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Recall: Magnetic Disks

Track
Sector
* Cylinders: all the tracks under the
head at a given point on all surfaces Head
» Read/write data is a three-stage process: Cylinder
T~Platter

— Seek time: position the head/arm over the proper track
— Rotational latency: wait for desired sector to rotate under r/w head
— Transfer time: transfer a block of bits (sector) under r/w head

Disk Latency = Queueing Time + Controller time +
Seek Time + Rotation Time + Xfer Time

http://cs162.eecs.Berkeley.edu D Software S& o
el 2d Media Time ®
S Qe S 3 (Seek+Rot+Xfer) g
2 (Device Driver) o3 =
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Recall: Typical Numbers for Magnetic Disk Recall: Overall Performance for I/O Path

Q

Space/Density Space: 18TB (Seagate), 9 platters, in 3% inch form factor! ¢ Performance of I/10O Subsystem User _’|:|:|:|_’ :3; 110 )
Areal Density: 2 1 Terabit/square inch! (PMR, Helium, ...) — Metrics: Response Time, Throughput Thread a % device
Average Seek Time Typically 4-6 milliseconds _ Effective BW = transfer size / response time [0S Paths] —

Average Rotational Latency Most laptop/desktop disks rotate at 3600-7200 RPM

(16-8 ms/rotation). Server disks up to 15,000 RPM.
Average latency is halfway around disk so 4-8 milliseconds
Depends on controller hardware

Typically 50 to 250 MB/s. Depends on:

» Transfer size (usually a sector): 512B — 1KB per sector
* Rotation speed: 3600 RPM to 15000 RPM

» Recording density: bits per inch on a track

+ Diameter: ranges from 1into 5.25in

Cost Used to drop by a factor of two every 1.5 years (or faster), now slowing down

Controller Time
Transfer Time
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— Contributing factors to latency:
» Software paths (can be loosely modeled by a

queue) Response
» Hardware controller 300 Timg(ms)

» 1/O device service time
* Queuing behavior:

— Can lead to big increases of latency as
utilization increases

200

100

— Solutions?
0 4o 100%
Throughput (Utilization)
(% total BW)
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Response Time = Queue + I/O device service time




Sequential Server Performance

) ) R — L

time

+ Single sequential “server” that can complete a task in time L operates at
rate < % (on average, in steady state, ...)

-L=10ms — B =100 °P/g
-L=2yr—B=05 P/,

* Applies to a processor, a disk drive, a person, a TA, ...

11/2/20
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Single Pipelined Server

L L
= -|:| divided over distinct resources
logical operation =
LLLL L LL
oo I -
Co 1 [ |
 — — — —  ———

time

« Single pipelined server of k stages for tasks of length L (i.e., time L/, per
stage) delivers at rate < ¥/,.

-L=10ms, k =4 — B =400 P/

-L=2yrk=2-B8=1%/,

11/2/20
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Example Systems “Pipelines”
1/0 Processing — !@
S Fil Upper Lower
User Process =§-:>Syslt(2>m E:l Driver Driver e

Communication

* Anything with queues between operational process behaves roughly

“pipeline like”
» Important difference is that “initiations” are decoupled from processing
— May have to queue up a burst of operations
— Not synchronous and deterministic like in 61C
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Multiple Servers

« k servers handling tasks of length L delivers at rate < ¥/, .
~L=10ms, k=4 — B =400 °P/g

-L=2yrk=2-8=1%/,

* In 61C you saw multiple processors (cores)

— Systems present lots of multiple parallel servers
— Often with lots of queues
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Example Systems “Parallelism”

I/0 Processing

all,  File Upper i Lower
UsUeSreFr’rgrcoeCses T g - :Systeﬂ.xDriver Driver
. R
&

User Process~"

Communication

Parallel Computation, Databases, ...
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A Simple Systems Performance Model

/Bandwidth (B): Rate, Op/s

) = e.g., flow: gal per min

Latency (L): time per op P
- How long does it take to  /
flow through the system /

fB=29 andL=3s
How much water is “in the
system?”

