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Recall: Network-Attached Storage and the CAP Theorem

Network
» Consistency: E

— Changes appear to everyone in the same serial order
* Availability:
— Can get a result at any time
 Partition-Tolerance
— System continues to work even when network becomes partitioned

» Consistency, Availability, Partition-Tolerance (CAP) Theorem: Cannot have all three
at same time

— Otherwise known as “Brewer’s Theorem”
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Recall: Key Value Storage

Simple interface
o put(key, value); // Insert/write "value" associated with key

o get(key); // Retrieve/read value associated with key
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Recall: Key Value Store

» Also called Distributed Hash Tables (DHT)

* Main idea: simplify storage interface (i.e. put/get), then partition set of
key-values across many machines
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Recall: Recursive vs. lterative

Master/Directory Master/Directory
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Recursive Iterative

+ More scalable, clients do more work
- Harder to enforce consistency

+ Faster, as directory server is typically close
to storage nodes

+ Easier for consistency: directory can
enforce an order for all puts and gets

- Directory is a performance bottleneck

Recall: Scaling Up Directory

* Challenge:

— Directory contains a number of entries equal to number of (key, value)
tuples in the system

— Can be tens or hundreds of billions of entries in the system!
» Solution: Consistent Hashing

— Provides mechanism to divide [key,value] pairs amongst a (potentially
large!) set of machines (nodes) on network

* Associate to each node a unique id in an uni-dimensional space 0..2™-1
= Wraps around: Call this “the ring!”

— Partition this space across n machines
— Assume keys are in same uni-dimensional space
— Each [Key, Value] is stored at the node with the smallest ID larger than

Key
12/7/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 26.5 12/7/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 26.6
Key to Node Mapping Example Chord: Distributed Lookup (Directory) Service
« Paritioning example with . e + “Chord” is a Distributed Lookup Service
m =6 - ID space: 0..63 e - ﬁ — Designed at MIT and here at Berkeley (lon Stoica among others)

— Node 8 maps keys [5,8]

— Node 15 maps keys [9,15]
— Node 20 maps keys [16, 20]
— Node 4 maps keys [59, 4]

* For this example, the map.{)ing
[64_,1%1 4] maps to node with = |

“The Ring”

— Node with smallest ID larger than
14 (the key)

* In practice, m=256 or more!

— Uses cryptographically secure
hash such as SHA-256 to
generate the node IDs

12/7/20 Kubiatowicz CS162 © UCB Fall 2020

15@

Lec 26.7

12/7/20

— Simplest and cleanest algorithm for distributed storage
» Serves as comparison point for other optims
» Import aspect of the design space:
— Decouple correctness from efficiency
— Combined Directory and Storage
* Properties
— Correctness:

» Each node needs to know about neighbors on ring (one predecessor and one
successor)

» Connected rings will perform their task correctly
— Performance:
» Each node needs to know about O(log(M)), where M is the total number of nodes
» Guarantees that a tuple is found in O(log(M)) steps
» Many other Structured, Peer-to-Peer lookup services:
— CAN, Tapestry, Pastry, Bamboo, Kademlia, ...
— Several designed here at Berkeley!
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Chord’s Lookup Mechanism: Routing!

* Each node maintains pointer to its
successor

* Route packet (Key, Value) to the
node responsible for ID using
successor pointers
— E.g., node=4 lookups for node

responsible for Key=37

* Worst-case (correct) lookup is O(n)
— But much better normal lookup time is

O(log n) B
— Dynamic performance optimization %
(finger table mechanism)

» More later!!!

ﬁ lookup(37)

§

node=44 is
responsible
for Key=37
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But what does this really mean??

