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Recall: Network-Attached Storage and the CAP Theorem

• Consistency: 
– Changes appear to everyone in the same serial order

• Availability:
– Can get a result at any time

• Partition-Tolerance
– System continues to work even when network becomes partitioned

• Consistency, Availability, Partition-Tolerance (CAP) Theorem: Cannot have all three 
at same time

– Otherwise known as “Brewer’s Theorem”

Network

Lec 25.411/29/20 Kubiatowicz CS162 © UCB Fall 2020

Distributed File Systems

• Transparent access to files stored on a remote disk
• Mount remote files into your local file system

– Directory in local file system refers to remote files
– e.g., /users/jane/prog/foo.c on laptop actually refers to

/prog/foo.c on kubi.cs.berkeley.edu
• Naming Choices:

– [Hostname,localname]: Filename includes server
» No location or migration transparency, except

through DNS remapping
– A global name space: Filename unique in “world”

» Can be served by any server

Network
Read File

Data
ServerClient

mount
coeus:/sue

mount
kubi:/prog

mount
kubi:/jane
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Enabling Design: VFS 
The System Call Interface
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length = read(input_fd, buffer, BUFFER_SIZE);

ssize_t read(int, void *, size_t) {
marshal args into registers
issue syscall
register result of syscall to rtn value

};

void syscall_handler (struct intr_frame *f) {
unmarshall call#, args from regs
dispatch : handlers[call#](args)
marshal results fo syscall ret

}

Exception UK, interrupt processing

ssize_t vfs_read(struct file *file, char __user *buf, 
size_t count, loff_t *pos) {

User Process/File System relationship
call device driver to do the work

}

User App:

User library:

Device Driver

Recall: Layers of I/O…

High Level I/O 
Low Level I/O 

Syscall

File System

I/O Driver

Application / Service
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Virtual Filesystem Switch

• VFS: Virtual abstraction similar to local file system
– Provides virtual superblocks, inodes, files, etc
– Compatible with a variety of local and remote file systems

» provides object-oriented way of implementing file systems
• VFS allows the same system call interface (the API) to be used for 

different types of file systems
– The API is to the VFS interface, rather than any specific type of file system

Lec 25.811/29/20 Kubiatowicz CS162 © UCB Fall 2020

VFS Common File Model in Linux

• Four primary object types for VFS:
– superblock object: represents a specific mounted filesystem
– inode object: represents a specific file
– dentry object: represents a directory entry 
– file object: represents open file associated with process

• There is no specific directory object (VFS treats directories as files)
• May need to fit the model by faking it

– Example: make it look like directories are files
– Example: make it look like have inodes, superblocks, etc.
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Simple Distributed File System

• Remote Disk: Reads and writes forwarded to server
– Use Remote Procedure Calls (RPC) to translate file system calls into remote requests
– No local caching, but can be cache at server-side

• Advantage: Server provides consistent view of file system to multiple clients
• Problems?  Performance!

– Going over network is slower than going to local memory
– Lots of network traffic/not well pipelined
– Server can be a bottleneck

Server

Read (RPC)

Return (Data)

cache
Client

Client
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Client

cache
F1:V1F1:V2

Use of caching to reduce network load
Read (RPC)

Return (Data)
cache

cache

• Idea: Use caching to reduce network load
– In practice: use buffer cache at source and destination

• Advantage: if open/read/write/close can be done locally, don’t need to do 
any network traffic…fast!

• Problems: 
– Failure:

» Client caches have data not committed at server
– Cache consistency!

» Client caches not consistent with server/each other

F1:V1

F1:V2

read(f1)

write(f1)

V1
read(f1)V1
read(f1)V1

OK

read(f1)V1

read(f1)V2

Server
Client
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Dealing with Failures
• What if server crashes? Can client wait until it comes back and just 

continue making requests?
– Changes in server's cache but not in disk are lost

• What if there is shared state across RPC's?
– Client opens file, then does a seek
– Server crashes
– What if client wants to do another read?

