked processes, shared memory, …)

• Reverse mapping mechanism must be very fast
– Must hunt down all page tables pointing at given page frame when freeing a page
– Must hunt down all PTEs when seeing if pages “active”

• Implementation options:
– For every page descriptor, keep linked list of page table entries that point to it

» Management nightmare – expensive
– Linux: Object-based reverse mapping

» Link together memory region descriptors instead (much coarser granularity)

Reverse Page Mapping (Sometimes called “Coremap”)

Lec 17.710/26/20 Kubiatowicz CS162 © UCB Fall 2020

Allocation of Page Frames (Memory Pages)
• How do we allocate memory among different processes?

– Does every process get the same fraction of memory? Different fractions?
– Should we completely swap some processes out of memory?

• Each process needs minimum number of pages
– Want to make sure that all processes that are loaded into memory can make forward

progress
– Example: IBM 370 – 6 pages to handle SS MOVE instruction:

» instruction is 6 bytes, might span 2 pages
» 2 pages to handle from
» 2 pages to handle to

• Possible Replacement Scopes:
– Global replacement – process selects replacement frame from set of all frames; one

process can take a frame from another
– Local replacement – each process selects from only its own set of allocated frames

Lec 17.810/26/20 Kubiatowicz CS162 © UCB Fall 2020

Fixed/Priority Allocation
• Equal allocation (Fixed Scheme):

– Every process gets same amount of memory
– Example: 100 frames, 5 processes  process gets 20 frames

• Proportional allocation (Fixed Scheme)
– Allocate according to the size of process
– Computation proceeds as follows:𝑠௜ = size of process 𝑝௜ and S ൌ ∑𝑠௜𝑚 = total number of physical frames in the system𝑎௜ = (allocation for 𝑝௜) ൌ ௦೔ௌ ൈ 𝑚

• Priority Allocation:
– Proportional scheme using priorities rather than size

» Same type of computation as previous scheme
– Possible behavior: If process pi generates a page fault, select for replacement a frame from a

process with lower priority number

• Perhaps we should use an adaptive scheme instead???
– What if some application just needs more memory?

Lec 17.910/26/20 Kubiatowicz CS162 © UCB Fall 2020

Page-Fault Frequency Allocation
• Can we reduce Capacity misses by dynamically

changing the number of pages/application?

• Establish “acceptable” page-fault rate
– If actual rate too low, process loses frame
– If actual rate too high, process gains frame

• Question: What if we just don’t have enough memory?
Lec 17.1010/26/20 Kubiatowicz CS162 © UCB Fall 2020

Thrashing
• If a process does not have “enough” pages, the

page-fault rate is very high.
This leads to:

– low CPU utilization
– operating system spends most of its time

swapping to disk
• Thrashing  a process is busy swapping pages

in and out with little or no actual progress
• Questions:

– How do we detect Thrashing?
– What is best response to Thrashing?

Lec 17.1110/26/20 Kubiatowicz CS162 © UCB Fall 2020

Locality In A Memory-Reference Pattern
• Program Memory Access Patterns have

temporal and spatial locality
– Group of Pages accessed along a given

time slice called the “Working Set”
– Working Set defines minimum number

of pages for process to behave well
• Not enough memory for Working Set 

Thrashing
– Better to swap out process?

Lec 17.1210/26/20 Kubiatowicz CS162 © UCB Fall 2020

Working-Set Model

•   working-set window  fixed number of page references
– Example: 10,000 instructions

• WSi (working set of Process Pi) = total set of pages referenced in the
most recent  (varies in time)

– if  too small will not encompass entire locality
– if  too large will encompass several localities
– if  =   will encompass entire program

• D = |WSi|  total demand frames
• if D > m  Thrashing

– Policy: if D > m, then suspend/swap out processes
– This can improve overall system behavior by a lot!

Lec 17.1310/26/20 Kubiatowicz CS162 © UCB Fall 2020

What about Compulsory Misses?
• Recall that compulsory misses are misses that occur the first time that a

page is seen
– Pages that are touched for the first time
– Pages that are touched after process is swapped out/swapped back in

• Clustering:
– On a page-fault, bring in multiple pages “around” the faulting page
– Since efficiency of disk reads increases with sequential reads, makes

sense to read several sequential pages
• Working Set Tracking:

– Use algorithm to try to track working set of application
– When swapping process back in, swap in working set

Lec 17.1410/26/20 Kubiatowicz CS162 © UCB Fall 2020

Linux Memory Details?
• Memory management in Linux considerably more complex than the

examples we have been discussing
• Memory Zones: physical memory categories

– ZONE_DMA: < 16MB memory, DMAable on ISA bus
– ZONE_NORMAL: 16MB  896MB (mapped at 0xC0000000)
– ZONE_HIGHMEM: Everything else (> 896MB)

