
CS162
Operating Systems and
Systems Programming

Lecture 24

Networking and TCP/IP (Con’t), RPC,
Distributed File Systems

November 23rd, 2020
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 24.211/23/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Distributed Consensus Making
• Consensus problem

– All nodes propose a value
– Some nodes might crash and stop responding
– Eventually, all remaining nodes decide on the same value from set of proposed

values
• Distributed Decision Making

– Choose between “true” and “false”
– Or Choose between “commit” and “abort”

• Equally important (but often forgotten!): make it durable!
– How do we make sure that decisions cannot be forgotten?

» This is the “D” of “ACID” in a regular database
– In a global-scale system?

» What about erasure coding or massive replication?
» Like BlockChain applications!

Lec 24.311/23/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Two-Phase Commit Protocol
• Persistent stable log on each machine: keep track of whether commit has

happened
– If a machine crashes, when it wakes up it first checks its log to recover state of

world at time of crash
• Prepare Phase:

– The global coordinator requests that all participants will promise to commit or
rollback the transaction

– Participants record promise in log, then acknowledge
– If anyone votes to abort, coordinator writes "Abort" in its log and tells everyone

to abort; each records "Abort" in log
• Commit Phase:

– After all participants respond that they are prepared, then the coordinator writes
"Commit" to its log

– Then asks all nodes to commit; they respond with ACK
– After receive ACKs, coordinator writes "Got Commit" to log

• Log used to guarantee that all machines either commit or don’t

Lec 24.411/23/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Network Protocols
• Networking protocols: many levels

– Physical level: mechanical and electrical network (e.g., how are 0 and 1
represented)

– Link level: packet formats/error control (for instance, the CSMA/CD protocol)
– Network level: network routing, addressing
– Transport Level: reliable message delivery

• Protocols on today’s Internet:

Ethernet WiFi LTE

IP
UDP TCP

RPC
NFS WWW e-mail ssh

Physical/Link

Network

Transport

Lec 24.511/23/20 Kubiatowicz CS162 © UCB Fall 2020

Network Layering
• Layering: building complex services from simpler ones

– Each layer provides services needed by higher layers by utilizing services
provided by lower layers

• The physical/link layer is pretty limited
– Packets are of limited size (called the “Maximum Transfer Unit or MTU: often

200-1500 bytes in size)
– Routing is limited to within a physical link (wire) or perhaps through a switch

• Our goal in the following is to show how to construct a secure, ordered,
message service routed to anywhere:

Physical Reality: Packets Abstraction: Messages

Limited Size (MTU) Arbitrary Size
Unordered (sometimes) Ordered

Unreliable Reliable
Machine-to-machine Process-to-process

Only on local area net Routed anywhere
Asynchronous Synchronous

Insecure Secure Lec 24.611/23/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: IPv4 Packet Format
• IP Packet Format:

• IP Datagram: an unreliable, unordered, packet sent from source to
destination

– Function of network – deliver datagrams!

16-bit identification
ToS4

13-bit frag off
Total length(16-bits)

protocolTTL 16-bit header checksum
32-bit source IP address
32-bit destination IP address

IHL
flags

options (if any)

Data

0 15 16 31
IP Ver4

IP Header
Length

Size of datagram
(header+data)

Flags &
Fragmentation
to split large
messages

Time to
Live (hops)

Type of
transport
protocol

IP header
20 bytes

Lec 24.711/23/20 Kubiatowicz CS162 © UCB Fall 2020

Building a messaging service on IP
• Process to process communication

– Basic routing gets packets from machinemachine
– What we really want is routing from processprocess

» Add “ports”, which are 16-bit identifiers
» A communication channel (connection) defined by 5 items:

[source addr, source port, dest addr, dest port, protocol]
• For example: The Unreliable Datagram Protocol (UDP)

– Layered on top of basic IP (IP Protocol 17)
» Datagram: an unreliable, unordered, packet sent from source user  dest user (Call it UDP/IP)

– Important aspect: low overhead!
» Often used for high-bandwidth video streams
» Many uses of UDP considered “anti-social” – none of the “well-behaved” aspects of (say) TCP/IP