• Similar problem: What if client removes a file but server crashes before 
acknowledgement?
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Stateless Protocol
• Stateless Protocol: A protocol in which all information required to service a 

request is included with the request
• Even better: Idempotent Operations – repeating an operation multiple 

times is same as executing it just once (e.g., storing to a mem addr.)
• Client: timeout expires without reply, just run the operation again (safe 

regardless of first attempt)

• Recall HTTP: Also a stateless protocol
– Include cookies with request to simulate a session



Lec 25.1311/29/20 Kubiatowicz CS162 © UCB Fall 2020

Administrivia
• Midterm 3: Thursday: 5-7PM as before

– Material up to Lecture 25 (Today’s lecture)
– Cameras and Zoom screen sharing again as with Midterm 2
– No excuse to not have camera and screen sharing turned on!

• Review session Tuesday (tomorrow): 7-9pm
– Zoom link should be published on Piazza

• Lecture 26 will be a fun lecture
– Let me know if there are topics you would like to discuss!
– Not responsible for contents of Wednesday’s lecture on Midterm 3!
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Case Study: Network File System (NFS)
• Three Layers for NFS system

– UNIX file-system interface: open, read, write, close calls + file descriptors
– VFS layer: distinguishes local from remote files

» Calls the NFS protocol procedures for remote requests
– NFS service layer: bottom layer of the architecture

» Implements the NFS protocol
• NFS Protocol: RPC for file operations on server

– XDR Serialization standard for data format independence
– Reading/searching a directory 
– manipulating links and directories 
– accessing file attributes/reading and writing files

• Write-through caching: Modified data committed to server’s disk before 
results are returned to the client 

– lose some of the advantages of caching
– time to perform write() can be long
– Need some mechanism for readers to eventually notice changes! (more on this 

later)
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NFS Continued
• NFS servers are stateless; each request provides all arguments require for 

execution
– E.g. reads include information for entire operation, such as ReadAt(inumber,position), not Read(openfile)
– No need to perform network open() or close() on file – each operation stands on 

its own
• Idempotent: Performing requests multiple times has same effect as 

performing them exactly once
– Example: Server crashes between disk I/O and message send, client resend 

read, server does operation again
– Example: Read and write file blocks: just re-read or re-write file block – no other 

side effects
– Example: What about “remove”?  NFS does operation twice and second time 

returns an advisory error 
• Failure Model: Transparent to client system

– Is this a good idea?  What if you are in the middle of reading a file and server 
crashes? 

– Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don’t know they are talking over 

network)
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NFS Architecture
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• NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30 seconds (exact timeout it tunable 
parameter).

» Thus, when file is changed on one client, server is notified, but other clients use old 
version of file until timeout.

– What if multiple clients write to same file? 
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

cache
F1:V2

cache

cache

F1:V1

F1:V2

Client

Server
Client

F1:V2

NFS Cache consistency

F1 still ok?
No: (F1:V2)
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• What sort of cache coherence might we expect?
– i.e. what if one CPU changes file, and before it’s done, another CPU reads file?

• Example: Start with file contents = “A”

• What would we actually want?
– Assume we want distributed system to behave exactly the same as if all 

processes are running on single system
» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

– For NFS:
» If read starts more than 30 seconds after write, get new copy; otherwise, could get 

partial update

Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:
Client 2:
Client 3: Read: parts of B or C

Time
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NFS Pros and Cons
• NFS Pros:

– Simple, Highly portable
• NFS Cons:

– Sometimes inconsistent!
– Doesn’t scale to large # clients

» Must keep checking to see if caches out of date
» Server becomes bottleneck due to polling traffic
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Andrew File System
• Andrew File System (AFS, late 80’s)  DCE DFS (commercial product)
• Callbacks: Server records who has copy of file

– On changes, server immediately tells all with old copy
– No polling bandwidth (continuous checking) needed

• Write through on close
– Changes not propagated to server until close()
– Session semantics: updates visible to other clients only after the file is 

closed
» As a result, do not get partial writes: all or nothing!
» Although, for processes on local machine, updates visible immediately to other 

programs who have file open
• In AFS, everyone who has file open sees old version

– Don’t get newer versions until reopen file
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Andrew File System (con’t)
• Data cached on local disk of client as well as memory

– On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server 

– On write followed by close:
» Send copy to server; tells all clients with copies to fetch new version from server on 

next open (using callbacks)
• What if server crashes? Lose all callback state!

– Reconstruct callback information from client: go ask everyone “who has which 
files cached?”