______
-
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’
/ i
L Client

* Node names intentionally scrambled WRT geography!
— Node IDs generated by secure hashes over metadata
» Including things like the IP address

— This geographic scrambling spreads load and avoids hotspots

+ Clients access distributed storage through any member of the network
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Stabilization Procedure

» Periodic operation performed by each node n to maintain its successor
when new nodes join the system

— The primary Correctness constraint

n.stabilize()
X = succ.pred;
if (x e (n, succ))
succ =x; [l if x better successor, update
succ.notify(n); /I n tells successor about itself

n.notify(n’)
if (pred = nil or n’ ¢ (pred, n))
pred =n’; Il if n’ is better predecessor, update
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Joining Operation

* Node with id=50 succ=4
joins the ring

* Node 50 must know
at least one node
already in system

— Assume known
node is 15

succ=nil =
pred=nil Jji
50

succ=58 [
pred=35 Wi
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Joining Operation

» n=50 sends join(50)

to node 15

— Join propagated
around ring!

* n=44 returns node

* n=50 updates its
successor to 58

12/7/20

succ=4 = ﬁ

pred=44

58

58
join(50)

succ=Ad [E
pred=nil i
5

succ=58 |
pred=35 Y
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Joining Operation

* n=50 executes
stabilize()

* n’s successor (58)
returns x = 44

e g .

w
‘{.y
succ=58 3
pred=nil 50 15 ﬁ
succ=58 [ -
pred=35 YL @

n.stabilize()

=P X =succ.pred;

if (x (n, succ))
succ = X;

succ.notify(n);
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Joining Operation

* n=50 executes

succ=4 ﬁ

stabilize() pred=44 @
- x=44
— succ = 58
succ=58 ki )
pred=nil 50 15 @
succ=58 | -
pred=35 ¥ @
n.stabilize()

X = succ.pred;

=p if (x g(n, succ))
succ = x;

succ.notify(n);

12/7/20
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Joining Operation

* n=50 executes

succ=4 __ ﬁ

stabilize() pred=44 @
_x= ~
X =44 {?
— succ = 58 &
* n=50 sends to it's Y
successor (58)
notify(50) succ=58 A'l M
pred=nil 50 15 @
succ=58 | .
pred=35 ¥l @
n.stabilize()

X = succ.pred;

if (x (n, succ))
succ = x;

=P succ.notify(n);
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Joining Operation

* n=58 executes succ=4
notify(50) pred=44 @
— pred =44 ,oe\
NS
-n =50 KS
S
$
succ=58 77’1
pred=nil 50
succ=58 [
pred=35 YL
n.notify(n’)
=p| if (pred = nilorn’ e (pred, n)
pred =n’
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Joining Operation

* n=58 executes
notify(50)
— pred = 44
- n =50
+ set pred =50

n.notify(n’)
if (pred = nil or
- pred =n’

pred
N
k&
S
$
succ=58 [
pred=nil 15 ﬁ
succ=58 [ -
pred=35 YL @
n’ € (pred, n)
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Joining Operation Joining Operation
* n=44 executes succ=4 . ﬁ * n=44 executes succ=4 __ ﬁ
stabilize() pred=50 [ stabilize() pred=50 [f§
* n’s successor (58) - x=50
returns x=50 — succ=58
x=50
succ=58 ki - succ=58 ki -
pred=nil 50 15 @ pred=nil 50 15 @
succ=58 | - succ=58 | -
pred=35 WL @ pred=35 WL @
n.stabilize() n.stabilize()
=P X =succ.pred; X = succ.pred;
if (x (n, succ)) = if (x g(n, succ))
succ = x; ﬁ succ = X; ﬁ
succ.notify(n); ﬁ succ.notify(n); ﬁ
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Joining Operation

succ=4 __ ﬁ

* n=44 executes

stabilize() pred=50 @ )
~ x=50 E
— succ=58
* n=44 sets
succ=50
succ=58 | -
pred=nil 50 15 ﬁ
succ=58 | -
pred=35 YL @
n.stabilize()

X = succ.pred;
if (x =(n, succ))

- succ = Xx; ﬁ 'ﬁ

succ.notify(n);
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Joining Operation

n=44 executes
stabilize()

n=44 sends notify(44)
to its successor

proa=s0 [§ ]

succ=58 [fi
pred=nil 50 15 ﬁ
notify(44)\
succ=50 [ -
pred=35 YL @

->

n.stabilize()
X = succ.pred;
if (x (n, succ))

Succ = X; ﬁ 'ﬁ

succ.notify(n);
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Joining Operation

succ=4 __ ﬁ

* n=50 executes

notify(44) pred=50 @
— pred=nil
succ=58 5 -
pred=nil 50 15 @
notify(44)\
succ=50 L -
pred=35 WL @
n.notify(n’)
=p if (pred = nilorn’ (pres, n))
pred =n’
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Joining Operation

* n=50 executes
notify(44)

* n=50 sets pred=44

g .

