CS162
Operating Systems and
Systems Programming

Lecture 21

Filesystems 3: Filesystem Case Studies (Con’t),
Buffering, Reliability, and Transactions

November 9t, 2020
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: Components of a File System

File path

Directory
Structure

File
Header
File number [SEERILE

“inumber” -

One Block = multiple sectors
Ex: 512 sector, 4K block

Data blocks

“inode”

: T

11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec21.2

11/9/20

Recall: FAT Properties

File is collection of disk blocks
(Microsoft calls them “clusters”) FAT

FAT is array of integers mapped 1-1 . 0:
with disk blocks File ”“mber\
31

— Each integer is either:
» Pointer to next block in file; or
» End of file flag; or
» Free block flag

File Number is index of root
of block list for the file

— Follow list to get block #

— Directory must map name to block
number at start of file

But: Where is FAT stored?
— Beginning of disk, before the data blocks
— Usually 2 copies (to handle errors)

Disk Blocks

File 31, Block 0
File 31, Block 1

File 31, Block 3
free

File 31, Block 2

N-1:

memory

Kubiatowicz CS162 © UCB Fall 2020 Lec21.3

Recall: Multilevel Indexed Files (Original 4.1 BSD)

» Sample file in multilevel indexed format: =
— 10 direct ptrs, 1K blocks owners (2)

— How many accesses for block #237
(assume file header accessed on open)?

» Two: One for indirect block, one for data —
— How about block #5? -

» One: One for data
— Block #3407

» Three: double indirect block,
indirect block, and data

* UNIX 4.1 Pros and cons
— Pros: Simple (more or less)
Files can easily expand (up to a point)
Small files particularly cheap and easy

— Cons: Lots of seeks
Very large files must read many indirect block (four 1/Os per block!)

timestamps (3)

size block count

direct blocks .7

{data]
data

single indirect ——-I

double indirect_|

triple indirect

11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec21.4

Fast File System (BSD 4.2, 1984)

« Same inode structure as in BSD 4.1

— same file header and triply indirect blocks like we just studied

— Some changes to block sizes from 1024 = 4096 bytes for performance
» Paper on FFS: “A Fast File System for UNIX”

— Marshall McKusick, William Joy, Samuel Leffler and Robert Fabry
— Off the “resources” page of course website — Take a look!

+ Optimization for Performance and Reliability:
— Distribute inodes among different tracks to be closer to data

CASE STUDY: T Mot 1 Hlosate i e o
BERKELEY FAST FILE SYSTEM (FFS)

—10% reserved disk space
— Skip-sector positioning (mentioned later)
11/9/20 Kubiatowicz CS162 © UCB Fall 2020

Lec21.5 11/9/20

Kubiatowicz CS162 © UCB Fall 2020 Lec21.6

FFS Changes in Inode Placement: Motivation

FFS Locality: Block Groups
« In early UNIX and DOS/Windows’ FAT file system, headers stored in special *+ The UNIX BSD 4.2 (FFS) distributed the header mformatlon T
array in outermost cylinders (inodes) closer to the data blocks e
— Fixed size, set when disk is formatted — Often, inode for file stored in same “cylinder group” ~ /~ ~ Sockarowp:
» At formatting time, a fixed number of inodes are created as parent directory of the file s
» Each is given a unique number, called an “inumber”

* Problem #1: Inodes all in one place (outer tracks)

— Head crash potentially destroys all files by destroying inodes
— Inodes not close to the data that the point to

— makes an “Is” of that directory run very fast

File system volume divided into set of block group%
— Close set of tracks

Block Group 2 r'qua(,
2.

2R

%‘ e 4
» Data blocks, metadata, and free space %0 %%) é &
i ithi B Ot o
» To read a small file, seek to get header, seek back to data Interleellved within block group R %, s o
— Avoid huge seeks between user data and \ N
. , T . system structure o
* Problem #2: When create a file, don’t know how big it will become (in UNIX y
most writes are by appending)

— How much contiguous space do you allocate for a file?

Put directory and its files in common block group
— Makes it hard to optimize for performance

11/9/20 Kubiatowicz CS162 © UCB Fall 2020

Lec21.7 11/9/20

Kubiatowicz CS162 © UCB Fall 2020

Lec21.8

11/9/20

FFS Locality: Block Groups (Con’ t)

 First-Free allocation of new file blocks

Block Group 0
— To expand file, first try successive blocks in bitmap, then =
choose new range of blocks Block Group 1
— Few little holes at start, big sequential runs at / g e k; 3
end of group oo
— Avoids fragmentation
— Sequential layout for big files

* Important: keep 10% or more free!

=
L BE
. ' 4 A €
— Reserve space in the Block Group B\ o
5 N %o ot
« Summary: FFS Inode Layout Pros N N i
— For small directories, can fit all data, file headers o g e
etc. in same cylinder = no seeks! e B
— File headers much smaller than whole block

\;w5°‘°
(a few hundred bytes), so multiple headers fetched from dlsk at same time
— Reliability: whatever happens to the disk, you can find many of the files
(even if directories disconnected
11/9/20

Kubiatowicz CS162 © UCB Fall 2020

Lec21.9

11/9/20

UNIX 4.2 BSD FFS First Fit Block Allocation
In-Use Free
Start of Block Block
Block LI o il [Wl B [[[T T[]
Group
Startof Write Two Block File
Block DN O] [] I [[T[T T[]
Group
Start of Write Large File
Block I
Group

Kubiatowicz CS162 © UCB Fall 2020

Lec21.10

Attack of the Rotational Delay
» Problem 3: Missing blocks due to rotational delay
— Issue: Read one block, do processin
continued turning: missed next b

Skip Sector

9 and read next block. In meantime, disk has
lock! Need 1 revolution/block!