UDP Data

16-bit UDP length 16-bit UDP checksum
16-bit source port 16-bit destination port

IP Header
(20 bytes)

Lec 24.811/23/20 Kubiatowicz CS162 © UCB Fall 2020

Internet Architecture: Five Layers
• Lower three layers implemented everywhere
• Top two layers implemented only at hosts

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Network
Datalink
Physical

Application Application

Host A Host BRouter

Lec 24.911/23/20 Kubiatowicz CS162 © UCB Fall 2020

Internet Architecture: Five Layers
• Communication goes down to physical network
• Then from network peer to peer
• Then up to relevant layer

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Network
Datalink
Physical

Application Application

Host A Host BRouter

Lec 24.1011/23/20 Kubiatowicz CS162 © UCB Fall 2020

101010100110101110
Physical

Layer
Physical

Layer
Physical

Layer
Physical

Layer 101010100110101110

Datalink
Layer

Trans.
Hdr.

Net.
Hdr.

Frame
Hdr.

Datalink
Layer

Trans.
Hdr.

Net.
Hdr.

Frame
Hdr.Data Data

Network
Layer

Trans.
Hdr.

Net.
Hdr.

Network
Layer

Trans.
Hdr.

Net.
Hdr.Data Data

Transport
Layer

Trans.
Hdr.

Transport
Layer

Trans.
Hdr.Data Data

Data
Application

Layer
Application

Layer Data

Layering Analogy: Packets in Envelopes
Transport
Network
Datalink
Physical

Session
Present.

Application

Lec 24.1111/23/20 Kubiatowicz CS162 © UCB Fall 2020

Internet Transport Protocols
• Datagram service (UDP): IP Protocol 17

– No-frills extension of “best-effort” IP
– Multiplexing/Demultiplexing among processes

• Reliable, in-order delivery (TCP): IP Protocol6
– Connection set-up & tear-down
– Discarding corrupted packets (segments)
– Retransmission of lost packets (segments)
– Flow control
– Congestion control

• Other examples:
– DCCP (33), Datagram Congestion Control Protocol
– RDP (26), Reliable Data Protocol
– SCTP (132), Stream Control Transmission Protocol

Transport
Network
Datalink
Physical

Session
Present.

Application

Lec 24.1211/23/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Sockets in concept
Client Server

read response

Close Client Socket

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address
(host:port)

Listen for Connection

Close Connection Socket

Close Server Socket

write request

write response

Accept syscall()
Connection SocketConnection Socket

read request

Lec 24.1311/23/20 Kubiatowicz CS162 © UCB Fall 2020

Reliable Message Delivery: the Problem
• All physical networks can garble and/or drop packets

– Physical media: packet not transmitted/received
» If transmit close to maximum rate, get more throughput – even if some packets get lost
» If transmit at lowest voltage such that error correction just starts correcting errors, get

best power/bit
– Congestion: no place to put incoming packet

» Point-to-point network: insufficient queue at switch/router
» Broadcast link: two host try to use same link
» In any network: insufficient buffer space at destination
» Rate mismatch: what if sender send faster than receiver can process?

• Reliable Message Delivery on top of Unreliable Packets
– Need some way to make sure that packets actually make it to receiver

» Every packet received at least once
» Every packet received at most once

– Can combine with ordering: every packet received by process at destination
exactly once and in order

Lec 24.1411/23/20 Kubiatowicz CS162 © UCB Fall 2020

Transmission Control Protocol (TCP)

• Transmission Control Protocol (TCP)
– TCP (IP Protocol 6) layered on top of IP
– Reliable byte stream between two processes on different machines over Internet

(read, write, flush)
• TCP Details

– Fragments byte stream into packets, hands packets to IP
» IP may also fragment by itself

– Uses window-based acknowledgement protocol (to minimize state at sender and
receiver)

» “Window” reflects storage at receiver – sender shouldn’t overrun receiver’s buffer space
» Also, window should reflect speed/capacity of network – sender shouldn’t overload

network
– Automatically retransmits lost packets
– Adjusts rate of transmission to avoid congestion