— pred=nil

succ=58 [fi

pred=adl 50 15 @
notify(44)\
succ=50 L -
pred=35 WL @

n.notify(n’)
if (ored = nilorn’ € (pred, n)
pred =n’
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Joining Operation (cont’d)

» This completes the joining -
operation! pred=50 @

* The same stabilizing process
will deal with failed nodes by
reconnecting the ring

* What if 2 or more nodes in a

i1? -
row fail? succ=58 ﬁ
— Keep track of pred=44 50
more neighbors!

— Called the “leaf set”

succ=50 E

12/7/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 26.25

12/7/20

Achieving Efficiency: finger tables

Finger Table at 80 7 0 Say m=7

i fili
96

96
96
96
96
112
20

80 + 26) mod 27 =16

AN N W= O

ith entry at peer with id n is first peer with id >= 7+ 2'(mod2™) ‘
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Achieving Fault Tolerance for Lookup Service

* To improve robustness each node maintains the k (> 1) immediate
successors instead of only one successor

— Again — called the “leaf set”

— In the pred() reply message, node A can send its k-1 successors to its
predecessor B

— Upon receiving pred() message, B can update its successor list by
concatenating the successor list received from A with its own list

* If k =log(M), lookup operation works with high probability even if half
of nodes fail, where M is number of nodes in the system
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* Replicate tuples on
successor nodes

+ Example: replicate (K14,
V14) on nodes 20 and 32
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Storage Fault Tolerance

