

Recall: Overall Performance for I/O Path

Recall: Typical Numbers for Magnetic Disk

Parameter Space/Density	Info/Range Space: 18TB (Seagate), 9 platters, in 3½ inch form factor! Areal Density: ≥ 1 Terabit/square inch! (PMR, Helium, …)	 Performance of I/O subsystem Metrics: Response Time, Throughput 	User Threa	
Average Seek Time	Typically 4-6 milliseconds	 Effective BW = transfer size / response time 	,	[OS Paths]
Average Rotational Latency	Most laptop/desktop disks rotate at 3600-7200 RPM (16-8 ms/rotation). Server disks up to 15,000 RPM. Average latency is halfway around disk so 4-8 milliseconds	 Contributing factors to latency: » Software paths (can be loosely modeled by a queue) 	Response a	Time = Queue + I/O device service
Controller Time	Depends on controller hardware	» Hardware controller	300	Time (ms)
Transfer Time	 Typically 50 to 250 MB/s. Depends on: Transfer size (usually a sector): 512B – 1KB per sector Rotation speed: 3600 RPM to 15000 RPM Recording density: bits per inch on a track Diameter: ranges from 1 in to 5.25 in 	 » I/O device service time Queuing behavior: Can lead to big increases of latency as utilization increases Solutions? 	200 100	
Cost	Used to drop by a factor of two every 1.5 years (or faster), now slowing down		0	100%
				Throughput (Utilization) (% total BW)
20	Kubiatowicz CS162 © UCB Fall 2020 Lec 19.3	11/2/20 Kubiatowicz CS162 © UCB	Fall 2020	Lec 19

A Simple Systems Performance Model

Background: Random Distributions

Some Results from Queuing Theory

Some Results from Queuing Theory

Building a File System Recall: User vs. System View of a File · User's view: File System: Laver of OS that transforms block interface of disks (or other - Durable Data Structures block devices) into Files, Directories, etc. System's view (system call interface): · Classic OS situation: Take limited hardware interface (array of blocks) and provide a more convenient/useful interface with: - Collection of Bytes (UNIX) - Naming: Find file by name, not block numbers - Doesn't matter to system what kind of data structures you want to store on disk! - Organize file names with directories System's view (inside OS): - Organization: Map files to blocks - Collection of blocks (a block is a logical transfer unit, while a sector is the physical transfer unit) - Protection: Enforce access restrictions Block size ≥ sector size; in UNIX, block size is 4KB - Reliability: Keep files intact despite crashes, hardware failures, etc. 11/2/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 19.49 11/2/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 19.50 Translation from User to System View **Disk Management** · Basic entities on a disk: - File: user-visible group of blocks arranged sequentially in logical space File File - Directory: user-visible index mapping names to files System (Bytes) · The disk is accessed as linear array of sectors What happens if user says: "give me bytes 2 – 12?" • How to identify a sector? - Fetch block corresponding to those bytes -Physical position » Sectors is a vector [cylinder, surface, sector] - Return just the correct portion of the block » Not used anymore What about writing bytes 2 – 12? » OS/BIOS must deal with bad sectors - Fetch block, modify relevant portion, write out block Logical Block Addressing (LBA) Everything inside file system is in terms of whole-size blocks • » Every sector has integer address - Actual disk I/O happens in blocks » Controller translates from address \Rightarrow physical position read/write smaller than block size needs to translate and buffer » Shields OS from structure of disk 11/2/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 19.51 11/2/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 19.52

What Does the File System Need?				Conclusion				
 Track Need Track Need Track Track Find Where Som 	free disk blocks d to know where to put newly written data which blocks contain data for which files d to know where to read a file from files in a directory list of file's blocks given its name e do we maintain all of this? where on disk		•	Disk Performance: - Queuing time + Controller + Seek + Rotational + Transfer - Rotational latency: on average ½ rotation - Transfer time: spec of disk depends on rotation speed and bit storage density Devices have complex interaction and performance characteristics - Response time (Latency) = Queue + Overhead + Transfer » Effective BW = BW * T/(S+T) - HDD: Queuing time + controller + seek + rotation + transfer - SDD: Queuing time + controller + transfer (erasure & wear) Systems (e.g., file system) designed to optimize performance and reliability - Relative to performance characteristics of underlying device Bursts & High Utilization introduce queuing delays Queuing Latency: - M/M/1 and M/G/1 queues: simplest to analyze - As utilization approaches 100%, latency $\rightarrow \infty$ $T_q = T_{ser} x \frac{1}{2}(1+C) x \rho/(1-\rho))$				
11/2/20	Kubiatowicz CS162 © UCB Fall 2020	Lec 19.53	11/2/20	Kubiatowicz CS162 © UCB Fall 2020	Lec 19.54			