
CS162
Operating Systems and
Systems Programming

Lecture 19

Filesystems 1: Performance (Con’t),
Queueing Theory, Filesystem Design

November 2nd, 2020
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 19.211/2/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Magnetic Disks

• Cylinders: all the tracks under the
head at a given point on all surfaces

• Read/write data is a three-stage process:
– Seek time: position the head/arm over the proper track
– Rotational latency: wait for desired sector to rotate under r/w head
– Transfer time: transfer a block of bits (sector) under r/w head

Sector
Track

Cylinder
Head

Platter

Software
Queue
(Device Driver)

H
ardw

are
C

ontroller
Media Time
(Seek+Rot+Xfer)

R
equest

R
esult

Disk Latency = Queueing Time + Controller time +
Seek Time + Rotation Time + Xfer Time

Lec 19.311/2/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Typical Numbers for Magnetic Disk

Parameter Info/Range
Space/Density Space: 18TB (Seagate), 9 platters, in 3½ inch form factor!

Areal Density: ≥ 1 Terabit/square inch! (PMR, Helium, …)
Average Seek Time Typically 4-6 milliseconds
Average Rotational Latency Most laptop/desktop disks rotate at 3600-7200 RPM

(16-8 ms/rotation). Server disks up to 15,000 RPM.
Average latency is halfway around disk so 4-8 milliseconds

Controller Time Depends on controller hardware
Transfer Time Typically 50 to 250 MB/s. Depends on:

• Transfer size (usually a sector): 512B – 1KB per sector
• Rotation speed: 3600 RPM to 15000 RPM
• Recording density: bits per inch on a track
• Diameter: ranges from 1 in to 5.25 in

Cost Used to drop by a factor of two every 1.5 years (or faster), now slowing down

Lec 19.411/2/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Overall Performance for I/O Path

• Performance of I/O subsystem
– Metrics: Response Time, Throughput
– Effective BW = transfer size / response time
– Contributing factors to latency:

» Software paths (can be loosely modeled by a
queue)

» Hardware controller
» I/O device service time

• Queuing behavior:
– Can lead to big increases of latency as

utilization increases
– Solutions?

Response Time = Queue + I/O device service time

User
Thread

Queue
[OS Paths]

C
ontroller

I/O
device

100%

Response
Time (ms)

Throughput (Utilization)
(% total BW)

0

100

200

300

0%

Lec 19.511/2/20 Kubiatowicz CS162 © UCB Fall 2020

Sequential Server Performance

• Single sequential “server” that can complete a task in time 𝐿 operates at
rate ଵ (on average, in steady state, …)– 𝐿 ൌ 10 ms → 𝐵 ൌ 100 op

sൗ– 𝐿 ൌ 2 yr → 𝐵 ൌ 0.5 op
yrൗ

• Applies to a processor, a disk drive, a person, a TA, …

L L L L…
time

L

Lec 19.611/2/20 Kubiatowicz CS162 © UCB Fall 2020

Single Pipelined Server

• Single pipelined server of 𝑘 stages for tasks of length 𝐿 (i.e., time ⁄ per
stage) delivers at rate ⁄ .– 𝐿 ൌ 10 ms, 𝑘 ൌ 4 → 𝐵 ൌ 400 op

sൗ– 𝐿 ൌ 2 yr, 𝑘 ൌ 2 → 𝐵 ൌ 1 op
yrൗ

L

…

L

L L L L L L L

logical operation divided over distinct resources

time

Lec 19.711/2/20 Kubiatowicz CS162 © UCB Fall 2020

Example Systems “Pipelines”

• Anything with queues between operational process behaves roughly
“pipeline like”

• Important difference is that “initiations” are decoupled from processing
– May have to queue up a burst of operations
– Not synchronous and deterministic like in 61C