* If node 15 fails, no
reconfiguration needed
— Still have two replicas

— All lookups will be correctly
routed after stabilization

* Will need to add a new
replica on node 35

Lookup with Leaf Set

» Assign IDs to nodes

—Map hash values to node with
closest ID

» Leaf set is successors and
predecessors
—All that's needed for correctness 110

* Routing table matches
successively longer prefixes

— Allows efficient lookups

Source

& \\\ﬁ o Lookup ID
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Replication in Physical Space DynamoDB Example: Service Level Agreements (SLA)
——e Sl T ::._’@ =Y . Dy_narpo is Amazon’s storage system S
I 4] /7 D:ss Client using “Chord” ideas \
ien * =~ ammmmee > 5 B : ; H P i
ID: 4 S i §-. * Application can deliver its functionality in \ / R
L A e e a bounded time: WU Y- U g
7 @’ _____ *@ — Every dependency in the platform needs ~.
Client ' D32 P to deliver its functionality with even tighter
@ l‘ : bounds. E‘EE/E]‘/ \‘ [;f:)?) Aggregator
0?15 G- « Example: service guaranteeing that it will T & .
\ ¥ ID: 44 provide a response within 300ms for - Sondes
~«._ Client . . .
~~~~~~~~~~ 99.9% of its requests for a peak client erfj { \EL}J“U\EE@
"""" load of 500 requests per second | o o
« Replicating in Adjacent nodes of virtual space = Geographic Contrast to services which focus on @°9 t9 U&J td
Separation in physical space mean response time Ygg/ Y89/
— Avoids single-points of failure through randomness Dym' .
. . Service-oriented architecture of
— More nodes, more replication, more geographic spread Amazon’s platform
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What is Computer Security Today?

* Computing in the presence of an adversary!
— Adversary is the security field’s defining characteristic
* Reliability, robustness, and fault tolerance
— Dealing with Mother Nature (random failures)
» Security
— Dealing with actions of a knowledgeable attacker dedicated to causing harm
— Surviving malice, and not just mischance
* Wherever there is an adversary, there is a computer security problem!

BlackEnergy Mirai loT botnet
¢ SCADA malware

(Supervisory Control
and Data Acquisition)
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Protection vs. Security
» Protection: mechanisms for controlling access of programs, processes, or
users to resources
— Page table mechanism
— Round-robin schedule
— Data encryption

« Security: use of protection mechanisms to prevent misuse of resources
— Misuse defined with respect to policy
» E.g.: prevent exposure of certain sensitive information
» E.g.: prevent unauthorized modification/deletion of data
— Need to consider external operational environment

» Most well-constructed system cannot protect information if user accidentally
reveals password — social engineering challenge
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On The Importance of Data Integrity

* Machine-to-Machine (M2M)
communication has reached a
dangerous tipping point

— Cyber Physical Systems use models and
béhaviors that from elsewhere

— Firmware, safety protocols, navigation
systems, recommendations, ...

— loT (whatever it is) is everywhere

* Do you know where your data came
from? PROVENANCE

In July (2015), a team of researchers  « Do you know that it is ordered
took total control of a Jeep SUV properly? INTEGRITY

remotely _ * The rise of Fake Data!

Thley exbpll'(t)lted g If:[mvl\ial;jetﬁpdatl'e]' | — Much worse than Fake News...
vulnerability and hijacked the vehicle B

over the Sprint cellular network %’r%%tdtﬂe data, make the system behave

They could make it speed up, slow
down and even veer off the road
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Security Requirements

* Authentication
— Ensures that a user is who they are claiming to be

« Data integrity
— Ensure that data is not changed from source to destination or after
being written on a storage device

» Confidentiality
— Ensures that data is read only by authorized users

* Non-repudiation
— Sender/client can’t later claim didn’t send/write data
— Receiver/server can’t claim didn’t receive/write data
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Securing Communication: Cryptography

» Cryptography: communication in the presence of adversaries

» Studied for thousands of years
— See the Simon Singh’s The Code Book for an excellent, highly readable history

» Central goal: confidentiality
— How to encode information so that an adversary can’t extract it, but a friend can

» General premise: there is a key, possession of which allows decoding, but
without which decoding is infeasible

— Thus, key must be kept secret and not guessable
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Basic Tool: Using Symmetric Keys

+ Same key for encryption and decryption
+ Achieves confidentiality

* Vulnerable to tampering and replay attacks unless supplement with
