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Recall: Magnetic Disks

• Cylinders: all the tracks under the 
head at a given point on all surfaces

• Read/write data is a three-stage process:
– Seek time: position the head/arm over the proper track
– Rotational latency: wait for desired sector to rotate under r/w head
– Transfer time: transfer a block of bits (sector) under r/w head
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Disk Latency = Queueing Time + Controller time +
Seek Time + Rotation Time + Xfer Time
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Recall: Typical Numbers for Magnetic Disk

Parameter Info/Range
Space/Density Space: 18TB (Seagate), 9 platters, in 3½ inch form factor!

Areal Density: ≥ 1 Terabit/square inch! (PMR, Helium, …)
Average Seek Time Typically 4-6 milliseconds
Average Rotational Latency Most laptop/desktop disks rotate at 3600-7200 RPM 

(16-8 ms/rotation). Server disks up to 15,000 RPM.
Average latency is halfway around disk so 4-8 milliseconds

Controller Time Depends on controller hardware
Transfer Time Typically 50 to 250 MB/s. Depends on:

• Transfer size (usually a sector): 512B – 1KB per sector
• Rotation speed: 3600 RPM to 15000 RPM
• Recording density: bits per inch on a track
• Diameter: ranges from  1 in to 5.25 in

Cost Used to drop by a factor of two every 1.5 years (or faster), now slowing down
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Recall: Overall Performance for I/O Path

• Performance of I/O subsystem
– Metrics: Response Time, Throughput 
– Effective BW = transfer size / response time
– Contributing factors to latency:

» Software paths (can be loosely modeled by a 
queue)

» Hardware controller
» I/O device service time

• Queuing behavior:
– Can lead to big increases of latency as 

utilization increases
– Solutions?

Response Time = Queue + I/O device service time
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Sequential Server Performance

• Single sequential “server” that can complete a task in time 𝐿 operates at 
rate  ଵ (on average, in steady state, …)– 𝐿 ൌ 10 ms → 𝐵 ൌ 100 op

sൗ– 𝐿 ൌ 2 yr → 𝐵 ൌ 0.5 op
yrൗ

• Applies to a processor, a disk drive, a person, a TA, …

L L L L…
time

L
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Single Pipelined Server

• Single pipelined server of 𝑘 stages for tasks of length 𝐿 (i.e., time  ⁄ per 
stage) delivers at rate   ⁄ .– 𝐿 ൌ 10 ms, 𝑘 ൌ 4 → 𝐵 ൌ 400 op

sൗ– 𝐿 ൌ 2 yr, 𝑘 ൌ 2 → 𝐵 ൌ 1 op
yrൗ

L

…

L

L L L L L L L

logical operation divided over distinct resources

time
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Example Systems “Pipelines”

• Anything with queues between operational process behaves roughly 
“pipeline like”

• Important difference is that “initiations” are decoupled from processing
– May have to queue up a burst of operations
– Not synchronous and deterministic like in 61C
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Multiple Servers

• 𝑘 servers handling tasks of length 𝐿 delivers at rate   ⁄ .– 𝐿 ൌ 10 ms, 𝑘 ൌ 4 → 𝐵 ൌ 400 op
sൗ– 𝐿 ൌ 2 yr, 𝑘 ൌ 2 → 𝐵 ൌ 1 op

yrൗ
• In 61C you saw multiple processors (cores)

– Systems present lots of multiple parallel servers
– Often with lots of queues

L

… k
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Example Systems “Parallelism”
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Parallel Computation, Databases, …
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A Simple Systems Performance Model

Bandwidth (𝐵): Rate, Op/s
e.g., flow: gal per min

Latency (𝐿): time per op
- How long does it take to 

flow through the system

“Service Time” If 𝐵 ൌ 2 gal
sൗ and L ൌ 3 s

How much water is “in the 
system?” 
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A Simple Systems Performance Model

Bandwidth (𝐵): Rate, Op/s
e.g., flow: gal per min

Latency (𝐿): time per op
- How long does it take to 

flow through the system

“Service Time”
If 𝐵 ൌ 2 op

sൗ and L ൌ 3 s
How many ops are “in 
the system?” 
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Little’s Law (B  )

• In any stable system 
– Average arrival rate = Average departure rate 

• The number of “things” in a system is equal to the bandwidth times the 
latency (on average)

– N (jobs) = λ (jobs/s) x L (s)
– Applies to any stable system

• Can be applied to an entire system:
– Including the queues, the processing stages, parallelism, whatever

• Or to just one processing stage:
– i.e., disk I/O subsystem, queue leading into a CPU or I/O stage, …

arrivals departuresN
λ

L
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A Simple Systems Performance Model

Request Rate: 𝜆

Service Rate: 𝜇
Operation Time: 𝑡

Queuing delay: 𝑑Latency (𝐿) 

The maximum service rate 𝜇𝑚𝑎𝑥 is a property of the 
system – the “bottleneck”

Utilization: 𝜌 ൌ ఒఓ௫
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Ideal System Performance

• How does 𝜇 (service rate) vary with 𝜆 (request rate)?