“Service Time”
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A Simple Systems Performance Model

Latency (L): time per op o Bandwidth (B): Rate, Op/s

- Howlong does ittaketo | i e.g., flow: gal per min
flow through the system / __
fB=2%/gandL=3s

\
How many ops are “in
the system?”

“Service Time”
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Little’s Law (B = 1)

arrivals—»
A

L
* In any stable system

— Average arrival rate = Average departure rate

» The number of “things” in a system is equal to the bandwidth times the
latency (on average

— N (jobs) =\ (jobs/s) x L (s)

— Applies to any stable system
» Can be applied to an entire system:

— Including the queues, the processing stages, parallelism, whatever
* Or to just one processing stage:

—i.e., disk I/O subsystem, queue leading into a CPU or I/O stage, ...

departures
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A Simple Systems Performance Model

Request Rate: 1
Latency (L) .

" Queuing delay: d
) L C

The maximum service rate
Umay 1S @ property of the
system — the “bottleneck”

Ideal System Performance

* How does u (service rate) vary with A (request rate)?

asymptotic peak rate

Moax |

Service Rate (u)
- “delivered load”

‘ ”max
Utilization: p = Request Rate (1 ) - “offered load”
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Two Related Questions Bottleneck Analysis
LLLL LLL
[ s | [
N — - I ——
_ What about —— — time
Queuing delay: d “internal” queues?
What determines Request ‘ Service
? Rate: 1 Rate: u
Hmax *

Service Rate: u
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Overall System: Series of Stages
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Bottleneck Analysis Bottleneck Analysis

» Each stage has its own queue and maximum service rate

» Each stage has its own queue and maximum service rate
» Suppose the green stage is the bottleneck

» Suppose the green stage is the bottleneck
* The bottleneck stage dictates the maximum service rate p,;,;,4x

Hmax = Hmax,3

Service Request Service
Rate: u Rate: 1 Rate: u

Request
Rate: 1

Overall System: Series of Stages

System Model: Bottleneck Stage
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Example: Servicing a Highly Contended Lock Two Related Questions
Queue of
> p . waiting th‘% poe = 17 Tank represents queue of
mex X bottleneck stage, including
O queues of previous stages,
\ S 3 g All try to grab lock Queuing de in case of backpressure
X secin \ =
} critic_al Time = p-X sec
section Rate = 1/, ops/sec, Critical section s service rate of
regardless of # cores guarded by #mg’:)ttleneck stage
% I lock 9
% Service Rate: u
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A Simple Systems Performance Model

Queuing d
I ¢

Service Rate: u
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Useful to apply this

model to:

» Bottleneck stage

» Entire system up to
and including
bottleneck stage

* Entire system

Lec 19.21
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Latency (Response Time)

_ I T
4

Queue Processing
Stage
(Server)

» Total latency (response time): queuing time + service time
» Service time depends on the underlying operation

— For CPU stage, how much computation

— For I/O stage, characteristics of the hardware
* What about the queuing time?
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A Simple Systems Performance Model

Request Rate: 1

Latency (L) /TN — 1

" Queuing delay: d
) L«
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When will the
queue(s) start to fill?

The maximum service rate
Umay 1S @ property of the
system — the “bottleneck”

Utilization: p =

max

Lec 19.23
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Queuing

» What happens when request rate (1) exceeds max service rate (Umqx)?
+ Short bursts can be absorbed by the queue

— If on average 1 < g, it will drain eventually
* Prolonged A > u — queue will grow without bound
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A Simple, Deterministic World

\
—>(Server—> departures

* T,: time between arrivals — Queue

arrivals N
A, Te T
. Ts: servi}::e time T4 T4 r—Ta
©u="rg I I I
* To: queuing time
T ) T T
s

T

* Assume requests arrive at regular intervals, take a fixed time to process,
with plenty of time between ...
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A Simple, Deterministic World

Saturation

Delivered Throughput

mpty Queue [Unbounded
0 1 0 1
Utilizatipn (p = 4/, = "5/r,) Utilization (p = %// = "5/7)

Delivered Throughput

>
g 3
[0} [0)
© ©
(0] (0]
> >3
[0} [0
> j}
C e}

time time
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A Bursty World

T
arrivals~>’@—H—>\Servef;‘r—> departures
N

|_TQ_)‘_TS;>

* T4: time between
arrivals
* Now, a random
variable

* Ts: service time
U= k/Ts

* Ty: queuing time
c L=Ty+Ts

Arrivals

[
T
Q depth i

* Requests arrive in a burst, must queue up until served

« Same average arrival time, but almost all of the requests experience large
queue delays (even though average utilization is low)
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How to model burstiness of arrival?