additional techniques such as nonces

* Good example: AES (“Advanced Encryption Standard”)

Plaintext (m) m

Encrypt with Internet Decrypt with
secret key secret key
Ciphertext
12/7/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 26.38

Basic Tool: Secure Hash Function

T DFCD3454BBEA788A

Fox > Function—b 751A696C24D97009
CA992D17

The red fox ol 52ED879E70F71D92

runs across [l e P! 6EB6957008EQ3CE4

| the ice SIEEECT, CA6945D3

» Hash Function: Short summary of data (message)
— For instance, h,=H(M,) is the hash of message M,
» h, fixed length, despite size of message M,
» Often, h, is called the “digest” of M,

« Hash function H is considered secure if

— Itis infeasible to find M, with h;=H(M,); i.e., can’t easily find other message with same digest
as given message
- Ltl(ls ir;feasible to locate two messages, m; and m,, which “collide”, i.e. for which H(m,) =
m;
— A small change in a message changes many bits of digest/can’t tell anything about message
given its hash

* Good example: SHA-256
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Using Hashing for Integrity

plaintext (m) corruptedmsg ~ m
Internet

Encrypted Digest
Unencrypted Message

Can encrypt m for confidentiality
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Basic Tool: Public Key / Asymmetric Encryption

* Instead of one key, have two keys: public and private
+ Sender uses receiver’s public key

— Advertised to everyone
* Receiver uses complementary private key

— Must be kept secret

Plaintext Plaintext

Internef

Public Key Encryption Details

¢ Idea: K, can be made public, keep K . private
Insecure Channel

Bpublic —_— Bprivate
’ —

publig

Alice Insecure Channel Bob
» Gives message privacy (restricted receiver):
— Public keys (secure destination points) can be acquired by anyone/used by anyone
— Only person with private key can decrypt message
* What about authentication?

Encrypt with ; Decrypt with — Use combination of private and public key
public key < private key — Alice—Bob: [(I'm Alice)*rrivate Rest of message]Brublic
Ciphertext ) — Provides restricted sender and receiver
= * But: how does Alice know it was Bob who sent her B,;;? And vice versa...
— Need a key distribution mechanism/Public Key Infrastructure
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Public Key Crypto & Signatures
Alice
I will pay Sign (h
Bob $500 [ (Encrypt) .
* Alice's Fog Robotics and the
private key Global Data Plane (GDP)
DFCD3454
BBEA788A
Bob +
1 will pay Verify A/H
Bob $500 . (Decrypt) Alice's
public key
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Real-Time
Components

SwarmlLet
(“The Application”)

* An Application is a Connected Graph of Services
— Locality and QoS aware!
— Use local resources to limit external observability/interference
+ Distributed storage everywhere
— Each arrow represents imbedded storage
— Transient or Long term
+ Computation on the edge of the network
— Perhaps Secure Enclaves (SES) for trusted computation...?

— Rapid launching of computation to close resources
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A Physical View of these Applications:
Distributed, Ad Hoc, and Vulnerable

Manufacturing
* Smart Contracts
* Data Analytics

Lec 26.46

Why are Data Breaches so Frequent?
Really Large TCB

— Protection mechanisms are all “roll-your-own” and different for each application
— Use of encrypted channels to “tunnel” across untrusted domains
» Data is protected at the Border rather than Inherently
— Large Trusted Computing Base (TCB): huge amount of code must be correct to protect data
— Make it through the border (firewall, OS, VM, container, etc...) data compromised!
* What about data integrity and provenance?

— Any bits inserted into “secure” environment get trusted as authentic =
manufacturing faults or human injury or exposure of sensitive information
Kubiatowicz C$162 © UCB Fall 2020

12/7/20 Lec 26.47

* Inspiration: Shipping Containers

» Can we use this idea to help?

12/7/20

The Data-Centric Vision:
Cryptographically Hardened Data Containers

Fiber
K_H

Hole
TS Je-Hole < 3=y
Hash Ptr o

Metadata Container Signature

» DataCapsule (DC):

— Standardized metadata wrapped around
opaque data transactions

— Uniquely named and globally findable

— Every transaction explicitly sequenced in a
hash-chain history

— Provenance enforced through signatures
* Underlying infrastructure assists and
improves performance

— Anyone can verify validity, membership, and
sequencing of transactions (like blockchain)

— Invented in 1956. Changed everything!

— Ships, trains, trucks, cranes handle
standardized format containers

— Each container has a unique ID
— Can ship (and store) anything
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Why does this help?

The “Networking” effect (Pun Intended!)