» A “good citizen”

Router Router
Stream in: Stream out:

..zyxwvuts gfedcba

Lec 24.1511/23/20 Kubiatowicz CS162 © UCB Fall 2020

Problem: Dropped Packets
• All physical networks can garble or drop packets

– Physical hardware problems (bad wire, bad signal)
• Therefore, IP can garble or drop packets

– It doesn't repair this itself (end-to-end principle!)
• Building reliable message delivery

– Confirm that packets aren't garbled
– Confirm that packets arrive exactly once

Lec 24.1611/23/20 Kubiatowicz CS162 © UCB Fall 2020

Using Acknowledgements

• How to ensure transmission of packets?
– Detect garbling at receiver via checksum, discard if bad
– Receiver acknowledges (by sending “ACK”) when packet received properly at

destination
– Timeout at sender: if no ACK, retransmit

• Some questions:
– If the sender doesn’t get an ACK, does that mean the receiver didn’t get the

original message?
» No

– What if ACK gets dropped? Or if message gets delayed?
» Sender doesn’t get ACK, retransmits, Receiver gets message twice, ACK each

BA BA

Timeout

Lec 24.1711/23/20 Kubiatowicz CS162 © UCB Fall 2020

Stop-and-Wait (No Packet Loss)

• Send; wait for ACK; repeat
• Round Trip Time (RTT): time it

takes a packet to travel from
sender to receiver and back

– One-way latency (𝑑): one way
delay from sender and receiver

• For symmetric latency,𝑅𝑇𝑇 ൌ 2𝑑
ACK 1

Time

Sender Receiver
1

2

ACK 2

3

RTT

RTT

d

Lec 24.1811/23/20 Kubiatowicz CS162 © UCB Fall 2020

Stop-and-Wait (No Packet Loss)

• How fast can you send data?
• Little’s Law applied to the network:𝑛 ൌ 𝐵 ⋅ RTT
• For Stop-and-Wait, 𝑛 ൌ 1 packet

• So bandwidth is 1 packet per RTT
– Depends only on latency, not

network capacity (!)

ACK 1

Time

Sender Receiver
1

2

ACK 2

3

RTT

RTT

d

Lec 24.1911/23/20 Kubiatowicz CS162 © UCB Fall 2020

Stop-and-Wait (No Packet Loss)

• So bandwidth is 1 packet per RTT
– Depends only on latency, not

network capacity (!)

• Suppose RTT = 100 ms and
1 packet is 1500 bytes

• Throughput = ଵହ଴଴⋅଼଴.ଵ = 120 Kbps

• Very inefficient if we have a 100
Mbps link!

ACK 1

Time

Sender Receiver
1

2

ACK 2

3

RTT

RTT

d

Lec 24.2011/23/20 Kubiatowicz CS162 © UCB Fall 2020

Stop-and-Wait with Packet Loss

• Loss recovery relies on timeouts
• How to choose a good timeout?

– Too short – lots of duplication
– Too long – packet loss is really

disruptive!
• How to deal with duplication?

– Retransmission certainly opens up
the possibility for

ACK 1

Time

Sender Receiver
1

RTT

timeout 1

Lec 24.2111/23/20 Kubiatowicz CS162 © UCB Fall 2020

• Solution: put sequence number in message to identify re-transmitted packets
– Receiver checks for duplicate number’s; Discard if detected

• Requirements:
– Sender keeps copy of unACK’d messages

» Easy: only need to buffer messages
– Receiver tracks possible duplicate messages

» Hard: when ok to forget about received message?
• Alternating-bit protocol:

– Send one message at a time; don’t send
next message until ACK received

– Sender keeps last message; receiver tracks
sequence number of last message received

• Pros: simple, small overhead
• Con: doesn’t work if network can delay

or duplicate messages arbitrarily

How to Deal with Message Duplication?

Sender Receiver

Lec 24.2211/23/20 Kubiatowicz CS162 © UCB Fall 2020

Advantages of Moving Away From Stop-and-Wait
• Larger space of acknowledgements

– Pipelining: don’t wait for ACK before sending
next packet

• ACKs serve dual purpose:
– Reliability: Confirming packet received
– Ordering: Packets can be reordered at

destination
• How much data is in flight now?