14

Request Rate ( 𝜆 ) - “offered load”

Service Rate (𝜇) 
- “delivered load”

𝜇𝑚𝑎𝑥
𝜇𝑚𝑎𝑥

asymptotic peak rate
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Two Related Questions

Request Rate: 𝜆
Operation Time: 𝑡
Latency (𝐿) 

The maximum service rate 𝜇𝑚𝑎𝑥 is a property of the 
system – the “bottleneck”

Utilization: 𝜌 ൌ ఒఓ௫Service Rate: 𝜇

Queuing delay: 𝑑
What determines 𝜇௫?

What about 
“internal” queues?
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Bottleneck Analysis

…
L L L L L L L

time

Overall System: Series of Stages

Request 
Rate: 𝜆 Service 

Rate: 𝜇
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Bottleneck Analysis

• Each stage has its own queue and maximum service rate
• Suppose the green stage is the bottleneck 

Overall System: Series of Stages

Request 
Rate: 𝜆 Service 

Rate: 𝜇𝜇௫,ଵ 𝜇௫,ଶ 𝜇௫,ଷ
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Bottleneck Analysis

• Each stage has its own queue and maximum service rate
• Suppose the green stage is the bottleneck
• The bottleneck stage dictates the maximum service rate 𝜇௫

System Model: Bottleneck Stage

Request 
Rate: 𝜆 Service 

Rate: 𝜇𝜇௫ ൌ 𝜇௫,ଷ
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Example: Servicing a Highly Contended Lock

…

…

𝑋 sec in 
critical 
section

All try to grab lock

Time = 𝑝 ⋅ 𝑋 sec
Rate = ଵ ⁄ ops/sec, 
regardless of # cores

𝑝 𝜇௫ ൌ 1 𝑋ൗ
Queue of 
waiting threads

Critical section 
guarded by 
lock
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Request Rate: 𝜆
Operation Time: 𝑡
Latency (𝐿) 

The maximum service rate 𝜇𝑚𝑎𝑥 is a property of the 
system – the “bottleneck”

Utilization: 𝜌 ൌ ఒఓ௫

Two Related Questions

Service Rate: 𝜇

Queuing delay: 𝑑
𝜇௫ is service rate of 

bottleneck stage

Tank represents queue of 
bottleneck stage, including 
queues of previous stages, 
in case of backpressure
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Request Rate: 𝜆
Operation Time: 𝑡
Latency (𝐿) 

The maximum service rate 𝜇𝑚𝑎𝑥 is a property of the 
system – the “bottleneck”

Utilization: 𝜌 ൌ ఒఓ௫Service Rate: 𝜇

Queuing delay: 𝑑

A Simple Systems Performance Model

Useful to apply this 
model to:
• Bottleneck stage
• Entire system up to 

and including 
bottleneck stage

• Entire system
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Latency (Response Time)

• Total latency (response time): queuing time + service time
• Service time depends on the underlying operation

– For CPU stage, how much computation
– For I/O stage, characteristics of the hardware

• What about the queuing time?

Processing 
Stage 

(Server)

Queue

Lec 19.2311/2/20 Kubiatowicz CS162 © UCB Fall 2020

A Simple Systems Performance Model

Request Rate: 𝜆

Service Rate: 𝜇
Operation Time: 𝑡

Queuing delay: 𝑑Latency (𝐿) 

The maximum service rate 𝜇𝑚𝑎𝑥 is a property of the 
system – the “bottleneck”

Utilization: 𝜌 ൌ ఒఓ௫

When will the 
queue(s) start to fill?
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Queuing

• What happens when request rate (𝜆) exceeds max service rate (𝜇௫)?
• Short bursts can be absorbed by the queue

– If on average 𝜆 ൏ 𝜇, it will drain eventually
• Prolonged 𝜆  𝜇 → queue will grow without bound
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• Assume requests arrive at regular intervals, take a fixed time to process, 
with plenty of time between …