— Standardization = Infrastructure proliferation that benefits everyone
— Federation = Enable a market of service providers
Data becomes a first-class entity in the network!
— Asserts its own requirements for security, privacy, which are enforced via cryptography
— Independent of physical location — policies can target durability, QoS, availability, etc
— No application silos — data producers own and chose how to share their information
— Network is informed about the information that it is carrying and where it may go
First (Necessary) Step: Network Cannot Enforce what is not Specified!
Related information bundled and kept together as it migrates

A Platform Approach: the Utility-Provider Model
[ DataCapsule version of Ships, Trains, Trucks, and Cranes ]

Platform Users:
Applications/Services

f

Global Data Plane:
Routing, Multicast,
Trust Domains, Accounting

’ Ap @
: ) ®

ﬁApp Service App ®
® %

A widely distrjbuted sysfem

o
eJ

©

>
»
>
»

0

- i i i ——
Provena.nce and data.orderlng part of all mformatlon.u?,age . Sy :_m Utility Providers:
— Information labeled with meta-data about (1) Where it is allowed to be in the network, — =) Heterogeneous Infrastructure
and (2) Who is allowed to view and interact with it, (3) Who is allowed to modify it. Storage, Transport, QoS
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. . Refactoring of Applications around
A Physical View of the GDP Security, Integrity, and Provenance of Information
Cloud data center Municipal data center » Goal: A thin Standardized entity that can be
Name Resolver easily adopted and have immediate impact
— Can be embedded in edge environments C y
- ,C\l)an beI exploned in the cIoI:d | . . Home Contral i’:‘::f’f,ﬁ“ Application
i . — Natural adjunct to Secure Enclaves for computat.lon oo ere/ Common Access
2 DataCapsule + DataCapsules = bottom-half of a blockchain? SQL, Key-value, ., APIs (CAAPI)

Server

Dristributed
Name Resolver
A B
GDP switch [ Client
—— A o
~& ~| | Transit(Provider)
= Networks
o_0
DataCapsule
Home P Smart Factory
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— Or a GIT-style version history
— Simplest mode: a secure log of information

DataCapsules /
Secure Routing

Global
Data Plane

— Universal unique name = permanent reference Network
* Applications writers think in terms of traditional
Ethernet, WI-FI, .
storage access patterns: Bluetooth, 802.15.4, AVB,... Physical

— File Systems, Data Bases, Key-Value stores C D

— Called Common Access APIs (CAAPIs)
— DataCapsules are always the Ground Truth
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Global Data Plane (GDP) and the
Secure Datagram Routing Protocol

Edge Domain #1 Edge Domain #2

Service Provider

» Secure Multicast Protocol

— Only clients/DC storage servers with
proper (delegation) certificates may join

* Queries (messages) are Fibers

— Self-verifying chunks of DataCapsules
— Writes include appropriate credentials
— Reads include proofs of membership

» Flat Address Space Routing

— Route queries to DCs by names, independent
of location (e.g. no IP)

— DCs move, network deals with it

— Short-term Channels (“u-SSL channels”)
» Black Hole Elimination: Delegation of Names

— Only servers authorized by owner of DC may

Reasoning about the infrastructure: Trust Domains

Global(Tier-1) Trust Domain
(Trusted Service Provider)

— »
N ame
Resolver

« Trust Domains: Groups of Resources owned by single entity
— Reflect the ownership, trustworthiness, and degree of maintence
— Carry unique economic, political, or incentive structure of the owner
— Pay-for-service, Federated utility model

rust Domain #
(e.g. Factory)

advertise DC service ) . * Incremental deployment as an overlay + Trust for:
: Rf)ustglgrggééh;?:dgpliirg:r?si )é%%ttir:us’[- — Prototype tunneling protocol (“GDPinUDP") — Message Transport, Location Resolution, DataCapsule Service, Secure Enclave Serv
g ~oung — Federated infrastructure w/routing certificates — Conversations routed accordjng to Da ’s Trust Preferences
12/7/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 26.53 12/7/20 mga OWICZ &%%9%%@ PaWﬂ)gg Lec 26.54
E.g. Using DataCapsules to support more familiar
Common Access APIs (CAAPIs) data access patterns (e.q. DataBase)
+ Common Access APIs (CAAPIs) provide convenient/familiar Storage Access Patterns: SBE TR
— Random File access, Indexing, SQL queries, Latest value for given Key, etc DB OIBQP
— Optional Checkpoints for quick restart/cloning Client DataBase i DataBase Client
— Refactoring: CAAPIs are services or libraries running in trusted or secured computing Projection (w/Key) Projection (WiKey)

environments on top of DataCapsule infrastructure
* Many Consistency Models possible
— DataCapsules are “Conflict-free Replicated Data Types” (CRDTSs): Synchronization via Union
— Single-Writer CAAPIs prevent branches if sufficient stable storage (strong consistency models)