User Process

sy
sc

al
l

File
System

Upper
Driver

Lower
Driver

I/O Processing

Communication

Lec 19.811/2/20 Kubiatowicz CS162 © UCB Fall 2020

Multiple Servers

• 𝑘 servers handling tasks of length 𝐿 delivers at rate ⁄ .– 𝐿 ൌ 10 ms, 𝑘 ൌ 4 → 𝐵 ൌ 400 op
sൗ– 𝐿 ൌ 2 yr, 𝑘 ൌ 2 → 𝐵 ൌ 1 op

yrൗ
• In 61C you saw multiple processors (cores)

– Systems present lots of multiple parallel servers
– Often with lots of queues

L

… k

Lec 19.911/2/20 Kubiatowicz CS162 © UCB Fall 2020

Example Systems “Parallelism”

User Process syscall File
System

Upper
Driver

Lower
Driver

I/O Processing

Communication

User Process
User Process

Parallel Computation, Databases, …

Lec 19.1011/2/20 Kubiatowicz CS162 © UCB Fall 2020

A Simple Systems Performance Model

Bandwidth (𝐵): Rate, Op/s
e.g., flow: gal per min

Latency (𝐿): time per op
- How long does it take to

flow through the system

“Service Time” If 𝐵 ൌ 2 gal
sൗ and L ൌ 3 s

How much water is “in the
system?”

Lec 19.1111/2/20 Kubiatowicz CS162 © UCB Fall 2020

A Simple Systems Performance Model

Bandwidth (𝐵): Rate, Op/s
e.g., flow: gal per min

Latency (𝐿): time per op
- How long does it take to

flow through the system

“Service Time”
If 𝐵 ൌ 2 op

sൗ and L ൌ 3 s
How many ops are “in
the system?”

Lec 19.1211/2/20 Kubiatowicz CS162 © UCB Fall 2020

Little’s Law (B)

• In any stable system
– Average arrival rate = Average departure rate

• The number of “things” in a system is equal to the bandwidth times the
latency (on average)

– N (jobs) = λ (jobs/s) x L (s)
– Applies to any stable system

• Can be applied to an entire system:
– Including the queues, the processing stages, parallelism, whatever

• Or to just one processing stage:
– i.e., disk I/O subsystem, queue leading into a CPU or I/O stage, …

arrivals departuresN
λ

L

Lec 19.1311/2/20 Kubiatowicz CS162 © UCB Fall 2020

A Simple Systems Performance Model

Request Rate: 𝜆

Service Rate: 𝜇
Operation Time: 𝑡

Queuing delay: 𝑑Latency (𝐿)

The maximum service rate 𝜇𝑚𝑎𝑥 is a property of the
system – the “bottleneck”

Utilization: 𝜌 ൌ ఒఓ௫
Lec 19.1411/2/20 Kubiatowicz CS162 © UCB Fall 2020

Ideal System Performance

• How does 𝜇 (service rate) vary with 𝜆 (request rate)?

14

Request Rate (𝜆) - “offered load”

Service Rate (𝜇)
- “delivered load”

𝜇𝑚𝑎𝑥
𝜇𝑚𝑎𝑥

asymptotic peak rate

Lec 19.1511/2/20 Kubiatowicz CS162 © UCB Fall 2020

Two Related Questions

Request Rate: 𝜆
Operation Time: 𝑡
Latency (𝐿)

The maximum service rate 𝜇𝑚𝑎𝑥 is a property of the
system – the “bottleneck”

Utilization: 𝜌 ൌ ఒఓ௫Service Rate: 𝜇

Queuing delay: 𝑑
What determines 𝜇௫?

What about
“internal” queues?

Lec 19.1611/2/20 Kubiatowicz CS162 © UCB Fall 2020

Bottleneck Analysis

…
L L L L L L L

time

Overall System: Series of Stages

Request
Rate: 𝜆 Service

Rate: 𝜇

Lec 19.1711/2/20 Kubiatowicz CS162 © UCB Fall 2020

Bottleneck Analysis

• Each stage has its own queue and maximum service rate
• Suppose the green stage is the bottleneck