Track Buffer
(Holds complete track)
— Solution1: Skip sector positioning (“interleaving”)
» Place the blocks from one file on every other block of a track: give time for processing
to overlap rotation

» Can be done by OS or in modern drives by the disk controller
for it yet

- Solutlon 2: Read ahead: read next block right after first, even if application hasn’t asked
» This can be done either by OS (read ahead)

» By disk itself (track buffers) - many disk controllers have internal RAM that allows them
to read a complete track

* Modern disks + controllers do many things “under the covers
— Track buffers, elevator algorithms, bad block filtering

Kubiatowicz CS162 © UCB Fall 2020

Lec 21.11

11/9/20

* Pros

UNIX 4.2 BSD FFS

* Cons

— Efficient storage for both small and large files
— Locality for both small and large files

— Locality for metadata and data

— No defragmentation necessary!

Inefficient for tiny files (a 1 byte file requires both an inode and a data
block)

Inefficient encoding when file is mostly contiguous on disk

— Need to reserve 10-20% of free space to prevent fragmentation

Kubiatowicz CS162 © UCB Fall 2020

Lec21.12

Administrivia

3

nonom stooev

9.0 56.04 90.5 55.34 15.09
* Midterm 2: Graded!
— Mean: 55.34, Stdev 15.09
— Historical offset: +26
* No Class on Wednesday!
—Itis a holiday
« If you have any group issues going on, make sure you:
— Make sure that your TA understands what is happing
— Make sure that you reflect these issues on your group evaluations

Linux Example: Ext2/3 Disk Layout

« Disk divided into block groups Spor FeORD
Block Inode Table Root Directo
. . Joock y
— Provides locality] / p—_ ... I
L 4 Block: 258 =3
— Each group has two block-sized bitmaps weat P TR
(free blocks/inodes) o / S —orox e \[2"_"92 t2__[an__ | 5083
— Block sizes settable at format time: Descriptor — / Block 258
1K, 2K, 4K, 8K... o%’/
* Actual inode structure similar to 4.2 BSD ; I, ooz
— with 12 direct pointers —— Inode Table !
Blocka’2:3 _—"[ten [Name | inode
» Ext3: Ext2 with Journaling so% [Boociean [[12 2
- 16 12jpg | 5086
— Several degrees of protection with 5,110 [_Block: 20.002 —[16__fletdat} 5110
comparable overhead mmm‘mw’w\ S
Block Inode :
— We will talk about Journalling later Bitmap Bitmap fle1.dat contents
1 1 \ J
Wﬁ Bk;csk) Bméks 20,002-20,003, 20.11;»20.1 17
16,385 16,386

* Example: create a filel.dat
under /dirl/ in Ext3

11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.13 11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.14
Recall: Directory Abstraction Hard Links
+ Directories are specialized files * Hard link
— Contents: List of pairs <file name, file number> — Mapping from name to file number in the directory structure
' . o usr — First hard link to a file is made when file create usr
» System calls to access directories / First hard link to a fil de when fi ted /
yo en/ creat traverse the structure — Create extra hard links to a file with the link() system call
P — Remove links with unlink() system call .
- mkdir /rmdir add/remove entries /usr/1lib /usr/1lib
_1ink / unlink (rm) /usr/1ib4.3 *+ When can file contents be deleted? /usr/1ib4.3
- libc support — When there are no more hard links to the file
_DIR * opendir (const char *dirname) — Inode maintains reference count for this purpose
- struct dirent * readdir (DIR *dirstream)
- int readdir_r (DIR *dirstream, struct dirent
*entry, usr/1lib4.3/foo usr/lib4.3/foo
struct dirent **result) fusr/ / fusr/ /
11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.16

11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec21.15

Soft Links (Symbolic Links)

+ Soft link or Symbolic Link or Shortcut
— Directory entry contains the path and name of the file
— Map one name to another name

+ Contrast these two different types of directory entries:

— Normal directory entry: <file name, file #>
— Symbolic link: <file name, dest. file name>

*+ OS looks up destination file name each time program accesses
source file name

— Lookup can fail (error result from open)

* Unix: Create soft links with symlink syscall

11/9/20

Directory Traversal

What happens when we open /home/cs162/stuff.txt?
“/” - inumber for root inode configured into kernel, say 2

— Read inode 2 from its position in inode array on disk

— Extract the direct and indirect block pointers

— Determine block that holds root directory (say block 49358)

— Read that block, scan it for “home” to get inumber for this

directory (say 8086)

Read inode 8086 for /home, extract its blocks, read block
(say 7756), scan it for “cs162” to get its inumber (say 732)
Read inode 732 for /home/cs162, extract its blocks, read
block (say 12132), scan it for “stuff.txt” to get its inumber,
say 9909
Read inode 9909 for /home/cs162/stuff.txt
Set up file description to refer to this inode so reads /
write can access the data blocks referenced by its direct
and indirect pointers

Check permissions on the final inode and each
directory’s inode...