¢ Ty, the time between arrivals, is now a random variable
— Elegant mathematical framework if we model it as an exponential distribution
— Probability distribution function of an exponential distribution with parameter 1

is f(x) = de™™*
“Memoryless”: Likelihood O; |
of an event occurring is 08 \\ '
mdgpendent of.r.\ow long ! \! mean arrival interval (1/A)
we’ve been waiting T\
Lots of short arrival o8

intervals (i.e., high 05 1
instantaneous rate) oz !
1

0.1

Few long gaps (i.e., Iow%\7
. t t t 2 4 6 8 10
instantaneous rate) X (\)
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A Simple Systems Performance Model Background: Random Distributions

Mean
» Server spends variable time (T) with customers - (m)
Request Rate: 1 — Mean (Average): m = % p(T) - T
Latency (L R — Variance (stddev?): 62 = Y. p(T) - (T —m)? = ¥ p(T) - T? — m?
a )\\ — Squared éoeﬁicier)lt of variazr)me' c=7/ ’ Distribution
N = q T Im? of service times
Y- Queue grows atratey — 4
 Important values of C:
After time t, it will have — No variance or deterministic = ¢ = 0 mean
grown to length t(u — 1) — “Memoryless” or exponential = C = 1
» Past tells nothing about future
» Poisson process — purely or completely random process Memoryless
. » Many complex systems (or aggregates)
Utilization: p = are well described as memoryless
11/2/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 19.29 11/2/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 19.30

Steady State Queuing Theory Little’s Law Applied to a Queue
Arrivals % Departure% * When applied to a queue, we get:
Queuing System _Average Arrival Rate
g Sy iy ) g
_
* Queuing Theory applies to long term, steady state behavior Average length of the Average time “waiting”
— Arrival rate = Departure rate queue

* Arrivals characterized by some probabilistic distribution

» Departures characterized by some probabilistic distribution
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Some Results from Queuing Theory

* Assumptions: system in equilibrium, no limit to the queue, time between
successive arrivals is random and memoryless

—( 4>‘
Arrival Rate Service Rate
A

w="1r,

+ A: arrival rate

* Ts: mean time to service a customer

* C: squared coefficient of variance (“Z/Tz)
N

* u: service rate (1/r)
« p: utilization (%/,)
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Some Results from Queuing Theory

* Memoryless service distribution (C = 1)—an “M/M/1 queue”:
p
To =—- T,
Q 1— p S
» General service distribution (no restrictions)—an “M/G/1 queue”:

_1+C p

e 2 1-p %
« A: arrival rate * u: service rate (/)
* T¢: mean time to service a customer

* C: squared coefficient of variance (”Z/Tsz)

« p: utilization (%/,)
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Some Results from Queuing Theory (con’t)

° Ty = 1%} - T¢ (memoryless service distribution)

o Lo = AT, (by Little’s Law)

Utilization is p = /.0, = ATs, SO
2

_ _p _ P -
o Lo =1Tp = ol Ty = 1 (for a single server)
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Ideal System Performance

Latency (1)

* Why does latency
blow up as we
approach 100%
utilization?

* Queue builds up on
| each burst

7 « But very rarely (or

ﬂ Request Rate (1) - “offered load” Never) gets a

Service Rate (u)
Time

- “delivered

load”

Operation Time

chance to drain

“Half-Power Point” : load at which system delivers half of peak performance
- Design and provision systems to operate roughly in this regime
- Latency low and predictable, utilization good: ~50%
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Why unbounded response time?

* Assume deterministic arrival process and service time
— Possible to sustain utilization = 1 with bounded response time!

time

Why unbounded response time?

300| Response
Time (ms)

* Assume stochastic arrival process
(and service time)

— No longer possible to achieve
utilization = 1 100

200

This wasted time can
never be reclaimed!
So cannot achieve p = 1!