Overall System: Series of Stages

Request
Rate: 𝜆 Service

Rate: 𝜇𝜇௫,ଵ 𝜇௫,ଶ 𝜇௫,ଷ

Lec 19.1811/2/20 Kubiatowicz CS162 © UCB Fall 2020

Bottleneck Analysis

• Each stage has its own queue and maximum service rate
• Suppose the green stage is the bottleneck
• The bottleneck stage dictates the maximum service rate 𝜇௫

System Model: Bottleneck Stage

Request
Rate: 𝜆 Service

Rate: 𝜇𝜇௫ ൌ 𝜇௫,ଷ

Lec 19.1911/2/20 Kubiatowicz CS162 © UCB Fall 2020

Example: Servicing a Highly Contended Lock

…

…

𝑋 sec in
critical
section

All try to grab lock

Time = 𝑝 ⋅ 𝑋 sec
Rate = ଵ ⁄ ops/sec,
regardless of # cores

𝑝 𝜇௫ ൌ 1 𝑋ൗ
Queue of
waiting threads

Critical section
guarded by
lock

Lec 19.2011/2/20 Kubiatowicz CS162 © UCB Fall 2020

Request Rate: 𝜆
Operation Time: 𝑡
Latency (𝐿)

The maximum service rate 𝜇𝑚𝑎𝑥 is a property of the
system – the “bottleneck”

Utilization: 𝜌 ൌ ఒఓ௫

Two Related Questions

Service Rate: 𝜇

Queuing delay: 𝑑
𝜇௫ is service rate of

bottleneck stage

Tank represents queue of
bottleneck stage, including
queues of previous stages,
in case of backpressure

Lec 19.2111/2/20 Kubiatowicz CS162 © UCB Fall 2020

Request Rate: 𝜆
Operation Time: 𝑡
Latency (𝐿)

The maximum service rate 𝜇𝑚𝑎𝑥 is a property of the
system – the “bottleneck”

Utilization: 𝜌 ൌ ఒఓ௫Service Rate: 𝜇

Queuing delay: 𝑑

A Simple Systems Performance Model

Useful to apply this
model to:
• Bottleneck stage
• Entire system up to

and including
bottleneck stage

• Entire system

Lec 19.2211/2/20 Kubiatowicz CS162 © UCB Fall 2020

Latency (Response Time)

• Total latency (response time): queuing time + service time
• Service time depends on the underlying operation

– For CPU stage, how much computation
– For I/O stage, characteristics of the hardware

• What about the queuing time?

Processing
Stage

(Server)

Queue

Lec 19.2311/2/20 Kubiatowicz CS162 © UCB Fall 2020

A Simple Systems Performance Model

Request Rate: 𝜆

Service Rate: 𝜇
Operation Time: 𝑡

Queuing delay: 𝑑Latency (𝐿)

The maximum service rate 𝜇𝑚𝑎𝑥 is a property of the
system – the “bottleneck”

Utilization: 𝜌 ൌ ఒఓ௫

When will the
queue(s) start to fill?

Lec 19.2411/2/20 Kubiatowicz CS162 © UCB Fall 2020

Queuing

• What happens when request rate (𝜆) exceeds max service rate (𝜇௫)?
• Short bursts can be absorbed by the queue

– If on average 𝜆 ൏ 𝜇, it will drain eventually
• Prolonged 𝜆 𝜇 → queue will grow without bound

Lec 19.2511/2/20 Kubiatowicz CS162 © UCB Fall 2020

• Assume requests arrive at regular intervals, take a fixed time to process,
with plenty of time between …

Queue Serverarrivals departures

𝑇 𝑇 𝑇
𝑇ொ 𝑇ௌ

𝑇ொ 𝑇ௌ• 𝑇: time between
arrivals

• 𝜆 ൌ ଵ ்ಲൗ
• 𝑇ௌ: service time

• 𝜇 ൌ ்ೄൗ
• 𝑇ொ: queuing time

• 𝐿 ൌ 𝑇ொ 𝑇ௌ

A Simple, Deterministic World

Lec 19.2611/2/20 Kubiatowicz CS162 © UCB Fall 2020

A Simple, Deterministic World

Utilization (𝜌 ൌ ఒ ఓ⁄ ൌ ்ೄ ்ಲൗ)