– Bytes in-flight: Wsend = RTT × B
– Here B is in “bytes/second”
– Wsend  Sender’s “Window Size”
– Packets in flight = (Wsend / packet size)

• How long does the sender have to keep the
packets around?

• How long does the receiver have to keep the
packets’ data?

• What if sender is sending packets faster than
the receiver can process the data?

Time

Sender Receiver

RTT
d

Lec 24.2311/23/20 Kubiatowicz CS162 © UCB Fall 2020

Administrivia
• Midterm 3: Thursday 12/3: 5-7PM as before

– Material up to Lecture 25
– Cameras and Zoom screen sharing again as with Midterm 2
– Review session TBA

• Lecture 26 will be a fun lecture
– Let me know if there are topics you would like to discuss!

Lec 24.2411/23/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: CS 162 Collaboration Policy

Explaining a concept to someone in another group
Discussing algorithms/testing strategies with other groups
Discussing debugging approaches with other groups
Searching online for generic algorithms (e.g., hash table)

Sharing code or test cases with another group
Copying OR reading another group’s code or test cases
Copying OR reading online code or test cases from prior years
Helping someone in another group to debug their code

• We compare all project submissions against prior year submissions and
online solutions and will take actions (described on the course overview
page) against offenders

• Don’t put a friend in a bad position by asking for help that they shouldn’t give!

Lec 24.2511/23/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Communication Between Processes

• Data written by A is held in memory until B reads it
• Queue has a fixed capacity

– Writing to the queue blocks if the queue if full
– Reading from the queue blocks if the queue is empty

• POSIX provides this abstraction in the form of pipes

write(wfd, wbuf, wlen);

n = read(rfd,rbuf, rmax);

Process
A

Process
A Process

B
Process

B
In-Memory

Queue

Lec 24.2611/23/20 Kubiatowicz CS162 © UCB Fall 2020

Host 1

Buffering in a TCP Connection

• A single TCP connection needs four in-memory queues:
– Send buffer: add data on write syscall, remove data when ACK received
– Receive buffer: add data when packets received, remove data on read syscall

Process
A

Process
A

Send Queue

Receive
Queue

Host 2
Process

B
Process

B

Receive
Queue

Send Queue

Separate pair
of queues per
TCP
connection

Data (Packets)

Data (Packets)

Lec 24.2711/23/20 Kubiatowicz CS162 © UCB Fall 2020

Host 1

Window Size: Space in Receive Queue

• A host’s window size for a TCP connection is how much remaining space
it has in its receive queue

• A host advertises its window size in every TCP packet it sends!
• Sender never sends more than receiver’s advertised window size

Process
A

Process
A

Send Queue

Receive
Queue

Host 2
Process

B
Process

B

Receive
Queue

Send Queue

Separate pair of
queues per TCP
connection

Data (Packets)

Data (Packets)

Lec 24.2811/23/20 Kubiatowicz CS162 © UCB Fall 2020

Sliding Window Protocol

• TCP sender knows receiver’s window size, and aims never to exceed it
• But packets that it previously send may arrive, filling the window size!

Rule: TCP sender ensures that:
Number of Sent but UnACKed Bytes < Receiver’s Advertised Window Size

• Can send new packets as long as sent-but-unacked packets haven’t already
filled the advertised window size

Lec 24.2911/23/20 Kubiatowicz CS162 © UCB Fall 2020

Sliding Window (No Packet Loss)

• Example:Window
size (𝑤) = 3 packets

• Window size to fill
link is given by:𝑤 ൌ 𝐵௣௞௧ ⋅ RTT

• Bpkt  Packets/sec
• Little’s Law once

again!

• For TCP, window is
in bytes, not packets

Time

Sender Receiver

1{1}
2{1, 2}
3{1, 2, 3}
4{2, 3, 4}
5{3, 4, 5}

Unacked
packets that
sender sent

Out-of-seq packets
in receiver’s window

{}

6{4, 5, 6}
.
.
.