0 oo, 100%
Throughput (Utilization)
(% total BW)

time

1 |

ﬁ_J
arrival service
time time
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A Little Queuing Theory: An Example Queuing Theory Resources
+ Example Usage Statistics: . ] .
— User requests 10 x 8KB disk I/Os per second * Resources page contains Queueing Theory Resources (under Readings):
_ ﬁ&guggsif‘esf r2vcl)cre]se )((Ig?gr%nélc?rut}:'g;(Satrzl-zleteel?+$gtﬂfgr)15) — Scanned pages from Patterson and Hennessy book that gives further
« Questions: discussion and simple proof for general equation:
— How utilized is the disk? https://cs162.eecs.berkeley.edu/static/readings/patterson_queue.pdf
» Ans: server utilization, p = AT, 5 — A complete website full of resources:
- W)t]aAtn'SS tThe average time spent in the queue? http://web2.uwindsor.ca/math/hlynka/gonline.html
— What is the number of requests in the queue?
» Ans: L . . . . .
— What is the avg response time for disk request? + Some previous midterms with queueing theory questions
» Ans: To o= T+ T,
« Computation: . e .
L (avg # arriving customers/s) = 10/s + Assume that Queueing Theory is fair game for Midterm III!
T, (avg time to service customer) 20 ms (0.02s)
p (server utilization) = A x T,,,= 10/s x .02s = 0.2
T, 8t|me/customer in queue Teer XU/(1—u
x 0.2/(1-0.2) =20 x 0.25 = 5'ms (0 .005s
L, avg Iength of queue) A x T,=10/s x .005s = 0.05
Ty (avg time/customer in system) =T+ T, = 25 ms
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Optimize 1/0O Performance

0 Response
o 300 A
User 2 | (o Time (ms)
Thread |:|:|:| § 200
Queue (]
[OS Paths]

Response Time = 100

Queue + 1/0O device service time

* How to improve performance?
— Make everything faster ©
— More Decoupled (Parallelism) systems
» multiple independent buses or controllers
— Optimize the bottleneck to increase service rate
» Use the queue to optimize the service
— Do other useful work while waiting
* Queues absorb bursts and smooth the flow
* Admissions control (finite queues)
— Limits delays, but may introduce unfairness and livelock

Throughput (Utilization)
(% total BW)

0 o 100%

When is Disk Performance Highest?

When there are big sequential reads, or

When there is so much work to do that they can be piggy
backed (reordering queues—one moment)

OK to be inefficient when things are mostly idle
+ Bursts are both a threat and an opportunity

» <your idea for optimization goes here>

— Waste space for speed?

Other techniques:
— Reduce overhead through user level drivers

— Reduce the impact of 1/0 delays by doing other useful work
in the meantime

Kubiatowicz CS162 © UCB Fall 2020
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Disk Scheduling (1/3) Disk Scheduling (2/3)
+ Disk can do only one request at a time; What order do you + Disk can do only one request at a time; What order do you
choose to do queued requests? choose to do queued requests?
User NN Hea User I Vol i (5 I [N Hea
Requests‘ i i i Ol |w| ‘ @ Requests‘ it i i °| |m| ‘ @
* FIFO Order * SCAN: Implements an Elevator Algorithm: take the closest
— Fair among requesters, but order of arrival ma g request in the direction of travel
to random spots on the disk = Very long se = —No starvation, but retains flavor of SSTF
+ SSTF: Shortest seek time first ) w m in e % e -
—Pick the request that’s closest on the disk 2 H ' —H — H
—Although called SSTF, today must include
rotational delay in calculation, since
rotation can be as long as seek
—Con: SSTF good at reducing seeks, but
may lead to starvation
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Disk Scheduling (3/3)

+ Disk can do only one request at a time; What order do you
choose to do queued requests?