8086 |_|

9909 DI stuff.txt

inode

block 49358

/
“home” : 8086

block 12132

=
‘stuff.txt”:9909

block 7756
|
\\\\\‘ “cs162”:732

Blocks of

[T ael] [T aal] [aad

08
762]
3 | “cs162”:732 ||"5tuff.txt”:9999

J

Kubiatowicz C$162 © UCB Fall 2020 Lec 21.17 11/9/20 Kubiatowicz C$162 © UCB Fall 2020 Lec21.18
Large Directories: B-Trees (dirhash)
in FreeBSD, NetBSD, OpenBSD
Search for hash("out2”) = 0x0000c194
B+Tree Root
Before |[00ad 1102 [b0bf8201 | [cffla412 |
hildPointer|_, .~ | | r 1
B+Tree Node B+Tree Node B+Tree Node
Before|[0000c195]00018201] |
Child Pointer |1 | | J
B+ B+Tree Leaf B+Tree Leaf
Hash [0000a0d1]0000b971
Entry Pointer [L |
,, e e CASE STUDY:
Name | . | [filel [file2 | [file9841 | outl | out2 | [out16341] L]
File Number [36210429] 983211 [239341 | 231121 | [243212 [841013 | 841014 | [324114]
ou’is e 841014 WINDOWS NTFS
11/9/20 Kubiatowicz C$162 © UCB Fall 2020 Lec 21.19 11/9/20 Kubiatowicz C$162 © UCB Fall 2020 Lec 21.20

New Technology File System (NTFS)

» Default on modern Windows systems
+ Variable length extents
— Rather than fixed blocks
* Instead of FAT or inode array: Master File Table
— Like a database, with max 1 KB size for each table entry
— Everything (almost) is a sequence of <attribute:value> pairs
» Meta-data and data
« Each entry in MFT contains metadata and:
— File’s data directly (for small files)
— A list of extents (start block, size) for file’s data
— For big files: pointers to other MFT entries with more extent lists

11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.21

11/9/20

NTFS

* Master File Table
— Database with Flexible 1KB entri
— Variable-sized attribute records (

es for metadata/data
data or metadata)

— Extend with variable depth tree (non-resident)

— Block pointers cover runs of bloc|

Extent

» Extents — variable length contiguous regions (T
Master File Table Extent
kS MFT

— Similar approach in Linux (ext4)
— File create can provide hint as to
— size of file

+ Journaling for reliability
— Discussed later

Log file record
Extent

Extent 1
Small file recoxrd

Extent 2

Large file record

small directory record Extent 3

http://ntfs.com/ntfs-mft.htm

Kubiatowicz CS162 © UCB Fall 2020 Lec 21.22

NTFS Small File: Data stored with Metadata
Masterile Table

Create time, modify time, access time,
Owner id, security specifier, flags (RO, hidden, sys)

MFT Record (small file) data attribute
/:/ W Std.lnfg{. ‘ File Name ‘ Data (reﬁjent) ‘ (free)‘

L J
I

Attribute list

IR

11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec21.23

11/9/20

NTFS Medium Fil

e: Extents for File Data

Masteriﬂe Table

_MFT Record

Start

Data Extent

Start + Length

o ‘ Std. Info. ‘FiIeName ‘ D‘ata(nonresident) ‘ (free) ‘

‘ Start

!

Length

Data Extent

Start + Length

Kubiatowicz CS162 © UCB Fall 2020 Lec 21.24

NTFS Large File: Pointers to Other MFT Records

ster File Table

MFT Record
(huge/badly-fragmented file)

‘ std. Info. ‘

Attr List (nonresident) ‘ ‘
+

Extent with part of attribute list

Ma:
MFTRecord NTFS Huge, Fragmented File: = || =" ‘
(big/fragmented file) e e ‘
A | st | aneiin [|| Data fronresidern) | Many MFT Records H | —lb = - B
N | I C‘:}...b =1 1‘ “ __ Data (nonresident)) ‘ ‘
— =hb =
— = Al j“ __ Data (nonresident)]
| 1 " : Data (nonresident) || | — h = =
B =
— *@ Extent with part of attribute list
| E} “ __ Data (nonresident “ ‘
ol ||, owtewesiden | | =l (=] p—— =
= = e I T [
............... | l. : Data (nonresident) I| | ; @Extemwim part of attribute list
== =] e T N
— — =
— o
:‘ “ __Data (nonresident) ‘ ‘
— "
11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.25 11/9/20 Kubiatowicz CS162 © UCB Fall 2020 = Lec 21.26
NTFS Directories
« Directories implemented as B Trees
+ File's number identifies its entry in MFT
* MFT entry always has a file name attribute
— Human readable name, file number of parent dir
 Hard link? Multiple file name attributes in MFT entry
11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.27 11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.28

Memory Mapped Files

» Traditional I/0O involves explicit transfers between buffers in process
address space to/from regions of a file

— This involves multiple copies into caches in memory, plus system calls

+ What if we could “map” the file directly into an empty region of our
address space

— Implicitly “page it in” when we read it
— Write it and “eventually” page it out

« Executable files are treated this way when we exec the process!!

Recall: Who Does What, When?