• Each zone has 1 freelist, 2 LRU lists (Active/Inactive)
• Many different types of allocation

– SLAB allocators, per-page allocators, mapped/unmapped
• Many different types of allocated memory:

– Anonymous memory (not backed by a file, heap/stack)
– Mapped memory (backed by a file)

• Allocation priorities
– Is blocking allowed/etc

Lec 17.1510/26/20 Kubiatowicz CS162 © UCB Fall 2020

Linux Virtual memory map (Pre-Meltdown)

Kernel
Addresses

Empty
Space

User
Addresses

User
Addresses

Kernel
Addresses

0x00000000

0xC0000000

0xFFFFFFFF

0x0000000000000000

0x00007FFFFFFFFFFF

0xFFFF800000000000

0xFFFFFFFFFFFFFFFF

3G
B

To
ta

l

12
8T

iB

1G
B

12
8T

iB

896MB
Physical 64 TiB

Physical

32-Bit Virtual Address Space 64-Bit Virtual Address Space

“Canonical Hole”

Lec 17.1610/26/20 Kubiatowicz CS162 © UCB Fall 2020

Pre-Meltdown Virtual Map (Details)
• Kernel memory not generally visible to user

– Exception: special VDSO (virtual dynamically linked shared objects) facility
that maps kernel code into user space to aid in system calls (and to provide
certain actual system calls such as gettimeofday())

• Every physical page described by a “page” structure
– Collected together in lower physical memory
– Can be accessed in kernel virtual space
– Linked together in various “LRU” lists

• For 32-bit virtual memory architectures:
– When physical memory < 896MB

» All physical memory mapped at 0xC0000000
– When physical memory >= 896MB

» Not all physical memory mapped in kernel space all the time
» Can be temporarily mapped with addresses > 0xCC000000

• For 64-bit virtual memory architectures:
– All physical memory mapped above 0xFFFF800000000000

Lec 17.1710/26/20 Kubiatowicz CS162 © UCB Fall 2020

Post Meltdown Memory Map
• Meltdown flaw (2018, Intel x86, IBM Power, ARM)

– Exploit speculative execution to observe contents of kernel memory
1: // Set up side channel (array flushed from cache)
2: uchar array[256 * 4096];
3: flush(array); // Make sure array out of cache

4: try { // … catch and ignore SIGSEGV (illegal access)
5: uchar result = *(uchar *)kernel_address;// Try access!
6: uchar dummy = array[result * 4096]; // leak info!
7: } catch(){;} // Could use signal() and setjmp/longjmp

8: // scan through 256 array slots to determine which loaded

– Some details:
» Reason we skip 4096 for each value: avoid hardware cache prefetch
» Note that value detected by fact that one cache line is loaded
» Catch and ignore page fault: set signal handler for SIGSEGV, can use setjump/longjmp….

• Patch: Need different page tables for user and kernel
– Without PCID tag in TLB, flush TLB twice on syscall (800% overhead!)
– Need at least Linux v 4.14 which utilizes PCID tag in new hardware to avoid flushing

when change address space
• Fix: better hardware without timing side-channels

– Will be coming, but still in works

Lec 17.1810/26/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Five Components of a Computer

Diagram from “Computer
Organization and Design” by
Patterson and Hennessy

Lec 17.1910/26/20 Kubiatowicz CS162 © UCB Fall 2020

Requirements of I/O
• So far in CS 162, we have studied:

– Abstractions: the APIs provided by the OS to applications running in a process
– Synchronization/Scheduling: How to manage the CPU

• What about I/O?
– Without I/O, computers are useless (disembodied brains?)
– But… thousands of devices, each slightly different

» How can we standardize the interfaces to these devices?
– Devices unreliable: media failures and transmission errors

» How can we make them reliable???
– Devices unpredictable and/or slow

» How can we manage them if we don’t know what they will do or how they will
perform?

Lec 17.2010/26/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: OS Basics: I/O

Storage

Processor

OS Hardware Virtualization

Hardware

Software

Memory

Process 1

ISA

OS Memory

Protection
Boundary

Networks Displays

Inputs

Process 2 Process 3

• OS provides common
services in form of I/O

Ctrlr

Lec 17.2110/26/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Range of Timescales

Jeff Dean:
“Numbers
Everyone Should
Know”

Lec 17.2210/26/20 Kubiatowicz CS162 © UCB Fall 2020

Example: Device Transfer Rates in Mb/s (Sun Enterprise 6000)

• Device rates vary over 12
orders of magnitude!!!