• AFS Pro: Relative to NFS, less server load:
– Disk as cache  more files can be cached locally
– Callbacks  server not involved if file is read-only

• For both AFS and NFS: central server is bottleneck!
– Performance: all writesserver, cache missesserver
– Availability: Server is single point of failure
– Cost: server machine’s high cost relative to workstation
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What about: Sharing Data, rather than Files ?
• Key:Value stores are used everywhere
• Native in many programming languages

– Associative Arrays in Perl
– Dictionaries in Python
– Maps in Go
– …

• What about a collaborative key-value store rather than message passing 
or file sharing?

• Can we make it scalable and reliable?
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Key Value Storage
Simple interface

• put(key, value);  // Insert/write "value" associated with key

• get(key);  // Retrieve/read value associated with key
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Why Key Value Storage?
• Easy to Scale

– Handle huge volumes of data (e.g., petabytes)
– Uniform items: distribute easily and roughly equally across many machines

• Simple consistency properties

• Used as a simpler but more scalable "database"
– Or as a building block for a more capable DB
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• Amazon:
– Key: customerID
– Value: customer profile (e.g., buying history, credit card, ..)

• Facebook, Twitter:
– Key: UserID
– Value: user profile (e.g., posting history, photos, friends, …)

• iCloud/iTunes:
– Key: Movie/song name
– Value: Movie, Song

Key Values: Examples 
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Key-value storage systems in real life
• Amazon

– DynamoDB: internal key value store used to power Amazon.com
(shopping cart)

– Simple Storage System (S3)

• BigTable/HBase/Hypertable: distributed, scalable data storage

• Cassandra: “distributed data management system” (developed by 
Facebook)

• Memcached: in-memory key-value store for small chunks of arbitrary 
data (strings, objects) 

• eDonkey/eMule: peer-to-peer sharing system

• …
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Key Value Store
• Also called Distributed Hash Tables (DHT)
• Main idea: simplify storage interface (i.e. put/get), then partition set of 

key-values across many machines
key, value

…
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Challenges

• Scalability: 
– Need to scale to thousands of machines 
– Need to allow easy addition of new machines

• Fault Tolerance: handle machine failures without losing data  and 
without degradation in performance

• Consistency: maintain data consistency in face of node failures and 
message losses 

• Heterogeneity (if deployed as peer-to-peer systems):
– Latency: 1ms to 1000ms
– Bandwidth: 32Kb/s to 100Mb/s

…
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Important Questions
• put(key, value): 

– where do you store a new (key, value) tuple?
• get(key): 

– where is the value associated with a given “key” stored?

• And, do the above while providing 
– Scalability
– Fault Tolerance
– Consistency
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How to solve the “where?”
• Hashing to map key space  location

– But what if you don’t know all the nodes that are participating?
– Perhaps they come and go …
– What if some keys are really popular?

• Lookup
– Hmm, won’t this be a bottleneck and single point of failure?
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Recursive Directory Architecture (put)
• Have a node maintain the mapping between keys and the machines 

(nodes) that store the values associated with the keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory

put(K14, V14)
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Recursive Directory Architecture (get)

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory

get(K14)
V14

• Have a node maintain the mapping between keys and the machines 
(nodes) that store the values associated with the keys
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Iterative Directory Architecture (put) 
• Having the master relay the requests  recursive query
• Another method: iterative query (this slide)

– Return node to requester and let requester contact node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory
put(K14, V14)

N3
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Iterative Directory Architecture (get)

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory
get(K14)

V14
N3

• Having the master relay the requests  recursive query
• Another method: iterative query (this slide)

– Return node to requester and let requester contact node
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Iterative vs. Recursive Query

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory

get(K14)
V14

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory
get(K14)

V14
N3

Recursive Iterative

+ Faster, as directory server is typically close 
to storage nodes

+ Easier for consistency: directory can 
enforce an order for all puts and gets

- Directory is a performance bottleneck

+ More scalable, clients do more work
- Harder to enforce consistency
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Scalability: Is it easy to make the system bigger?
• Storage: Use more nodes
• Number of Requests

– Can serve requests from all nodes on which a value is stored in parallel
– Master can replicate a popular item on more nodes

• Master/Directory Scalability
– Replicate It (multiple identical copies)
– Partition it, so different keys are served by different directories

» But how do we do this….?
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Fault Tolerance
• Replicate value on several nodes
• Usually, place replicas on different racks in a datacenter to guard against 

rack failures

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14)

N1, N3

K14 V14

put(K14, V14)
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Consistency
• Need to make sure that a value is replicated correctly
• How do you know a value has been replicated on every node? 