Process virtual address physical address
instyctio MMU bagel #
(] > rame:
= NG PT \
. / faultl” offset =
retry exception®” PAJe Tty el
Operating System " update PT entry offse
age Fault Handler

oad page from disk

scheduler
11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.29 11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.30
Using Paging to mmap () Files mmap () system call
MMAP(2) BSD System Calls Manual MMAP(2)
Process virtual address physical address e
—-- allocate memory, or map files or devices into memory
. v . pageg mmap a
instryctio MMU > PT frame# LIBRARY
Standard C Library (libc, -1lc)
offset =
retry , svuop:gs s , ,
exce) // \\\ include <sys/mman.h>
Read File _ . void x
N (void xaddr, size t len, int t, int flags, int fd,
Contents \\\ mmapo\fltzlt :?fsgt)?lze en int prot, 1in aqgs in

Operating Syste | * DESCRIPTION

from memory te PT entries The mmap() system call causes the pages starting at addr and continuing
age Fa v S— L for at most len bytes to be mapped from the object described by fd,
fOI‘ mapped reg|0h\ starting a'\t byte offset offsgt. If offset or len is not'a_multiple of
3} as "backed” by file |5 * May map a specific region or let the system find one for you
— Tricky to know where the holes are
+ Used both for manipulating files and for sharing between processes
Fil
scheduler))
mmap () file to region of VAS
11/9/20 Kubiatow! CB Fall 2020 Lec 21.31 11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.32

An mmap () Example

Sharing through Mapped Files

#include <sys/mman.h> /* also stdio.h ke PPPYS N il VAS 1 0x000 - VAS 2 0x000
int something = 162; $./mmap test \ i JL A JL
Data at: 105d63058 nstructio nstructio
inF main (int argc, char *argv[]) Heap at : 7f8a33c04b70
e s Stack at: 7Ff£59e9db10 data data
mmap at : 105d97000 File I
printf("Data at: %161x\n", (lond This is line one heapl - heapl
printf("Heap at : %161x\n", (lon This is line two
printf("Stack at: %161x\n", (lon A . A
This is line three
/* Open the file */ This is line four
myfd = open(argv[1], O_RDWR | 0_C) S Memory
if (myfd < @) { perror("open failed" o P
N .
/* map the file */ S ///
mfile = mmap(©, 10000, PROT_READ| N 4
if (mfile == MAP_FAILED) {perrord $ cat test) \\ // stack
This is line one , . A g N
printf("mmap at : %161x\n", (lon, ThilLet's write over its line three :
puts(mfile); This is line four
strcpy(mfile+20,"Let's write ove OxFFF... OxFFF...
close(myfd); J .
return @; + Also: anonymous memory between parents and children
¥ — no file backing — just swap space
11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.33 11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.34
Buffer Cache
» Kernel must copy disk blocks to main memory to access their contents and
write them back if modified
— Could be data blocks, inodes, directory contents, etc.
— Possibly dirty (modified and not written back)
* Key ldea: Exploit locality by caching disk data in memory
— Name translations: Mapping from paths—inodes
— Disk blocks: Mapping from block address—disk content
+ Buffer Cache: Memory used to cache kernel resources, including disk
blocks and name translations
TH E BU FFER CACH E — Can contain “dirty” blocks (with modifications not on disk)
11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.35 11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.36

File System Buffer Cache

directories,

inodes, freemap Dir Data blocks

HE

Free bitmap

Data blocks . / Blkzrn Disk
. . . | Reading /S élf(ki"f:]
» OS implements a PCB ! N

cache of disk iNodes :
blocks for efficient file ed17" !
access to data, desc N

! Writing

i

il BEE Eu EEB

State [fee] [Tree[[T[T T T T T T T T 71]

11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.37

File System Buffer Cache: open

. Data blocks o DiSK
« Directory lookup . S v '
repeat as needed: PCB . Reading /o SR
b & Block Group 2 ™%
—load block of iNodes e
directory

1

1

1

1

1

1

1

i

1

file = H
— search for map desc !
1

1

i 1
1

1

1

1

1

1

1

1

State [free T

11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.38

File System Buffer Cache: open

Data blocks

I

Disk

+ Directory lookup

Block Group 1

Reading / —

repeat as needed: ——
— load block of ‘/EID/‘alof%Efupz %,
directory w

file
— search for map desc
» Create reference
via open file
descriptor

T 1Y

i
iNodes i |:|
Dir Data blocks E

|:| |:| eb:inumber

1
1
Free bitmap H
1

siocks] T I IO [[T T [|

State [fee [Tdr [T T T T T T T T e]]

Writing

11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.39

File System Buffer Cache: Read?

Data blocks

PCB .

i
iNodes i

Disk

* Read Process

— From inode,
traverse index
structure to find
data block file

desc
— load data block

— copy all or part Dir Data blocks !
to read data

buffor |:| D eb:inumber

1
1
Free bitmap H
1

Block Group 1

Reading 7 |:| s ’)
/ Block Group 2 ™% \

t 1Y

Writing

State [ree[T [Jor [[[[T T [T T TJnode[]]
11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.40

File System Buffer Cache: Write?

File System Buffer Cache: Eviction?