D
el

iv
er

ed
 T

hr
ou

gh
pu

t

0 1

1

time

Q
ue

ue
 d

el
ay

D
el

iv
er

ed
 T

hr
ou

gh
pu

t

0 1

1

Utilization (𝜌 ൌ ఒ ఓ⁄ ൌ ்ೄ ்ಲൗ)

Empty Queue

Saturation

Unbounded

time

Q
ue

ue
 d

el
ay

Lec 19.2711/2/20 Kubiatowicz CS162 © UCB Fall 2020

• Requests arrive in a burst, must queue up until served
• Same average arrival time, but almost all of the requests experience large

queue delays (even though average utilization is low)

Queue Serverarrivals departures𝑇ொ 𝑇ௌ• 𝑇: time between
arrivals

• Now, a random
variable

• 𝑇ௌ: service time
• 𝜇 ൌ ்ೄൗ

• 𝑇ொ: queuing time
• 𝐿 ൌ 𝑇ொ 𝑇ௌ

Q depth

Server

Arrivals

A Bursty World

Lec 19.2811/2/20 Kubiatowicz CS162 © UCB Fall 2020

How to model burstiness of arrival?• 𝑇, the time between arrivals, is now a random variable
– Elegant mathematical framework if we model it as an exponential distribution
– Probability distribution function of an exponential distribution with parameter 𝜆

is 𝑓 𝑥 ൌ 𝜆𝑒ିఒ௫

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

Lots of short arrival
intervals (i.e., high
instantaneous rate)

Few long gaps (i.e., low
instantaneous rate)

x (λ)

mean arrival interval (1/λ)

“Memoryless”: Likelihood
of an event occurring is
independent of how long
we’ve been waiting

Lec 19.2911/2/20 Kubiatowicz CS162 © UCB Fall 2020

A Simple Systems Performance Model

Request Rate: 𝜆

Service Rate: 𝜇
Operation Time: 𝑡

Queuing delay: 𝑑Latency (𝐿)

Utilization: 𝜌 ൌ ఒఓ௫

Queue grows at rate 𝜇 െ 𝜆
After time t , it will have
grown to length 𝑡ሺ𝜇 െ 𝜆ሻ

Lec 19.3011/2/20 Kubiatowicz CS162 © UCB Fall 2020

Background: Random Distributions

• Server spends variable time (𝑇) with customers
– Mean (Average): 𝑚 ൌ ∑𝑝 𝑇 ⋅ 𝑇
– Variance (stddev2): 𝜎ଶ ൌ ∑𝑝 𝑇 ⋅ 𝑇 െ𝑚 ଶ ൌ ∑𝑝 𝑇 ⋅ 𝑇ଶ െ𝑚ଶ
– Squared coefficient of variance: 𝐶 ൌ ఙమ మൗ

• Important values of 𝐶:
– No variance or deterministic 𝐶 ൌ 0
– “Memoryless” or exponential 𝐶 ൌ 1

» Past tells nothing about future
» Poisson process – purely or completely random process
» Many complex systems (or aggregates)

are well described as memoryless

Mean
(m)

mean

Memoryless

Distribution
of service times

Lec 19.3111/2/20 Kubiatowicz CS162 © UCB Fall 2020

Steady State Queuing Theory

• Queuing Theory applies to long term, steady state behavior
– Arrival rate = Departure rate

• Arrivals characterized by some probabilistic distribution

• Departures characterized by some probabilistic distribution

DeparturesArrivals
Queuing System

Queue Server

Lec 19.3211/2/20 Kubiatowicz CS162 © UCB Fall 2020

Little’s Law Applied to a Queue

• When applied to a queue, we get:

Average length of the
queue

Average Arrival Rate

Average time “waiting”
𝐿ொ ൌ 𝜆𝑇ொ

Lec 19.3311/2/20 Kubiatowicz CS162 © UCB Fall 2020

Some Results from Queuing Theory

• Assumptions: system in equilibrium, no limit to the queue, time between
successive arrivals is random and memoryless