Queue Serverarrivals departures

𝑇 𝑇 𝑇
𝑇ொ 𝑇ௌ

𝑇ொ 𝑇ௌ• 𝑇: time between 
arrivals

• 𝜆 ൌ ଵ ்ಲൗ
• 𝑇ௌ: service time

• 𝜇 ൌ  ்ೄൗ
• 𝑇ொ: queuing time

• 𝐿 ൌ 𝑇ொ  𝑇ௌ

A Simple, Deterministic World
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A Simple, Deterministic World

Utilization (𝜌 ൌ ఒ ఓ⁄ ൌ ்ೄ ்ಲൗ )
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• Requests arrive in a burst, must queue up until served
• Same average arrival time, but almost all of the requests experience large 

queue delays (even though average utilization is low)

Queue Serverarrivals departures𝑇ொ 𝑇ௌ• 𝑇: time between 
arrivals

• Now, a random 
variable

• 𝑇ௌ: service time
• 𝜇 ൌ  ்ೄൗ

• 𝑇ொ: queuing time
• 𝐿 ൌ 𝑇ொ  𝑇ௌ

Q depth

Server

Arrivals

A Bursty World
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How to model burstiness of arrival?• 𝑇, the time between arrivals, is now a random variable
– Elegant mathematical framework if we model it as an exponential distribution
– Probability distribution function of an exponential distribution with parameter 𝜆

is 𝑓 𝑥 ൌ 𝜆𝑒ିఒ௫
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“Memoryless”: Likelihood 
of an event occurring is 
independent of how long 
we’ve been waiting
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A Simple Systems Performance Model

Request Rate: 𝜆

Service Rate: 𝜇
Operation Time: 𝑡

Queuing delay: 𝑑Latency (𝐿) 

Utilization: 𝜌 ൌ ఒఓ௫

Queue grows at rate 𝜇 െ  𝜆
After time t , it will have 
grown to length 𝑡ሺ𝜇 െ  𝜆ሻ
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Background: Random Distributions

• Server spends variable time (𝑇) with customers
– Mean (Average): 𝑚 ൌ ∑𝑝 𝑇 ⋅ 𝑇
– Variance (stddev2): 𝜎ଶ ൌ ∑𝑝 𝑇 ⋅ 𝑇 െ𝑚 ଶ ൌ ∑𝑝 𝑇 ⋅ 𝑇ଶ െ𝑚ଶ
– Squared coefficient of variance: 𝐶 ൌ ఙమ మൗ

• Important values of 𝐶:
– No variance or deterministic  𝐶 ൌ 0 
– “Memoryless” or exponential  𝐶 ൌ 1 

» Past tells nothing about future
» Poisson process – purely or completely random process
» Many complex systems (or aggregates)

are well described as memoryless 

Mean 
(m)

mean

Memoryless

Distribution
of service times
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Steady State Queuing Theory

• Queuing Theory applies to long term, steady state behavior
– Arrival rate = Departure rate

• Arrivals characterized by some probabilistic distribution

• Departures characterized by some probabilistic distribution

DeparturesArrivals
Queuing System

Queue Server
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Little’s Law Applied to a Queue

• When applied to a queue, we get:

Average length of the 
queue

Average Arrival Rate

Average time “waiting”
𝐿ொ ൌ 𝜆𝑇ொ
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Some Results from Queuing Theory

• Assumptions: system in equilibrium, no limit to the queue, time between 
successive arrivals is random and memoryless

Arrival Rate𝜆 Queue Server
Service Rate𝜇 ൌ 1 𝑇ௌൗ

• 𝜇: service rate (ଵ ்ೄൗ )
• 𝜌: utilization (ఒ ఓ⁄ )

• 𝜆: arrival rate
• 𝑇ௌ: mean time to service a customer
• 𝐶: squared coefficient of variance (ఙమ ೄ்మൗ )
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Some Results from Queuing Theory
• Memoryless service distribution (𝐶 ൌ 1ሻ—an “M/M/1 queue”:𝑇ொ ൌ 𝜌1 െ 𝜌 ⋅ 𝑇ௌ
• General service distribution (no restrictions)—an “M/G/1 queue”:𝑇ொ ൌ 1  𝐶2 ⋅ 𝜌1 െ 𝜌 ⋅ 𝑇ௌ

• 𝜇: service rate (ଵ ்ೄൗ )
• 𝜌: utilization (ఒ ఓ⁄ )

• 𝜆: arrival rate
• 𝑇ௌ: mean time to service a customer
• 𝐶: squared coefficient of variance (ఙమ ೄ்మൗ )
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Some Results from Queuing Theory (con’t)