~—-——-—.__Disk ~—-——-—.__Disk
. Data blocks , Block Group 0 . Data blocks . Block Group 0
» Process similar to | ——— "\ * Blocks being ; ———
read, but may . . | Reading / ?l?kiaf;pj : W_rltten back to . . | Reading ?Miaipj
allocate new PCB I Alp=S disc go through a PcB : posciliy
blocks (update iNodes . { D /) transient state iNodes . {
free map), blocks file [+ D | . | file [D |
need to be written 4% \Writng dese—= 'Writing
back to disk; ' :
inode? Dir Data blocks ! Dir Data blocks !
' Inamer:inumber Inarmep:inumber
[I e == I
Free bitmap H I Free bitmap H
Memory
socks| T [T [[T | socks|] TN TR [[[[[] |
State [free T | [dir | | | [T I I Jinode] I] State [fee] || [dir T | I [dity [T | I Tinode] I]
11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.41 11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.42
Buffer Cache Discussion File System Caching
* Implemented entirely in OS software * Replacement policy? LRU
— Unlike memory caches and TLB — Can afford overhead full LRU implementation
« Blocks go through transitional states between free and in-use — Advantages: ,
Bei df disk_ bei itten to disk » Works very well for name translation
— Being read trom disk, being written 1o dis » Works well in general as long as memory is big enough to accommodate a host’s
— Other processes can run, etc. working set of files.
+ Blocks are used for a variety of purposes — Disadvantages:
— inodes, data for dirs and files, freemap » Fails when some application scans through file system, thereby flushing the cache
oS " tai ters int th’ with data used only once
- maintains pointers into them » Example: find . -exec grep foo {} \;
+ Termination — e.g., process exit — open, read, write « Other Replacement Policies?
* Replacement — what to do when it fills up? — Some systems allow applications to request other policies
— Example, ‘Use Once’:
» File system can discard blocks as soon as they are used
11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.43 11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.44

File System Caching (con’t)

* Cache Size: How much memory should the OS allocate to the buffer cache
vs virtual memory?

— Too much memory to the file system cache = won’t be able to run many
applications

— Too little memory to file system cache = many applications may run slowly (disk
caching not effective)

— Solution: adjust boundary dynamically so that the disk access rates for paging
and file access are balanced

11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec21.45

11/9/20

File System Prefetching

+ Read Ahead Prefetching: fetch sequential blocks early

— Key Idea: exploit fact that most common file access is sequential by prefetching
subsequent disk blocks ahead of current read request

— Elevator algorithm can efficiently interleave prefetches from concurrent
applications

* How much to prefetch?
— Too much prefetching imposes delays on requests by other applications

— Too little prefetching causes many seeks (and rotational delays) among
concurrent file requests

Kubiatowicz CS162 © UCB Fall 2020 Lec 21.46
Delayed Writes Delayed Writes (Advantages)
» Buffer cache is a writeback cache (writes are termed “Delayed Writes”) » Performance advantage: return to user quickly without writing to disk!
* write() copies data from user space to kernel buffer cache « Disk scheduler can efficiently order lots of requests
— Quick return to user space — Elevator Algorithm can rearrange writes to avoid random seeks
+ Delay block allocation:
» read() is fulfilled by the cache, so reads see the results of writes — May be able to allocate multiple blocks at same time for file, keep them contiguous
— Even if the data has not reached disk + Some files never actually make it all the way to disk
.) . — Many short-lived files!
* When does data from a write syscall finally reach disk?
— When the buffer cache is full (e.g., we need to evict something)
— When the buffer cache is flushed periodically (in case we crash)
11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.47 11/9/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 21.48

Buffer Caching vs. Demand Paging

* Replacement Policy?
— Demand Paging: LRU is infeasible; use approximation (like NRU/Clock)
— Buffer Cache: LRU is OK

« Eviction Policy?
— Demand Paging: evict not-recently-used pages when memory is close to full
— Buffer Cache: write back dirty blocks periodically, even if used recently
» Why? To minimize data loss in case of a crash

11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.49

11/9/20

Dealing with Persistent State

 Buffer Cache: write back dirty blocks periodically, even if used recently
— Why? To minimize data loss in case of a crash
— Linux does periodic flush every 30 seconds
* Not foolproof! Can still crash with dirty blocks in the cache
— What if the dirty block was for a directory?
» Lose pointer to file’s inode (leak space)
» File system now in inconsistent state ®

Takeaway: File systems need

recovery mechanisms

Kubiatowicz CS162 © UCB Fall 2020

Lec 21.50

Important “ilities”

+ Availability: the probability that the system can accept and process requests
— Measured in “nines” of probability: e.g. 99.9% probability is “3-nines of availability”
— Key idea here is independence of failures

+ Durability: the ability of a system to recover data despite faults
— This idea is fault tolerance applied to data

— Doesn’t necessarily imply availability: information on pyramids was very durable,
but could not be accessed until discovery of Rosetta Stone

+ Reliability: the ability of a system or component to perform its required
functions under stated conditions for a specified period of time (IEEE
definition)

— Usually stronger than simply availability: means that the system is not only “up”,
but also working correctly

— Includes availability, security, fault tolerance/durability

— Must make sure data survives system crashes, disk crashes, other problems

11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.51

11/9/20

HOW TO MAKE FILE SYSTEMS MORE
DURABLE?

Kubiatowicz CS162 © UCB Fall 2020

Lec 21.52

How to Make File Systems more Durable?