Arrival Rate𝜆 Queue Server
Service Rate𝜇 ൌ 1 𝑇ௌൗ

• 𝜇: service rate (ଵ ்ೄൗ)
• 𝜌: utilization (ఒ ఓ⁄)

• 𝜆: arrival rate
• 𝑇ௌ: mean time to service a customer
• 𝐶: squared coefficient of variance (ఙమ ೄ்మൗ)

Lec 19.3411/2/20 Kubiatowicz CS162 © UCB Fall 2020

Some Results from Queuing Theory
• Memoryless service distribution (𝐶 ൌ 1ሻ—an “M/M/1 queue”:𝑇ொ ൌ 𝜌1 െ 𝜌 ⋅ 𝑇ௌ
• General service distribution (no restrictions)—an “M/G/1 queue”:𝑇ொ ൌ 1 𝐶2 ⋅ 𝜌1 െ 𝜌 ⋅ 𝑇ௌ

• 𝜇: service rate (ଵ ்ೄൗ)
• 𝜌: utilization (ఒ ఓ⁄)

• 𝜆: arrival rate
• 𝑇ௌ: mean time to service a customer
• 𝐶: squared coefficient of variance (ఙమ ೄ்మൗ)

Lec 19.3511/2/20 Kubiatowicz CS162 © UCB Fall 2020

Some Results from Queuing Theory (con’t)

ொ ఘଵିఘ ௌ (memoryless service distribution)

ொ ொ (by Little’s Law)

Utilization is ఒ ఓೌೣ ௌ, so

ொ ொ ఘ்ೄ ொ ఘమଵିఘ (for a single server)

Lec 19.3611/2/20 Kubiatowicz CS162 © UCB Fall 2020

Ideal System Performance

Request Rate (𝜆) - “offered load”

Se
rv

ic
e

R
at

e
(𝜇)

-“
de

liv
er

ed

lo
ad

” 𝜇𝑚𝑎𝑥
𝜇𝑚𝑎𝑥

Latency (𝜆)

Operation Time
Ti

m
e

“Half-Power Point” : load at which system delivers half of peak performance
- Design and provision systems to operate roughly in this regime
- Latency low and predictable, utilization good: ~50%

• 𝑇ொ~ ఘଵିఘ, 𝜌 ൌ ఒ ఓೌೣ⁄
• Why does latency

blow up as we
approach 100%
utilization?

• Queue builds up on
each burst

• But very rarely (or
never) gets a
chance to drain

Lec 19.3711/2/20 Kubiatowicz CS162 © UCB Fall 2020

Why unbounded response time?
• Assume deterministic arrival process and service time

– Possible to sustain utilization = 1 with bounded response time!

time

arrival
time

service
time

Lec 19.3811/2/20 Kubiatowicz CS162 © UCB Fall 2020

Why unbounded response time?
• Assume stochastic arrival process

(and service time)
– No longer possible to achieve

utilization = 1

100%

Response
Time (ms)

Throughput (Utilization)
(% total BW)

0

100

200

300

0%

time

This wasted time can
never be reclaimed!
So cannot achieve = 1!

Lec 19.3911/2/20 Kubiatowicz CS162 © UCB Fall 2020

A Little Queuing Theory: An Example
• Example Usage Statistics:

– User requests 10 x 8KB disk I/Os per second
– Requests & service exponentially distributed (C=1.0)
– Avg. service = 20 ms (From controller+seek+rot+trans)

• Questions:
– How utilized is the disk?

» Ans: server utilization, = Tser
– What is the average time spent in the queue?

» Ans: Tq
– What is the number of requests in the queue?

» Ans: Lq
– What is the avg response time for disk request?