• System must be able to
handle this wide range

– Better not have high
overhead/byte for fast devices

– Better not waste time waiting
for slow devices

Lec 17.2310/26/20 Kubiatowicz CS162 © UCB Fall 2020

In a Picture

• I/O devices you recognize are supported by I/O Controllers
• Processors accesses them by reading and writing IO registers as if they

were memory
– Write commands and arguments, read status and results

Core

Core

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Secondary
Storage
(SSD)

I/O
Controllers

Read /
Write

Read /
Write wires

interrupts

DMA transfer

Lec 17.2410/26/20 Kubiatowicz CS162 © UCB Fall 2020

Modern I/O Systems

network

Lec 17.2510/26/20 Kubiatowicz CS162 © UCB Fall 2020

What’s a bus?

• Common set of wires for communication among hardware devices plus
protocols for carrying out data transfer transactions

– Operations: e.g., Read, Write
– Control lines, Address lines, Data lines
– Typically multiple devices

• Protocol: initiator requests access, arbitration to grant, identification of
recipient, handshake to convey address, length, data

• Very high BW close to processor (wide, fast, and inflexible), low BW with
high flexibility out in I/O subsystem

Lec 17.2610/26/20 Kubiatowicz CS162 © UCB Fall 2020

Why a Bus?
• Buses let us connect 𝑛 devices over a single set of wires, connections,

and protocols– 𝑂 𝑛ଶ relationships with 1 set of wires (!)

• Downside: Only one transaction at a time
– The rest must wait
– “Arbitration” aspect of bus protocol ensures the rest wait

Lec 17.2710/26/20 Kubiatowicz CS162 © UCB Fall 2020

PCI Bus Evolution

• PCI started life out
as a bus

• But a parallel bus has many limitations
– Multiplexing address/data for many requests
– Slowest devices must be able to tell what’s happening (e.g., for arbitration)
– Bus speed is set to that of the slowest device

Lec 17.2810/26/20 Kubiatowicz CS162 © UCB Fall 2020

PCI Express “Bus”
• No longer a parallel bus
• Really a collection of fast serial channels or “lanes”
• Devices can use as many as they need to achieve a desired bandwidth
• Slow devices don’t have to share with fast ones

• One of the successes of device abstraction in Linux was the ability to
migrate from PCI to PCI Express

– The physical interconnect changed completely, but the old API still worked

Lec 17.2910/26/20 Kubiatowicz CS162 © UCB Fall 2020

Example: PCI Architecture

CPURAM Memory
Bus

USB
Controller

SATA
Controller Scanner

Hard
DiskDVD

ROM

Root
Hub

Hub Webca
m

Mouse Keyboar
d

PCI #1

PCI #0
PCI Bridge

PCI Slots

Host Bridge

ISA Bridge

ISA
Controller

Legacy
Devices

Lec 17.3010/26/20 Kubiatowicz CS162 © UCB Fall 2020

How does the Processor Talk to the Device?

• CPU interacts with a Controller
– Contains a set of registers that can be read and written
– May contain memory for request queues, etc.

• Processor accesses registers in two ways:
– Port-Mapped I/O: in/out instructions

» Example from the Intel architecture: out 0x21,AL
– Memory-mapped I/O: load/store instructions

» Registers/memory appear in physical address space
» I/O accomplished with load and store instructions

Device
Controller

read
write

control
status

Addressable
Memory
and/or

QueuesRegisters
(port 0x20)

Hardware
Controller

Memory Mapped
Region: 0x8f008020

Bus
Interface

Address +
Data

Interrupt Request

Processor Memory Bus

CPU

Regular
Memory

Interrupt
Controller

Bus
Adaptor

Bus
Adaptor

Other Devices
or Buses

Lec 17.3110/26/20 Kubiatowicz CS162 © UCB Fall 2020

Port-Mapped I/O in Pintos Speaker Driver
Pintos: threads/io.hPintos: devices/speaker.c

Lec 17.3210/26/20 Kubiatowicz CS162 © UCB Fall 2020

Example: Memory-Mapped Display Controller
• Memory-Mapped:

– Hardware maps control registers and display memory into
physical address space

» Addresses set by HW jumpers or at boot time
– Simply writing to display memory (also called the “frame

buffer”) changes image on screen
» Addr: 0x8000F000 — 0x8000FFFF

– Writing graphics description to cmd queue
» Say enter a set of triangles describing some scene
» Addr: 0x80010000 — 0x8001FFFF

– Writing to the command register may cause on-board graphics
hardware to do something

» Say render the above scene
» Addr: 0x0007F004

• Can protect with address translation

Display
Memory

0x8000F000

0x80010000

Physical
Address
Space

Status0x0007F000
Command0x0007F004

Graphics
Command
Queue

0x80020000

Lec 17.3310/26/20 Kubiatowicz CS162 © UCB Fall 2020

There’s more than just a CPU in there!