– Wait for acknowledgements from every node
• What happens if a node fails during replication?

– Pick another node and try again
• What happens if a node is slow?

– Slow down the entire put()? Pick another node?
• In general, with multiple replicas

– Slow puts and fast gets
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Consistency (cont’d)
• If concurrent updates (i.e., puts to same key) may need to make sure that 

updates happen in the same order 

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14’)

K14 V14

put(K14, V14’’)

K14 V14’K14 V14’’
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Consistency (cont’d)
• If concurrent updates (i.e., puts to same key) may need to make sure that 

updates happen in the same order 

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14’)

K14 V14

put(K14, V14’’)

K14 V14’’K14 V14’

• put(K14, V14’) and put(K14, V14’’) 
reach N1 & N3 in reverse  order!
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Consistency (cont’d)
• If concurrent updates (i.e., puts to same key) may need to make sure that 

updates happen in the same order 

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14’)

K14 V14

put(K14, V14’’)

K14 V14’’K14 V14’

• put(K14, V14’) and put(K14, V14’’) 
reach N1 & N3 in reverse  order!

• What does get(K14) return?
• Undefined!
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Large Variety of Consistency Models
• Atomic consistency (linearizability): reads/writes (gets/puts) to replicas 

appear as if there was a single underlying replica (single system image)
– Think “one updated at a time”
– Transactions

• Eventual consistency: given enough time all updates will propagate 
through the system

– One of the weakest form of consistency; used by many systems in practice
– Must eventually converge on single value/key (coherence)

• And many others: causal consistency, sequential consistency, strong 
consistency, …

Lec 25.4311/29/20 Kubiatowicz CS162 © UCB Fall 2020

Quorum Consensus
• Improve put() and get() operation performance

– In the presence of replication!
• Define a replica set of size N

– put() waits for acknowledgements from at least W replicas
» Different updates need to be differentiated by something monotonically increasing 

like a timestamp
» Allows us to replace old values with updated ones

– get() waits for responses from at least R replicas
– W+R > N

• Why does it work?
– There is at least one node that contains the update

• Why might you use W+R > N+1? 
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Quorum Consensus Example
• N=3, W=2, R=2
• Replica set for K14: {N1, N2, N4}
• Assume put() on N3 fails

N1 N2 N3 N4

K14 V14K14 V14

pu
t(K

14
, V

14
)



Lec 25.4511/29/20 Kubiatowicz CS162 © UCB Fall 2020

Quorum Consensus Example
• Now, issuing get() to any two nodes out of three will return the answer

N1 N2 N3 N4

K14 V14K14 V14

get(K14)

nill
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Scalability
• Storage: use more nodes

• Number of requests: 
– Can serve requests from all nodes on which a value is stored in parallel
– Master can replicate a popular value on more nodes

• Master/directory scalability:
– Replicate it
– Partition it, so different keys are served by different masters/directories

» How do you partition? 
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Scalability: Load Balancing
• Directory keeps track of the storage availability at each node

– Preferentially insert new values on nodes with more storage available
• What happens when a new node is added?

– Cannot insert only new values on new node. Why?
– Move values from the heavy loaded nodes to the new node

• What happens when a node fails?
– Need to replicate values from fail node to other nodes
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Scaling Up Directory
• Challenge:

– Directory contains a number of entries equal to number of (key, value) 
tuples in the system

– Can be tens or hundreds of billions of entries in the system!
• Solution: Consistent Hashing

– Provides mechanism to divide [key,value] pairs amongst a (potentially 
large!) set of machines (nodes) on network

• Associate to each node a unique id in an uni-dimensional space 0..2m-1 
 Wraps around: Call this “the ring!”