» Ans: Tsys = Tq + Tser
• Computation:
 (avg # arriving customers/s) = 10/s
Tser (avg time to service customer) = 20 ms (0.02s)
 (server utilization) = x Tser= 10/s x .02s = 0.2
Tq (avg time/customer in queue) = Tser x u/(1 – u)

= 20 x 0.2/(1-0.2) = 20 x 0.25 = 5 ms (0 .005s)
Lq (avg length of queue) = x Tq=10/s x .005s = 0.05
Tsys (avg time/customer in system) =Tq + Tser= 25 ms

Lec 19.4011/2/20 Kubiatowicz CS162 © UCB Fall 2020

Queuing Theory Resources
• Resources page contains Queueing Theory Resources (under Readings):

– Scanned pages from Patterson and Hennessy book that gives further
discussion and simple proof for general equation:
https://cs162.eecs.berkeley.edu/static/readings/patterson_queue.pdf

– A complete website full of resources:
http://web2.uwindsor.ca/math/hlynka/qonline.html

• Some previous midterms with queueing theory questions

• Assume that Queueing Theory is fair game for Midterm III!

Lec 19.4111/2/20 Kubiatowicz CS162 © UCB Fall 2020

Optimize I/O Performance

• How to improve performance?
– Make everything faster
– More Decoupled (Parallelism) systems

» multiple independent buses or controllers
– Optimize the bottleneck to increase service rate

» Use the queue to optimize the service
– Do other useful work while waiting

• Queues absorb bursts and smooth the flow
• Admissions control (finite queues)

– Limits delays, but may introduce unfairness and livelock

Response Time =
Queue + I/O device service time

User
Thread

Queue
[OS Paths]

C
ontroller

I/O
device

100%

Response
Time (ms)

Throughput (Utilization)
(% total BW)

0

100

200

300

0%

Lec 19.4211/2/20 Kubiatowicz CS162 © UCB Fall 2020

When is Disk Performance Highest?
• When there are big sequential reads, or
• When there is so much work to do that they can be piggy

backed (reordering queues—one moment)

• OK to be inefficient when things are mostly idle
• Bursts are both a threat and an opportunity
• <your idea for optimization goes here>

– Waste space for speed?

• Other techniques:
– Reduce overhead through user level drivers
– Reduce the impact of I/O delays by doing other useful work

in the meantime

Lec 19.4311/2/20 Kubiatowicz CS162 © UCB Fall 2020

Disk Scheduling (1/3)
• Disk can do only one request at a time; What order do you

choose to do queued requests?

• FIFO Order
– Fair among requesters, but order of arrival may be

to random spots on the disk Very long seeks
• SSTF: Shortest seek time first

– Pick the request that’s closest on the disk
– Although called SSTF, today must include

rotational delay in calculation, since
rotation can be as long as seek

– Con: SSTF good at reducing seeks, but
may lead to starvation

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

1
4

2

D
isk H

ead
3

Lec 19.4411/2/20 Kubiatowicz CS162 © UCB Fall 2020

Disk Scheduling (2/3)
• Disk can do only one request at a time; What order do you

choose to do queued requests?

• SCAN: Implements an Elevator Algorithm: take the closest
request in the direction of travel

– No starvation, but retains flavor of SSTF

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

Lec 19.4511/2/20 Kubiatowicz CS162 © UCB Fall 2020

Disk Scheduling (3/3)
• Disk can do only one request at a time; What order do you

choose to do queued requests?

• C-SCAN: Circular-Scan: only goes in one direction
– Skips any requests on the way back
– Fairer than SCAN, not biased towards pages in middle

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

Lec 19.4611/2/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: How do we Hide I/O Latency?
• Blocking Interface: “Wait”

– When request data (e.g., read() system call), put process to sleep until
data is ready

– When write data (e.g., write() system call), put process to sleep until
device is ready for data

• Non-blocking Interface: “Don’t Wait”
– Returns quickly from read or write request with count of bytes

successfully transferred to kernel
– Read may return nothing, write may write nothing

• Asynchronous Interface: “Tell Me Later”
– When requesting data, take pointer to user’s buffer, return

immediately; later kernel fills buffer and notifies user
– When sending data, take pointer to user’s buffer, return immediately;

later kernel takes data and notifies user

Lec 19.4711/2/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: I/O and Storage Layers