Lec 17.3410/26/20 Kubiatowicz CS162 © UCB Fall 2020

Chip-scale Features of 2015 x86 (Sky Lake)
• Significant pieces:

– Four OOO cores with deeper buffers
» Intel MPX (Memory Protection Extensions)
» Intel SGX (Software Guard Extensions)
» Issue up to 6 -ops/cycle

– GPU, System Agent (Mem, Fast I/O)
– Large shared L3 cache with on-chip ring bus

» 2 MB/core instead of 1.5 MB/core
» High-BW access to L3 Cache

• Integrated I/O
– Integrated memory controller (IMC)

» Two independent channels of DRAM
– High-speed PCI-Express (for Graphics cards)
– Direct Media Interface (DMI) Connection to PCH (Platform

Control Hub)

Lec 17.3510/26/20 Kubiatowicz CS162 © UCB Fall 2020

Sky Lake I/O: PCH

• Platform Controller Hub
– Connected to processor with

proprietary bus
» Direct Media Interface

• Types of I/O on PCH:
– USB, Ethernet
– Thunderbolt 3
– Audio, BIOS support
– More PCI Express (lower

speed than on Processor)
– SATA (for Disks)Sky Lake

System Configuration

Lec 17.3610/26/20 Kubiatowicz CS162 © UCB Fall 2020

Operational Parameters for I/O
• Data granularity: Byte vs. Block

– Some devices provide single byte at a time (e.g., keyboard)
– Others provide whole blocks (e.g., disks, networks, etc.)

• Access pattern: Sequential vs. Random
– Some devices must be accessed sequentially (e.g., tape)
– Others can be accessed “randomly” (e.g., disk, cd, etc.)

» Fixed overhead to start transfers
– Some devices require continual monitoring
– Others generate interrupts when they need service

• Transfer Mechanism: Programmed IO and DMA

Lec 17.3710/26/20 Kubiatowicz CS162 © UCB Fall 2020

• Programmed I/O:
– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer

data blocks to/from
memory directly

• Sample interaction with DMA controller
(from OSC book):

Transferring Data To/From Controller

1

2

3

Lec 17.3810/26/20 Kubiatowicz CS162 © UCB Fall 2020

• Programmed I/O:
– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer

data blocks to/from
memory directly

• Sample interaction with DMA controller
(from OSC book):

Transferring Data To/From Controller

4

5

6

Lec 17.3910/26/20 Kubiatowicz CS162 © UCB Fall 2020

I/O Device Notifying the OS
• The OS needs to know when:

– The I/O device has completed an operation
– The I/O operation has encountered an error

• I/O Interrupt:
– Device generates an interrupt whenever it needs service
– Pro: handles unpredictable events well
– Con: interrupts relatively high overhead

• Polling:
– OS periodically checks a device-specific status register

» I/O device puts completion information in status register
– Pro: low overhead
– Con: may waste many cycles on polling if infrequent or unpredictable I/O operations

• Actual devices combine both polling and interrupts
– For instance – High-bandwidth network adapter:

» Interrupt for first incoming packet
» Poll for following packets until hardware queues are empty

Lec 17.4010/26/20 Kubiatowicz CS162 © UCB Fall 2020

Kernel Device Structure
The System Call Interface

Process
Management

Memory
Management Filesystems Device

Control Networking

Architecture
Dependent

Code

Memory
Manager

Device
Control

Network
Subsystem

File System
Types

Block
Devices

IF drivers

Concurrency,
multitasking

Virtual
memory

Files and dirs:
the VFS

TTYs and
device access Connectivity

Lec 17.4110/26/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Device Drivers
• Device Driver: Device-specific code in the kernel that interacts directly with

the device hardware
– Supports a standard, internal interface
– Same kernel I/O system can interact easily with different device drivers
– Special device-specific configuration supported with the ioctl() system call

• Device Drivers typically divided into two pieces:
– Top half: accessed in call path from system calls

» implements a set of standard, cross-device calls like open(), close(), read(),
write(), ioctl(), strategy()

» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep until finished

– Bottom half: run as interrupt routine
» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete

Lec 17.4210/26/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Life Cycle of An I/O Request

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Kernel I/O
Subsystem

User
Program

Lec 17.4310/26/20 Kubiatowicz CS162 © UCB Fall 2020

Conclusion
• I/O Devices Types:

– Many different speeds (0.1 bytes/sec to GBytes/sec)
– Different Access Patterns:

» Block Devices, Character Devices, Network Devices
– Different Access Timing:

» Blocking, Non-blocking, Asynchronous
• I/O Controllers: Hardware that controls actual device

– Processor Accesses through I/O instructions, load/store to special physical
memory

• Notification mechanisms
– Interrupts
– Polling: Report results through status register that processor looks at

periodically
• Device drivers interface to I/O devices

– Provide clean Read/Write interface to OS above
– Manipulate devices through PIO, DMA & interrupt handling
– Three types: block, character, and network