User Hea
2= B = 5=
* C-SCAN: Circular-Scan: only goes in one direction
— Skips any requests on the way back

—Fairer than SCAN, not biased towards pages in middle

0 14 7 53 65 67 9% 122 124 183 199
} 1 | 1 11 1 11 | I
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Recall: How do we Hide I/O Latency?
» Blocking Interface: “Wait”

—When request data (e.g., read() system call), put process to sleep until
data is ready

—When write data (e.g., write() system call), put process to sleep until
device is ready for data

* Non-blocking Interface: “Don’t Wait”

—Returns quickly from read or write request with count of bytes
successfully transferred to kernel

— Read may return nothing, write may write nothing
» Asynchronous Interface: “Tell Me Later”

—When requesting data, take pointer to user’s buffer, return
immediately; later kernel fills buffer and notifies user

—When sending data, take pointer to user’s buffer, return immediately;
later kernel takes data and notifies user
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Recall: I1/0 and Storage Layers

Application / Service

High Level 1/0 Streams

Low Level I/ File Descriptors
open(), read(), write(), close(), ...
— 1 Open File Descriptions

_ File Syste Files/Directories/Indexes

| /O Driver | Commands and Data Transfers

What we will cover next...

T

Disks, Flash, Controllers, DMA

What we just covered...
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What we covered in Lecture 4

From Storage to File Systems

VOAPland ey Memory Address

syscalls

. Logical Index,
File System Typically 4 KB
Hardware

Devices Phys. Block Phys Index.,

4KB
Physical Index,
HDD SSD
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Building a File System

» File System: Layer of OS that transforms block interface of disks (or other
block devices) into Files, Directories, etc.

+ Classic OS situation: Take limited hardware interface (array of blocks) and
provide a more convenient/useful interface with:
— Naming: Find file by name, not block numbers
— Organize file names with directories
— Organization: Map files to blocks
— Protection: Enforce access restrictions
— Reliability: Keep files intact despite crashes, hardware failures, etc.

Recall: User vs. System View of a File

» User’s view:

— Durable Data Structures

» System’s view (system call interface):

— Collection of Bytes (UNIX)
— Doesn’t matter to system what kind of data structures you want to store on disk!

» System’s view (inside OS):

— Collection of blocks (a block is a logical transfer unit, while a sector is the physical
transfer unit)
— Block size > sector size; in UNIX, block size is 4KB
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Translation from User to System View Disk Management
 Basic entities on a disk:
‘ File - F|.Ie: user-V|S|bIe'group' of blocks a_rranged sequgntlally in logical space
- - (Bytes) - - — Directory: user-visible index mapping names to files
» The disk is accessed as linear array of sectors
» What happens if user says: “give me bytes 2 — 12?” « How to identify a sector?
— Fetch block corresponding to those bytes —Physical position
— Return just the correct portion of the block » Sectors is a vector [cylinder, surface, sector]
« What about writing bytes 2 — 12? » Not used anymore
— Fetch block, modify relevant portion, write out block » OS/BIOS must deal with bad sectors
T _p T ) —Logical Block Addressing (LBA)
. Everythlng_ inside file syst_em is in terms of whole-size blocks » Every sector has integer address
— Actual disk I/O happens in blocks » Controller translates from address = physical position
— read/write smaller than block size needs to translate and buffer » Shields OS from structure of disk
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What Does the File System Need?

* Track free disk blocks
—Need to know where to put newly written data
 Track which blocks contain data for which files
—Need to know where to read a file from
* Track files in a directory
—Find list of file's blocks given its name
* Where do we maintain all of this?
—Somewhere on disk
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Conclusion

Disk Performance:
— Queuing time + Controller + Seek + Rotational + Transfer
— Rotational latency: on average V% rotation
— Transfer time: spec of disk depends on rotation speed and bit storage density
Devices have complex interaction and performance characteristics
— Response time (Latency) = Queue + Overhead + Transfer
» Effective BW = BW * T/(S+T)
— HDD: Queuing time + controller + seek + rotation + transfer
— SDD: Queuing time + controller + transfer (erasure & wear)
Systems (e.qg., file system) designed to optimize performance and reliability
— Relative to performance characteristics of underlying device
Bursts & High Utilization introduce queuing delays
Queuing Latency:
— M/M/1 and M/G/1 queues: simplest to analyze
— As utilization approaches 100%, latency — «

Tq = Tser X 1/2(1'*'0) X P/(1 - P))
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