.

.

.

{}
{}

Lec 24.3011/23/20 Kubiatowicz CS162 © UCB Fall 2020

TCP Windows and Sequence Numbers: PER BYTE!

• Sender has three regions:
– Sequence regions

» sent and ACK’d
» sent and not ACK’d
» not yet sent

– Window (colored region) adjusted by sender
• Receiver has three regions:

– Sequence regions
» received and ACK’d (given to application)
» received and buffered
» not yet received (or discarded because out of order)

Sequence Numbers

Sent
not ACK’d

Sent
ACK’d

Not yet
sent Sender

Not yet
received

Received
Given to app

Received
Buffered Receiver

Lec 24.3111/23/20 Kubiatowicz CS162 © UCB Fall 2020

Seq:190
Size:40

Window-Based Acknowledgements (TCP)

Seq:230 A:190/210

Seq:260 A:190/210

Seq:300 A:190/210

Seq:190 A:340/60

Seq:340 A:380/20

Seq:380 A:400/0

A:100/300

Seq:100 A:140/260

Seq:140 A:190/210

100 Seq:100
Size:40

140 Seq:140
Size:50

190 Seq:230
Size:30

230 260 Seq:260
Size:40

300 Seq:300
Size:40

340 Seq:340
Size:40

380 Seq:380
Size:20

400

Retransmit!

Lec 24.3211/23/20 Kubiatowicz CS162 © UCB Fall 2020

• Too much data trying to flow through some part of the network

• IP’s solution: Drop packets
• What happens to TCP connection?

– Lots of retransmission – wasted work and wasted bandwidth (when bandwidth
is scarce)

Congestion

Lec 24.3311/23/20 Kubiatowicz CS162 © UCB Fall 2020

Congestion Avoidance
• Congestion

– How long should timeout be for re-sending messages?
» Too long  wastes time if message lost
» Too short  retransmit even though ACK will arrive shortly

– Stability problem: more congestion  ACK is delayed  unnecessary timeout 
more traffic  more congestion

» Closely related to window size at sender: too big means putting too much data into
network

• How does the sender’s window size get chosen?
– Must be less than receiver’s advertised buffer size
– Try to match the rate of sending packets with the rate that the slowest link can

accommodate
– Sender uses an adaptive algorithm to decide size of N

» Goal: fill network between sender and receiver
» Basic technique: slowly increase size of window until acknowledgements start being

delayed/lost
• TCP solution: “slow start” (start sending slowly)

– If no timeout, slowly increase window size (throughput) by 1 for each ACK received
– Timeout  congestion, so cut window size in half
– “Additive Increase, Multiplicative Decrease”

Lec 24.3411/23/20 Kubiatowicz CS162 © UCB Fall 2020

Congestion Management

• TCP artificially restricts the window
size if it sees packet loss

• Careful control loop to make sure:
1. We don’t send too fast and

overwhelm the network
2. We utilize most of the bandwidth the

network has available
– In general, these are conflicting goals!

Lec 24.3511/23/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Connection Setup over TCP/IP

• 5-Tuple identifies each
connection:

1. Source IP Address
2. Destination IP Address
3. Source Port Number
4. Destination Port Number
5. Protocol (always TCP here)

socket
ServerClient

Server
Socket

new
socket

Connection
socketconnection

• Often, Client Port “randomly”
assigned

– Done by OS during client socket setup
• Server Port often “well known”

– 80 (web), 443 (secure web), 25
(sendmail), etc

– Well-known ports from 0—1023

Lec 24.3611/23/20 Kubiatowicz CS162 © UCB Fall 2020

Establishing TCP Service
1. Open connection: 3-way handshaking

2. Reliable byte stream transfer from (IPa, TCP_Port1) to (IPb, TCP_Port2)
– Indication if connection fails: Reset

3. Close (tear-down) connection

Lec 24.3711/23/20 Kubiatowicz CS162 © UCB Fall 2020

Sockets in concept
Client Server

read response

Close Client Socket

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address
(host:port)