+» Disk blocks contain Reed-Solomon error correcting codes (ECC) to deal with
small defects in disk drive
— Can allow recovery of data from small media defects

* Make sure writes survive in short term
— Either abandon delayed writes or
— Use special, battery-backed RAM (called non-volatile RAM or NVRAM) for dirty
blocks in buffer cache

* Make sure that data survives in long term
— Need to replicate! More than one copy of data!
— Important element: independence of failure
» Could put copies on one disk, but if disk head fails...
» Could put copies on different disks, but if server fails...
» Could put copies on different servers, but if building is struck by
lightning....
» Could put copies on servers in different continents...
Lec 21.53

11/9/20 Kubiatowicz CS162 © UCB Fall 2020

11/9/20

RAID 1: Disk Mirroring/Shadowing
«—_lecovery

og .. OO0

Each disk is fully duplicated onto its “shadow”
— For high I/O rate, high availability environments
— Most expensive solution: 100% capacity overhead
Bandwidth sacrificed on write:
— Logical write = two physical writes
— Highest bandwidth when disk heads and rotation synchronized (challenging)
Reads may be optimized
— Can have two independent reads to same data
Recovery:
— Disk failure = replace disk and copy data to new disk

— Hot Spare: idle disk attached to system for immediate replacement
Kubiatowicz CS162 © UCB Fall 2020

Lec 21.54

RAID 5+: High 1/0O Rate Parity

. . . Stripe Unit
» Data stripped across multiple disks
— Successive blocks stored on successive PO
(non-parity) disks _
— Increased bandwidth over single disk p1 Inf;%?«;?g
Disk
+ Parity block (in green) constructed D1 |D11| | Addresses
by XORing data bocks in stripe
~ P0=D0®D1®D2®D3 D19
— Can destroy any one disk and still
reconstruct data p1d [p1g
 Suppose Disk 3 fails, then can reconstruct: ps5
D2=D0®D1®&D3®P0
Disk 1 Disk2 Disk3 Disk4 Disk5

» Can spread information widely across internet for durability
— RAID algorithms work over geographic scale

11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.55

11/9/20

RAID 6 and other Erasure Codes

In general: RAIDX is an “erasure code”

— Must have ability to know which disks are bad

— Treat missing disk as an “Erasure”
Today, disks so big that: RAID 5 not sufficient!

— Time to repair disk sooooo long, another disk might fail in process!

—“RAID 6” — allow 2 disks in replication stripe to fail

— Requires more complex erasure code, such as EVENODD code (see readings)
More general option for general erasure code: Reed-Solomon codes

— Based on polynomials in GF(2X) (I.e. k-bit symbols)

- m data points define a degree m polynomial; encoding is n points on the polynomial

— Any m points can be used to recover the polynomial; n — m failures tolerated
Erasure codes not just for disk arrays. For example, geographic replication

— E.g., split data into m = 4 chunks, generate n = 16 fragments and distribute across
the Internet

— Any 4 fragments can be used to recover the original data --- very durable!

Kubiatowicz CS162 © UCB Fall 2020 Lec 21.56

11/9/20

Use of Erasure Coding for High Durability/overhead ratio!

§ wor .~ Fraction Blocks Lost .«
3 Per Year (FBLPY) o

Repaic Time (months)

» Exploit law of large numbers for durability!

» 6 month repair, FBLPY with 4x increase in total size of data:
— Replication (4 copies): 0.03
— Fragmentation (16 of 64 fragments needed): 10-3

Kubiatowicz CS162 © UCB Fall 2020 Lec 21.57

Higher Durability through Geographic Replication

* Highly durable — hard to destroy all copies
Highly available for reads
— Simple replication: read any copy
— Erasure coded: read m of n
* Low availability for writes
— Can't write if any one replica is not up
— Or — need relaxed consistency model
» Reliability? — availability, security, durability, fault-tolerance

Replica/Frag #n

11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.58

11/9/20

HOW TO MAKE FILE SYSTEMS MORE
RELIABLE?

Kubiatowicz CS162 © UCB Fall 2020 Lec 21.59

File System Reliability:
(Difference from Block-level reliability)

What can happen if disk loses power or software crashes?
— Some operations in progress may complete
— Some operations in progress may be lost
— Overwrite of a block may only partially complete

» Having RAID doesn’t necessarily protect against all such failures
— No protection against writing bad state
— What if one disk of RAID group not written?

 File system needs durability (as a minimum!)

— Data previously stored can be retrieved (maybe after some recovery step),
regardless of failure

» But durability is not quite enough...!

11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.60

Storage Reliability Problem

» Single logical file operation can involve updates to multiple physical disk blocks
—inode, indirect block, data block, bitmap, ...

— With sector remapping, single update to physical disk block can require multiple
(even lower level) updates to sectors

* At a physical level, operations complete one at a time
— Want concurrent operations for performance

* How do we guarantee consistency regardless of when crash occurs?

11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.61

11/9/20

Threats to Reliability

* Interrupted Operation

— Crash or power failure in the middle of a series of related updates may leave stored
data in an inconsistent state

— Example: transfer funds from one bank account to another
— What if transfer is interrupted after withdrawal and before deposit?

* Loss of stored data

— Failure of non-volatile storage media may cause previously stored data to
disappear or be corrupted

Kubiatowicz CS162 © UCB Fall 2020 Lec 21.62

Two Reliability Approaches

Careful Ordering and Recovery Versioning and Copy-on-Write

* FAT & FFS + (fsck) « ZFS, ...