– Partition this space across n machines
– Assume keys are in same uni-dimensional space
– Each [Key, Value] is stored at the node with the smallest ID larger than 

Key
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Key to Node Mapping Example
• Paritioning example with

m = 6  ID space: 0..63
– Node  8 maps keys [5,8]
– Node 15 maps keys [9,15]
– Node 20 maps keys [16, 20]
– …
– Node 4 maps keys [59, 4]

• For this example, the mapping 
[14, V14] maps to node with 
ID=15

– Node with smallest ID larger than 
14 (the key)

• In practice, m=256 or more!
– Uses cryptographically secure 

hash such as SHA-256 to 
generate the node IDs

14 V14

4

20

3235

8

15

44

58

63 0

“The Ring”
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Chord: Distributed Lookup (Directory) Service
• “Chord” is a Distributed Lookup Service

– Designed at MIT and here at Berkeley (Ion Stoica among others)
– Simplest and cleanest algorithm for distributed storage

» Serves as comparison point for other optims
• Import aspect of the design space:

– Decouple correctness from efficiency
– Combined Directory and Storage

• Properties 
– Correctness: 

» Each node needs to know about neighbors on ring (one predecessor and one 
successor)

» Connected rings will perform their task correctly
– Performance: 

» Each node needs to know about O(log(M)), where M is the total number of nodes
» Guarantees that a tuple is found in O(log(M)) steps

• Many other Structured, Peer-to-Peer lookup services: 
– CAN, Tapestry, Pastry, Bamboo, Kademlia, …
– Several designed here at Berkeley!
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Chord’s Lookup Mechanism: Routing!
• Each node maintains pointer to its 

successor 
• Route packet (Key, Value) to the 

node responsible for ID using 
successor pointers
– E.g., node=4 lookups for node 

responsible for Key=37 
• Worst-case (correct) lookup is O(n)

– But much better normal lookup time is 
O(log n)

– Dynamic performance optimization 
(finger table mechanism)

» More later!!!

4

20

3235

8

15

44

58

lookup(37)

node=44 is 
responsible 
for Key=37
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But what does this really mean??

ID: 4

ID: 44

ID: 8

ID: 20

ID: 35

ID: 58

ID: 15

ID: 32

• Node names intentionally scrambled WRT geography!
– Node IDs generated by secure hashes over metadata 

» Including things like the IP address
– This geographic scrambling spreads load and avoids hotspots

• Clients access distributed storage through any member of the network

4

20

3235

8

15

44

58

14 V14

63 0

Client

Client

Client

Client

Client

14 V14
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Stabilization Procedure
• Periodic operation performed by each node n to maintain its successor 

when new nodes join the system
– The primary Correctness constraint

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;      // if x better successor, update 
succ.notify(n); // n tells successor about itself

n.notify(n’)
if (pred = nil or n’    (pred, n))

pred = n’;       // if n’ is better predecessor, update




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Joining Operation

4

20

3235

8

15

44

58

50

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

• Node with id=50 
joins the ring

• Node 50 must know 
at least one node 
already in system

– Assume known 
node is 15
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Joining Operation

4

20

3235

8

15

44

58

50

join(50)

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

58

succ=58

• n=50 sends join(50)
to node 15

– Join propagated 
around ring!

• n=44 returns node 58
• n=50 updates its

successor to 58
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

• n=50 executes 
stabilize()

• n’s successor (58)
returns x = 44
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

• n=50 executes 
stabilize()

– x = 44
– succ = 58
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

• n=50 executes 
stabilize()

– x = 44
– succ = 58

• n=50 sends to it’s 
successor (58) 
notify(50)
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• n=58 executes
notify(50)

– pred = 44
– n’ = 50

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

succ=58

n.notify(n’)
if (pred = nil or n’   (pred, n))

pred = n’
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

succ=58

pred=50
• n=58 executes

notify(50)
– pred = 44
– n’ = 50

• set pred = 50

n.notify(n’)
if (pred = nil or n’   (pred, n))

pred = n’
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

x=50

• n=44 executes 
stabilize()

• n’s successor (58) 
returns x=50

Lec 25.6211/29/20 Kubiatowicz CS162 © UCB Fall 2020

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

• n=44 executes 
stabilize()

– x=50
– succ=58
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

• n=44 executes 
stabilize()

– x=50
– succ=58

• n=44 sets 
succ=50

succ=50
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=50
pred=35

succ=4
pred=50

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

notify(44)

• n=44 executes 
stabilize()