Listen for Connection

Close Connection Socket

Close Server Socket

write request

write response

Accept syscall()
Connection SocketConnection Socket

read request

Lec 24.3811/23/20 Kubiatowicz CS162 © UCB Fall 2020

Open Connection: 3-Way Handshake

• Server calls listen() to
wait for a new
connection

• Client calls connect()
providing server’s IP
address and port
number

• Each side sends SYN
packet proposing an
initial sequence number
(one for each sender)
and ACKs the other

Client (initiator)

connect()
listen()

accept()
dequeues
connection

allocate
buffer space,
connection
enqueued

tim
e

Server

Lec 24.3911/23/20 Kubiatowicz CS162 © UCB Fall 2020

Sockets in concept
Client Server

read response

Close Client Socket

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address
(host:port)

Listen for Connection

Close Connection Socket

Close Server Socket

write request

write response

Accept syscall()
Connection SocketConnection Socket

read request

Lec 24.4011/23/20 Kubiatowicz CS162 © UCB Fall 2020

Close Connection: 4-Way Teardown

• Connection is not
closed until both
sides agree

FIN
FIN ACK

FIN
FIN ACK

Host 1 Host 2

Can retransmit FIN
ACK if it is lost tim

eo
ut

OS deallocates
connection state

close()

close()

OS
deallocates
connection
state

data
OS discards data (no

socket to give it to)

Any calls to
read() return 0• If multiple FDs on

Host 1 refer to
this connection,
all of them must
be closed

• Same for close()
call on Host 2

Lec 24.4111/23/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Distributed Applications Build With Messages
• How do you actually program a distributed application?

– Need to synchronize multiple threads, running on different machines
» No shared memory, so cannot use test&set

– One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and two receivers cannot

get same message
• Interface:

– Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue

– Send(message,mbox)
» Send message to remote mailbox identified by mbox

– Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

Network

Send

R
eceive

Lec 24.4211/23/20 Kubiatowicz CS162 © UCB Fall 2020

Question: Data Representation
• An object in memory has a machine-specific binary representation

– Threads within a single process have the same view of what’s in memory
– Easy to compute offsets into fields, follow pointers, etc.

• In the absence of shared memory, externalizing an object requires us to turn
it into a sequential sequence of bytes

– Serialization/Marshalling: Express an object as a sequence of bytes
– Deserialization/Unmarshalling: Reconstructing the original object from its

marshalled form at destination

Lec 24.4311/23/20 Kubiatowicz CS162 © UCB Fall 2020

Simple Data Types
uint32_t x;
• Suppose I want to write a x to a file

• First, open the file: FILE* f = fopen(“foo.txt”, “w”);
• Then, I have two choices:

1. fprintf(f, “%lu”, x);
2. fwrite(&x, sizeof(uint32_t), 1, f);

» Or equivalently, write(fd, &x, sizeof(uint32_t)); (perhaps with a loop to
be safe)

• Neither one is “wrong” but sender and receiver should be consistent!

Lec 24.4411/23/20 Kubiatowicz CS162 © UCB Fall 2020

Machine Representation
• Consider using the machine representation:

– fwrite(&x, sizeof(uint32_t), 1, f);

• How do we know if the recipient represents x in the same way?
– For pipes, is this a problem?
– What about for sockets?

Lec 24.4511/23/20 Kubiatowicz CS162 © UCB Fall 2020

Endianness

• For a byte-address machine, which end of a
machine-recognized object (e.g., int) does its byte-
address refer to?

• Big Endian: address is the most-significant bits
• Little Endian: address is the least-significant bits

Lec 24.4611/23/20 Kubiatowicz CS162 © UCB Fall 2020

What Endian is the Internet?