» Each step builds structure, * Version files at some granularity

» Data block <= inode < free <= directory « Create new structure linking back to
« Last step links it in to rest of FS unchanged parts of old

+ Recover scans structure looking for * Last step is to declare that the new
incomplete actions version is ready

11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.63

11/9/20

Reliability Approach #1: Careful Ordering

» Sequence operations in a specific order
— Careful design to allow sequence to be interrupted safely

» Post-crash recovery

— Read data structures to see if there were any operations in progress
— Clean up/finish as needed

* Approach taken by
— FAT and FFS (fsck) to protect filesystem structure/metadata
— Many app-level recovery schemes (e.g., Word, emacs autosaves)

Kubiatowicz CS162 © UCB Fall 2020 Lec 21.64

11/9/20

Normal operation:

Berkeley FFS: Create a File

Recovery:

Allocate data block
Write data block
Allocate inode
Write inode block

Update bitmap of free blocks
and inodes

Update directory with file name
— inode number

Update modify time for directory

» Scan inode table

« If any unlinked files (not in any
directory), delete or put in lost &
found dir

» Compare free block bitmap
against inode trees

+ Scan directories for missing
update/access times

Time proportional to disk size

Kubiatowicz CS162 © UCB Fall 2020 Lec 21.65

11/9/20

Reliability Approach #2: Copy on Write File Layout

Recall: multi-level index structure lets us find the data blocks of a file
Instead of over-writing existing data blocks and updating the index structure:
— Create a new version of the file with the updated data
— Reuse blocks that don’t change much of what is already in place
— This is called: Copy On Write (COW)

Seems expensive! But
— Updates can be batched
— Almost all disk writes can occur in parallel

Approach taken in network file server appliances
— NetApp’s Write Anywhere File Layout (WAFL)
— ZFS (Sun/Oracle) and OpenZFS

Kubiatowicz CS162 © UCB Fall 2020 Lec 21.66

11/9/20

COW with Smaller-Radix Blocks

old version new version

I
(4
)

* If file represented as a tree of blocks, just need
to update the leading fringe

2

\

Kubiatowicz CS162 © UCB Fall 2020 Lec 21.67

11/9/20

Example: ZFS and OpenZFS

Variable sized blocks: 512 B — 128 KB
Symmetric tree
— Know if it is large or small when we make the copy
Store version number with pointers
— Can create new version by adding blocks and new pointers
Buffers a collection of writes before creating a new version with them
Free space represented as tree of extents in each block group
— Delay updates to freespace (in log) and do them all when block group is activated

Kubiatowicz CS162 © UCB Fall 2020 Lec 21.68

More General Reliability Solutions

» Use Transactions for atomic updates
— Ensure that multiple related updates are performed atomically

—i.e., if a crash occurs in the middle, the state of the systems reflects either all or
none of the updates

— Most modern file systems use transactions internally to update filesystem
structures and metadata

— Many applications implement their own transactions

» Provide Redundancy for media failures
— Redundant representation on media (Error Correcting Codes)
— Replication across media (e.g., RAID disk array)

Transactions

» Closely related to critical sections for manipulating shared data structures

* They extend concept of atomic update from memory to stable storage
— Atomically update multiple persistent data structures

* Many ad-hoc approaches

— FFS carefully ordered the sequence of updates so that if a crash occurred
while manipulating directory or inodes the disk scan on reboot would detect
and recover the error (fsck)

— Applications use temporary files and rename

11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.69 11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.70
Key Concept: Transaction Typical Structure
« A transaction is an atomic sequence of reads and writes that takes the * Begin a transaction — get transaction id
system from consistent state to another.
* Do a bunch of updates
) transaction) — If any fail along the way, roll-back
consistent state 1 > consistent state 2 — Or, if any conflicts with other transactions, roll-back
J |\
: . . . * Commit the transaction
» Recall: Code in a critical section appears atomic to other threads
» Transactions extend the concept of atomic updates from memory to
persistent storage
11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.71 11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.72

“Classic” Example: Transaction

BEGIN; --BEGIN TRANSACTION
UPDATE accounts SET balance = balance - 100.00 WHERE
name = 'Alice’;

UPDATE branches SET balance = balance - 100.00 WHERE
name = (SELECT branch_name FROM accounts WHERE name
= "Alice');

UPDATE accounts SET balance = balance + 100.00 WHERE
name = 'Bob’;

UPDATE branches SET balance = balance + 100.00 WHERE
name = (SELECT branch_name FROM accounts WHERE name
= 'Bob');

COMMIT; --COMMIT WORK

Transfer $100 from Alice’s account to Bob’s account

11/9/20 Kubiatowicz CS162 © UCB Fall 2020

Lec21.73

11/9/20

Concept of a log

One simple action is atomic — write/append a basic item

» Use that to seal the commitment to a whole series of actions

<) et X |[>
HINIEREIR R HAIE
E]
z 8 ° 3 olo s
c o (%] o Q| Q =
5 < o e Q| O [
= ® AR -
" £ £ £ gle| | €
= (<] = c|E £
© = = . bl | bl
- L= o | o
@ <4 » b4 B |1 o
-~ : - el
- 5| | 55
& o 8 a e
Kubiatowicz CS162 © UCB Fall 2020 Lec 21.74