High Level I/O
Low Level I/O

Syscall

File System

I/O Driver

Application / Service

Streams

File Descriptors
open(), read(), write(), close(), …

Files/Directories/Indexes

Commands and Data Transfers

Disks, Flash, Controllers, DMA

What we covered in Lecture 4

Open File Descriptions

What we just covered…

What we will cover next…

Lec 19.4811/2/20 Kubiatowicz CS162 © UCB Fall 2020

From Storage to File Systems

I/O API and
syscalls Variable-Size Buffer

File System Block
Logical Index,
Typically 4 KB

Hardware
Devices

Memory Address

HDD

Sector(s)

Physical Index,
512B or 4KB

SSD

Flash Trans. Layer

Phys. Block Phys Index.,
4KB

Sector(s)Sector(s)

Erasure Page

Lec 19.4911/2/20 Kubiatowicz CS162 © UCB Fall 2020

Building a File System
• File System: Layer of OS that transforms block interface of disks (or other

block devices) into Files, Directories, etc.
• Classic OS situation: Take limited hardware interface (array of blocks) and

provide a more convenient/useful interface with:
– Naming: Find file by name, not block numbers
– Organize file names with directories
– Organization: Map files to blocks
– Protection: Enforce access restrictions
– Reliability: Keep files intact despite crashes, hardware failures, etc.

Lec 19.5011/2/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: User vs. System View of a File
• User’s view:

– Durable Data Structures
• System’s view (system call interface):

– Collection of Bytes (UNIX)
– Doesn’t matter to system what kind of data structures you want to store on disk!

• System’s view (inside OS):
– Collection of blocks (a block is a logical transfer unit, while a sector is the physical

transfer unit)
– Block size sector size; in UNIX, block size is 4KB

Lec 19.5111/2/20 Kubiatowicz CS162 © UCB Fall 2020

Translation from User to System View

• What happens if user says: “give me bytes 2 – 12?”
– Fetch block corresponding to those bytes
– Return just the correct portion of the block

• What about writing bytes 2 – 12?
– Fetch block, modify relevant portion, write out block

• Everything inside file system is in terms of whole-size blocks
– Actual disk I/O happens in blocks
– read/write smaller than block size needs to translate and buffer

File
System

File
(Bytes)

Lec 19.5211/2/20 Kubiatowicz CS162 © UCB Fall 2020

Disk Management
• Basic entities on a disk:

– File: user-visible group of blocks arranged sequentially in logical space
– Directory: user-visible index mapping names to files

• The disk is accessed as linear array of sectors
• How to identify a sector?

–Physical position
» Sectors is a vector [cylinder, surface, sector]
» Not used anymore
» OS/BIOS must deal with bad sectors

–Logical Block Addressing (LBA)
» Every sector has integer address
» Controller translates from address physical position
» Shields OS from structure of disk

Lec 19.5311/2/20 Kubiatowicz CS162 © UCB Fall 2020

What Does the File System Need?

• Track free disk blocks
–Need to know where to put newly written data

• Track which blocks contain data for which files
–Need to know where to read a file from

• Track files in a directory
–Find list of file's blocks given its name

• Where do we maintain all of this?
–Somewhere on disk

Lec 19.5411/2/20 Kubiatowicz CS162 © UCB Fall 2020

Conclusion
• Disk Performance:

– Queuing time + Controller + Seek + Rotational + Transfer
– Rotational latency: on average ½ rotation
– Transfer time: spec of disk depends on rotation speed and bit storage density

• Devices have complex interaction and performance characteristics
– Response time (Latency) = Queue + Overhead + Transfer

» Effective BW = BW * T/(S+T)
– HDD: Queuing time + controller + seek + rotation + transfer
– SDD: Queuing time + controller + transfer (erasure & wear)

• Systems (e.g., file system) designed to optimize performance and reliability
– Relative to performance characteristics of underlying device

• Bursts & High Utilization introduce queuing delays
• Queuing Latency:

– M/M/1 and M/G/1 queues: simplest to analyze
– As utilization approaches 100%, latency

Tq = Tser x ½(1+C) x /(1 –))