• Big Endian
• Network byte order
• Vs. “host byte order”

Lec 24.4711/23/20 Kubiatowicz CS162 © UCB Fall 2020

Dealing with Endianness
• Decide on an “on-wire” endianness
• Convert from native endianness to “on-wire” endianness before sending

out data (serialization/marshalling)
– uint32_t htonl(uint32_t) and uint16_t htons(uint16_t) convert

from native endianness to network endianness (big endian)

• Convert from “on-wire” endianness to native endianness when receiving
data (deserialization/unmarshalling)
– uint32_t ntohl(uint32_t) and uint16_t ntohs(uint16_t) convert

from network endianness to native endianness (big endian)

Lec 24.4811/23/20 Kubiatowicz CS162 © UCB Fall 2020

What About Richer Objects?
• Consider word_count_t of Homework 0 and 1 …
• Each element contains:

– An int
– A pointer to a string (of some length)
– A pointer to the next element

• fprintf_words writes these as a sequence of lines (character strings with \n)
to a file stream

• What if you wanted to write the whole list as a binary object (and read it back
as one)?

– How do you represent the string?
– Does it make any sense to write the pointer?

Lec 24.4911/23/20 Kubiatowicz CS162 © UCB Fall 2020

Data Serialization Formats

• JSON and XML are commonly used in web applications
• Lots of ad-hoc formats

Lec 24.5011/23/20 Kubiatowicz CS162 © UCB Fall 2020

Data Serialization Formats

Lec 24.5111/23/20 Kubiatowicz CS162 © UCB Fall 2020

Remote Procedure Call (RPC)
• Raw messaging is a bit too low-level for programming

– Must wrap up information into message at source
– Must decide what to do with message at destination
– May need to sit and wait for multiple messages to arrive
– And must deal with machine representation by hand

• Another option: Remote Procedure Call (RPC)
– Calls a procedure on a remote machine
– Idea: Make communication look like an ordinary function call
– Automate all of the complexity of translating between representations
– Client calls:

remoteFileSystemRead("rutabaga");
– Translated automatically into call on server:

fileSysRead("rutabaga");
Lec 24.5211/23/20 Kubiatowicz CS162 © UCB Fall 2020

Client (caller)

r = f(v1, v2);

Server (callee)

res_t f(a1, a2)

call

return receive

return

call

Client
Stub

bundle
args

bundle
ret vals

unbundle
ret vals

send

receive

send

Server
Stub

unbundle
args

RPC Concept

Lec 24.5311/23/20 Kubiatowicz CS162 © UCB Fall 2020

Client (caller)

r = f(v1, v2);

Server (callee)

res_t f(a1, a2)

call

return receive

return

call

bundle
ret vals

unbundle
ret vals

send

receive

Machine A

Machine B

Packet
Handler

Packet
Handler

N
etw

orkN
et

w
or

k

Server
Stub

unbundle
args

send

Server
Stub

unbundle
args

RPC Information Flow

Client
Stub

bundle
args

Lec 24.5411/23/20 Kubiatowicz CS162 © UCB Fall 2020

RPC Implementation
• Request-response message passing (under covers!)
• “Stub” provides glue on client/server

– Client stub is responsible for “marshalling” arguments and “unmarshalling” the
return values

– Server-side stub is responsible for “unmarshalling” arguments and “marshalling”
the return values.

• Marshalling involves (depending on system)
– Converting values to a canonical form, serializing objects, copying arguments

passed by reference, etc.

Lec 24.5511/23/20 Kubiatowicz CS162 © UCB Fall 2020

RPC Details (1/3)
• Equivalence with regular procedure call

– Parameters Request Message
– Result  Reply message
– Name of Procedure: Passed in request message
– Return Address: mbox2 (client return mail box)

• Stub generator: Compiler that generates stubs
– Input: interface definitions in an “interface definition language (IDL)”

» Contains, among other things, types of arguments/return
– Output: stub code in the appropriate source language

» Code for client to pack message, send it off, wait for result, unpack result and return to
caller

» Code for server to unpack message, call procedure, pack results, send them off

Lec 24.5611/23/20 Kubiatowicz CS162 © UCB Fall 2020

RPC Details (2/3)
• Cross-platform issues:

– What if client/server machines are different architectures/ languages?
» Convert everything to/from some canonical form
» Tag every item with an indication of how it is encoded (avoids unnecessary

conversions)

• How does client know which mbox (destination queue) to send to?
– Need to translate name of remote service into network endpoint (Remote

machine, port, possibly other info)
– Binding: the process of converting a user-visible name into a network endpoint

» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime

Lec 24.5711/23/20 Kubiatowicz CS162 © UCB Fall 2020

RPC Details (3/3)
• Dynamic Binding

– Most RPC systems use dynamic binding via name service
» Name service provides dynamic translation of service  mbox

– Why dynamic binding?
» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one

• What if there are multiple servers?
– Could give flexibility at binding time

» Choose unloaded server for each new client
– Could provide same mbox (router level redirect)

» Choose unloaded server for each new request
» Only works if no state carried from one call to next

• What if multiple clients?
– Pass pointer to client-specific return mbox in request

Lec 24.5811/23/20 Kubiatowicz CS162 © UCB Fall 2020

Problems with RPC: Non-Atomic Failures
• Different failure modes in dist. system than on a single machine
• Consider many different types of failures

–User-level bug causes address space to crash
–Machine failure, kernel bug causes all processes on same

machine to fail
–Some machine is compromised by malicious party

• Before RPC: whole system would crash/die
• After RPC: One machine crashes/compromised while others keep

working
• Can easily result in inconsistent view of the world

–Did my cached data get written back or not?
–Did server do what I requested or not?

• Answer? Distributed transactions/Byzantine Commit

Lec 24.5911/23/20 Kubiatowicz CS162 © UCB Fall 2020

Problems with RPC: Performance
• RPC is not performance transparent:

– Cost of Procedure call « same-machine RPC « network RPC
– Overheads: Marshalling, Stubs, Kernel-Crossing, Communication

• Programmers must be aware that RPC is not free
– Caching can help, but may make failure handling complex

Lec 24.6011/23/20 Kubiatowicz CS162 © UCB Fall 2020

• How do address spaces communicate with one another?
– Shared Memory with Semaphores, monitors, etc…
– File System
– Pipes (1-way communication)
– “Remote” procedure call (2-way communication)

• RPC’s can be used to communicate between address spaces on different
machines or the same machine

– Services can be run wherever it’s most appropriate
– Access to local and remote services looks the same

• Examples of RPC systems:
– CORBA (Common Object Request Broker Architecture)
– DCOM (Distributed COM)
– RMI (Java Remote Method Invocation)

Cross-Domain Communication/Location Transparency

Lec 24.6111/23/20 Kubiatowicz CS162 © UCB Fall 2020

Microkernel operating systems
• Example: split kernel into application-level servers.

– File system looks remote, even though on same machine

• Why split the OS into separate domains?
– Fault isolation: bugs are more isolated (build a firewall)
– Enforces modularity: allows incremental upgrades of pieces of software (client or

server)
– Location transparent: service can be local or remote

» For example in the X windowing system: Each X client can be on a separate machine
from X server; Neither has to run on the machine with the frame buffer.

App App

file system Windowing
NetworkingVM

Threads

App

Monolithic Structure

App File
sys windows

RPC address
spaces

threads

Microkernel Structure

Lec 24.6211/23/20 Kubiatowicz CS162 © UCB Fall 2020

Network-Attached Storage and the CAP Theorem

• Consistency:
– Changes appear to everyone in the same serial order

• Availability:
– Can get a result at any time

• Partition-Tolerance
– System continues to work even when network becomes partitioned

• Consistency, Availability, Partition-Tolerance (CAP) Theorem: Cannot have all three
at same time

– Otherwise known as “Brewer’s Theorem”

Network

Lec 24.6311/23/20 Kubiatowicz CS162 © UCB Fall 2020

Summary
• TCP: Reliable byte stream between two processes on different machines over

Internet (read, write, flush)
– Uses window-based acknowledgement protocol
– Congestion-avoidance dynamically adapts sender window to account for congestion

in network
• Remote Procedure Call (RPC): Call procedure on remote machine or in remote

domain
– Provides same interface as procedure
– Automatic packing and unpacking of arguments without user programming (in stub)
– Adapts automatically to different hardware and software architectures at remote end

• Distributed File System:
– Transparent access to files stored on a remote disk
– Caching for performance