Transactional File Systems

+ Better reliability through use of log
— Changes are treated as transactions
— A transaction is committed once it is written to the log
» Data forced to disk for reliability
» Process can be accelerated with NVRAM

— Although File system may not be updated immediately, data preserved in the log

« Difference between “Log Structured” and “Journaled”
—In a Log Structured filesystem, data stays in log form
—In a Journaled filesystem, Log used for recovery

11/9/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 21.75

11/9/20

Journaling File Systems

Don’t modify data structures on disk directly
Write each update as transaction recorded in a log
— Commonly called a journal or intention list
— Also maintained on disk (allocate blocks for it when formatting)
Once changes are in the log, they can be safely applied to file system
— e.g. modify inode pointers and directory mapping
Garbage collection: once a change is applied, remove its entry from the log

Linux took original FFS-like file system (ext2) and added a journal to get ext3!
— Some options: whether or not to write all data to journal or just metadata

Other examples: NTFS, Apple HFS+, Linux XFS, JFS, ext4

Kubiatowicz CS162 © UCB Fall 2020 Lec 21.76

Creating a File (No Journaling Yet)

» Find free data block(s)
* Find free inode entry

Creating a File (With Journaling)

» Find free data block(s)
» Find free inode entry

| Free) Free
» Find dirent insertion point space « Find dirent insertion point space
ma ma
Datg blocks Datg blocks
* Write map (i.e., mark used) 1 Inode table * [log] Write map (i.e., mark used) | Inode table
» Write inode entry to point to block(s) * [log] Write inode entry to point to block(s)
« Write dirent to point to inode Directory « [log] Write dirent to point to inode Directory
entries entries
- tail
=1
done pending j ‘
§
Log: in non-volatile storage (Flash or on Disk)
11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.77 11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.78
After Commit, Eventually Replay Transaction Crash Recovery: Discard Partial Transactions
+ All accesses to the file system first looks in C ‘ + Upon recovery, scan the log
the log 7‘75[[@3\ Free | Free
— Actual on-disk data structure might be stale space *» Detect transaction start with no commit space
D Dna]ftlg blocks Di dl i Dn;?g blocks
« Eventually, copy changes to disk and | Inode table Iscard fog entries | Inode table
discard transaction from the log [] . « Disk remains unchanged _
j Directory Directory
- 4 entries entries
tail _tail tgj| head tail
done pending T done pending T ‘
s .

11/9/20

Log: in non-volatile storage (Flash &

=

on Disk)

Kubiatowicz CS162 © UCB Fall 2020 Lec 21.79

Log: in non-volatile storage (Flash or on Disk)

11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.80

Crash Recovery: Keep Complete Transactions

* Scan log, find start

N W]

Free
. . . space
» Find matching commit ’ ’ [’ :‘ ‘ map
. Data blocks
. [] | [[T [] Inode table
* Redo it as usual
— Or just let it happen later Directory
~ entries
tail head
\ Il l =
done pending =] 4,—‘—‘ £
Log: in non-volatile storage (Flash or on Disk)
11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.81

11/9/20

Journaling Summary

Why go through all this trouble?
» Updates atomic, even if we crash:
— Update either gets fully applied or discarded
— All physical operations treated as a logical unit

Isn’t this expensive?

* Yes! We're now writing all data twice (once to log, once to actual data
blocks in target file)
* Modern filesystems journal metadata updates only
— Record modifications to file system data structures
— But apply updates to a file’s contents directly

Kubiatowicz CS162 © UCB Fall 2020 Lec 21.82

File System Summary (1/3)

File System:
— Transforms blocks into Files and Directories
— Optimize for size, access and usage patterns
— Maximize sequential access, allow efficient random access
— Projects the OS protection and security regime (UGO vs ACL)
File defined by header, called “inode”
« Naming: translating from user-visible names to actual sys resources
— Directories used for naming for local file systems
— Linked or tree structure stored in files
4.2 BSD Multilevel Indexed Scheme

— inode contains file info, direct pointers to blocks, indirect blocks, doubly
indirect, etc..

— NTFS: variable extents not fixed blocks, tiny files data is in header

11/9/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 21.83

11/9/20

File System Summary (2/3)

« File layout driven by freespace management

— Optimizations for sequential access: start new files in open ranges of free
blocks, rotational optimization

— Integrate freespace, inode table, file blocks and dirs into block group
» Deep interactions between mem management, file system, sharing
- mmap (): map file or anonymous segment to memory

+ Buffer Cache: Memory used to cache kernel resources, including disk
blocks and name translations

— Can contain “dirty” blocks (blocks yet on disk)

Kubiatowicz CS162 © UCB Fall 2020 Lec 21.84

File System Summary (3/3)

File system operations involve multiple distinct updates to blocks on disk
— Need to have all or nothing semantics
— Crash may occur in the midst of the sequence

Traditional file system perform check and recovery on boot

— Along with careful ordering so partial operations result in loose fragments, rather
than loss

Copy-on-write provides richer function (versions) with much simpler recovery
— Little performance impact since sequential write to storage device is nearly free
Transactions over a log provide a general solution
— Commit sequence to durable log, then update the disk
— Log takes precedence over disk
— Replay committed transactions, discard partials

11/9/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 21.85