ொ ఘଵିఘ ௌ (memoryless service distribution)

ொ ொ (by Little’s Law)

Utilization is ఒ ఓೌೣ ௌ, so

ொ ொ ఘ்ೄ ொ ఘమଵିఘ (for a single server)
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Ideal System Performance

Request Rate ( 𝜆 ) - “offered load”
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“Half-Power Point” : load at which system delivers half of peak performance
- Design and provision systems to operate roughly in this regime
- Latency low and predictable, utilization good: ~50%

• 𝑇ொ~ ఘଵିఘ, 𝜌 ൌ ఒ ఓೌೣ⁄
• Why does latency 

blow up as we 
approach 100% 
utilization?

• Queue builds up on 
each burst

• But very rarely (or 
never) gets a 
chance to drain
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Why unbounded response time?
• Assume deterministic arrival process and service time

– Possible to sustain utilization = 1 with bounded response time!

time

arrival 
time

service
time
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Why unbounded response time?
• Assume stochastic arrival process

(and service time)
– No longer possible to achieve 

utilization = 1

100%

Response
Time (ms)

Throughput  (Utilization)
(% total BW)

0
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200

300

0%

time

This wasted time can 
never be reclaimed! 
So cannot achieve  = 1!
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A Little Queuing Theory: An Example
• Example Usage Statistics:

– User requests 10 x 8KB disk I/Os per second
– Requests & service exponentially distributed (C=1.0)
– Avg. service = 20 ms (From controller+seek+rot+trans)

• Questions: 
– How utilized is the disk? 

» Ans: server utilization,  = Tser
– What is the average time spent in the queue? 

» Ans: Tq
– What is the number of requests in the queue? 

» Ans: Lq
– What is the avg response time for disk request? 

» Ans: Tsys = Tq + Tser
• Computation:
 (avg # arriving customers/s) = 10/s
Tser (avg time to service customer) = 20 ms (0.02s)
 (server utilization) =  x Tser= 10/s x .02s = 0.2
Tq (avg time/customer in queue) = Tser x u/(1 – u) 

= 20 x 0.2/(1-0.2) = 20 x 0.25 = 5 ms (0 .005s)
Lq (avg length of queue) =  x Tq=10/s x .005s = 0.05
Tsys (avg time/customer in system) =Tq + Tser= 25 ms
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Queuing Theory Resources
• Resources page contains Queueing Theory Resources (under Readings):

– Scanned pages from Patterson and Hennessy book that gives further 
discussion and simple proof for general equation: 
https://cs162.eecs.berkeley.edu/static/readings/patterson_queue.pdf

– A complete website full of resources: 
http://web2.uwindsor.ca/math/hlynka/qonline.html

• Some previous midterms with queueing theory questions

• Assume that Queueing Theory is fair game for Midterm III!
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Optimize I/O Performance

• How to improve performance?
– Make everything faster 
– More Decoupled (Parallelism) systems

» multiple independent buses or controllers
– Optimize the bottleneck to increase service rate

» Use the queue to optimize the service
– Do other useful work while waiting

• Queues absorb bursts and smooth the flow
• Admissions control (finite queues)

– Limits delays, but may introduce unfairness and livelock

Response Time = 
Queue + I/O device service time

User
Thread
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[OS Paths]
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When is Disk Performance Highest?
• When there are big sequential reads, or
• When there is so much work to do that they can be piggy 

backed (reordering queues—one moment)

• OK to be inefficient when things are mostly idle
• Bursts are both a threat and an opportunity
• <your idea for optimization goes here>

– Waste space for speed?

• Other techniques:
– Reduce overhead through user level drivers
– Reduce the impact of I/O delays by doing other useful work 

in the meantime
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Disk Scheduling (1/3)
• Disk can do only one request at a time; What order do you 

choose to do queued requests?

• FIFO Order
– Fair among requesters, but order of arrival may be 

to random spots on the disk  Very long seeks
• SSTF: Shortest seek time first

– Pick the request that’s closest on the disk
– Although called SSTF, today must include 

rotational delay in calculation, since 
rotation can be as long as seek

– Con: SSTF good at reducing seeks, but 
may lead to starvation

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

1
4

2

D
isk H

ead
3
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Disk Scheduling (2/3)
• Disk can do only one request at a time; What order do you 

choose to do queued requests?

• SCAN: Implements an Elevator Algorithm: take the closest 
request in the direction of travel

– No starvation, but retains flavor of SSTF

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests



Lec 19.4511/2/20 Kubiatowicz CS162 © UCB Fall 2020

Disk Scheduling (3/3)
• Disk can do only one request at a time; What order do you 

choose to do queued requests?