• n=44 sends notify(44) 
to its successor
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=50
pred=35

succ=4
pred=50

n.notify(n’)
if (pred = nil or n’    (pred, n))

pred = n’


succ=58

notify(44)

• n=50 executes 
notify(44)

– pred=nil
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=50
pred=35

succ=4
pred=50

succ=58

notify(44)

pred=44

• n=50 executes 
notify(44)

– pred=nil
• n=50 sets pred=44

n.notify(n’)
if (pred = nil or n’   (pred, n))

pred = n’
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Joining Operation (cont’d)

4

20

3235

8

15

44

58

50succ=58

succ=50

pred=44

pred=50
• This completes the joining 

operation!
• The same stabilizing process 

will deal with failed nodes by 
reconnecting the ring

• What if 2 or more nodes in a 
row fail?

– Keep track of
more neighbors!

– Called the “leaf set”
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Achieving Efficiency: finger tables

80 + 2080 + 21
80 + 22

80 + 23

80 + 24

80 + 25
(80 + 26) mod 27 = 16

0
Say m=7

ith entry at peer with id n is first peer with id >=                          )2(mod2 min 

i   ft[i]
0  96
1  96
2  96
3  96
4  96
5  112
6  20

Finger Table at 80

32

4580

20
112

96
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Achieving Fault Tolerance for Lookup Service

• To improve robustness each node maintains the k (> 1) immediate 
successors instead of only one successor

– Again – called the “leaf set”
– In the pred() reply message, node A can send its k-1 successors to its 

predecessor B
– Upon receiving pred() message, B can update its successor list by 

concatenating the successor list received from A with its own list
• If k = log(M), lookup operation works with high probability even if half 

of nodes fail, where M is number of nodes in the system
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Storage Fault Tolerance
• Replicate tuples on 

successor nodes
• Example: replicate (K14, 

V14) on nodes 20 and 32

4

20

3235

8

15

44

58

14 V14

63 0

14 V14

14 V14
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Storage Fault Tolerance
• If node 15 fails, no 

reconfiguration needed
– Still have two replicas 
– All lookups will be correctly 

routed after stabilization

• Will need to add a new 
replica on node 35

4

20

3235

8

15

44

58

14 V14

63 0

14 V14

14 V14

14 V14
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Replication in Physical Space

ID: 4

ID: 44

ID: 8

ID: 20

ID: 35

ID: 58

ID: 15

ID: 32

• Replicating in Adjacent nodes of virtual space  Geographic 
Separation in physical space

– Avoids single-points of failure through randomness
– More nodes, more replication, more geographic spread

Client

Client

Client

Client

Client

14 V14
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20

3235

8

15

44

58

14 V14

630

14 V14

14 V14

14 V14

14 V14
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DynamoDB Example: Service Level Agreements (SLA)

• Dynamo is Amazon’s storage system 
using “Chord” ideas

• Application can deliver its functionality in 
a bounded time: 

– Every dependency in the platform needs 
to deliver its functionality with even tighter 
bounds.

• Example: service guaranteeing that it will 
provide a response within 300ms for 
99.9% of its requests for a peak client 
load of 500 requests per second

• Contrast to services which focus on 
mean response time

Service-oriented architecture of 
Amazon’s platform
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Summary (1/2)
• Distributed File System: 

– Transparent access to files stored on a remote disk
– Caching for performance

• VFS: Virtual File System layer (Or Virtual Filesystem Switch)
– Provides mechanism which gives same system call interface for different types of 

file systems
• Cache Consistency: Keeping client caches consistent with one another

– If multiple clients, some reading and some writing, how do stale cached copies get 
updated?

– NFS: check periodically for changes
– AFS: clients register callbacks to be notified by server of changes
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Summary (2/2)
• Key-Value Store:

– Two operations
» put(key, value)
» value = get(key)

– Challenges
» Fault Tolerance  replication
» Scalability  serve get()’s in parallel; replicate/cache hot tuples
» Consistency  quorum consensus to improve put() performance

• Chord:
– Highly scalable distributed lookup protocol
– Each node needs to know about O(log(M)), where m is the total number of 

nodes
– Guarantees that a tuple is found in O(log(M)) steps
– Highly resilient: works with high probability even if half of nodes fail