• C-SCAN: Circular-Scan: only goes in one direction
– Skips any requests on the way back
– Fairer than SCAN, not biased towards pages in middle

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests
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Recall: How do we Hide I/O Latency?
• Blocking Interface: “Wait”

– When request data (e.g., read() system call), put process to sleep until 
data is ready

– When write data (e.g., write() system call), put process to sleep until 
device is ready for data

• Non-blocking Interface: “Don’t Wait”
– Returns quickly from read or write request with count of bytes 

successfully transferred to kernel
– Read may return nothing, write may write nothing

• Asynchronous Interface: “Tell Me Later”
– When requesting data, take pointer to user’s buffer, return 

immediately; later kernel fills buffer and notifies user
– When sending data, take pointer to user’s buffer, return immediately; 

later kernel takes data and notifies user 
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Recall: I/O and Storage Layers

High Level I/O 
Low Level I/O 

Syscall

File System

I/O Driver

Application / Service

Streams

File Descriptors
open(), read(), write(), close(), …

Files/Directories/Indexes

Commands and Data Transfers

Disks, Flash, Controllers, DMA

What we covered in Lecture 4

Open File Descriptions

What we just covered…

What we will cover next…
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From Storage to File Systems

I/O API and
syscalls Variable-Size Buffer

File System Block
Logical Index,
Typically 4 KB

Hardware 
Devices

Memory Address

HDD

Sector(s)

Physical Index,
512B or 4KB

SSD

Flash Trans. Layer

Phys. Block Phys Index., 
4KB

Sector(s)Sector(s)

Erasure Page
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Building a File System
• File System: Layer of OS that transforms block interface of disks (or other 

block devices) into Files, Directories, etc.
• Classic OS situation: Take limited hardware interface (array of blocks) and 

provide a more convenient/useful interface with:
– Naming: Find file by name, not block numbers
– Organize file names with directories
– Organization: Map files to blocks
– Protection: Enforce access restrictions
– Reliability: Keep files intact despite crashes, hardware failures, etc.
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Recall: User vs. System View of a File
• User’s view: 

– Durable Data Structures
• System’s view (system call interface):

– Collection of Bytes (UNIX)
– Doesn’t matter to system what kind of data structures you want to store on disk!

• System’s view (inside OS):
– Collection of blocks (a block is a logical transfer unit, while a sector is the physical 

transfer unit)
– Block size  sector size; in UNIX, block size is 4KB
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Translation from User to System View

• What happens if user says: “give me bytes 2 – 12?”
– Fetch block corresponding to those bytes
– Return just the correct portion of the block

• What about writing bytes 2 – 12?
– Fetch block, modify relevant portion, write out block

• Everything inside file system is in terms of whole-size blocks
– Actual disk I/O happens in blocks
– read/write smaller than block size needs to translate and buffer

File
System

File
(Bytes)
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Disk Management
• Basic entities on a disk:

– File: user-visible group of blocks arranged sequentially in logical space
– Directory: user-visible index mapping names to files

• The disk is accessed as linear array of sectors
• How to identify a sector?

–Physical position
» Sectors is a vector [cylinder, surface, sector]
» Not used anymore
» OS/BIOS must deal with bad sectors

–Logical Block Addressing (LBA)
» Every sector has integer address 
» Controller translates from address  physical position
» Shields OS from structure of disk
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What Does the File System Need?

• Track free disk blocks
–Need to know where to put newly written data

• Track which blocks contain data for which files
–Need to know where to read a file from

• Track files in a directory
–Find list of file's blocks given its name

• Where do we maintain all of this?
–Somewhere on disk
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Conclusion
• Disk Performance: 

– Queuing time + Controller + Seek + Rotational + Transfer
– Rotational latency: on average ½ rotation
– Transfer time: spec of disk depends on rotation speed and bit storage density

• Devices have complex interaction and performance characteristics
– Response time (Latency) = Queue + Overhead + Transfer

» Effective BW = BW * T/(S+T)
– HDD: Queuing time + controller + seek + rotation + transfer
– SDD: Queuing time + controller + transfer (erasure & wear)

• Systems (e.g., file system) designed to optimize performance and reliability
– Relative to performance characteristics of underlying device

• Bursts & High Utilization introduce queuing delays
• Queuing Latency:

– M/M/1 and M/G/1 queues: simplest to analyze
– As utilization approaches 100%, latency  

Tq = Tser x ½(1+C) x /(1 – ))