— DataCapsules with branches: like GIT or Amazon Dynamo (write always, reader handles
branches)
— CAAPIs can support anything from weak consistency to serializability
* Examples:
— Streaming storage
— Key/Value store with time-travel
— Filesystem (changeable sequences of bytes organized in hierarchy)
— Multi-writer storage using Paxos or RAFT
— Byzantine agreement with threshold admission to DataCapsules
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!W (RAM)

calm

W (RAM)

RO DataBase
CAAPI (SQL)
(wo/Owner Key)

R/W DataBase
CAAPI (SQL)
(w/Owner Key)

SQL (R/W) SQL (R/W) SQL (RO)

S

=~

GP Network:
Data Centric
Messaging
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Fog Robotics on the Global Data Plane

Tier 1
Trust Domain

Replica s a
DataCapsules . e
e {2
a
% Edge

/ﬁ/_\q‘omputing
c Lo : vﬂm

Edge prsl |
Computing M(’ €%

Trust Domain 1

Computing .
Trust Domain 2
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Example: Data Capsules as Part of Model Delivery
Y " Mobile Compu.te

Edge Network
(Trust Domain)

loud Based
Model Development
(w/ Secure Distribution)

o

: Edge Training
11 (Secure Execution)

Refinement

Actuation Data

Mobile Compute
(Secure Execution)

Training
Data Sets

Updated
Model.pb

t
Model
Refinement

4

DN -
1 4
k Actuation Data

» Robotic grasping model distributed in DCs
— Intellectual property of producer (only unpacked in environments guaranteed not to leak model)

127106 Refinement on the edge is “Qﬁ&;‘%ﬂi 3ry¥1p}/©qjggggié%goenclaves with attested algorithms Lec 26.58

How to make DataCapsule Vision a Reality?

Ctrl Plane:
Broker,

Attest,
Instantiate

nclave
* Multi-Tenant Secure Computation Services

— Secure Enclaves on Demand with specified
attributes (e.g. GPU, special accelerator, etc.)

— Standardized packaging (e.g. Docket)

— Data Location Services
. i i i — Trustable computation through attestation, ke
Owned by service provider (trust domain) exchange, res'% oo phygical etano Yy

— Secure boot/validated code in DataCapsule | Computation is fungible:

— Multiple providers may own equipment in single .
physf)calgnvironmenty quip & — Executable and state stored in DataCapsules!
Lec 26.59
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Multicore x86+SGX, memory, network,
persistent memory/spinning storage

— Federated/Utility storage infrastructure
— Edge-local support for multicast

= 3 QG

DataCapsule Infrastructure

DC Service|

Location

Cloud Service Services

Location |B=a"
Services

Location
Services

- -
loud Domain -

)
Global | | 1
GDP

==
-
Z-= 1

Switch
1

- ned
| GDP EndPT
Switch

Global Domain

Kubiatowrs

., 5mall Edge Domain
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Quantum Computing,
Shor’s Algorithm,
and the role of CAD design
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Use Quantum Mechanics to Compute?

Weird but useful properties of quantum mechanics:

— Quantization: Only certain values or orbits are good
» Remember orbitals from chemistry???

— Superposition: Schizophrenic physical elements don’t quite know whether
they are one thing or another

All existing digital abstractions try to eliminate QM
— Transistors/Gates designed with classical behavior
— Binary abstraction: a “1” is a “1” and a “0” is a “0”

* Quantum Computing:

Use of Quantization and Superposition to compute.

* Interesting results:

— Shor’s algorithm: factors in polynomial time!

— Grover’s algorithm: Finds items in unsorted database in time proportional to
square-root of n.

— Materials simulation: exponential classically, linear-time QM
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Current “Arms Race” of Quantum Computing

IBM: Superconducting
Devices up to 50 qubits

Google: Superconducting
Devices up 72-qubits

+ Big companies looking at Quantum Computing Seriously
— Google, IBM, Microsoft
» Current Goal: Quantum Supremacy
— Show that Quantum Computers faster than Classical ones

— “If a quantum processor can be operated with low enough error, it would be able to
outperform a classical supercomputer on a well-defined computer science problem, an
achievement known as quantum supremacy.
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Quantization: Use of “Spin”

Spin ; particle:

Representation:
(Proton/Electron) ‘

|0> or [1>

+ Particles like Protons have an intrinsic “Spin” when
defined with respect to an external magnetic field

* Quantum effect gives “1” and “0”:
— Either spin is “UP” or “DOWN” nothing between
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Kane Proposal Il
(First one didn’t quite work)

103=1Todn )= 14T )

€
1= 1Tadnd+ldatald
" Byl b
¢y |
o

Single Spin
Control Gates\,

Elz S/ AN s Ay sarcier
Inter-bit — ‘ :’/:"/ si

Control Gates

Phosphorus

Impurity Atoms

 Bits Represented by combination of proton/electron spin
» Operations performed by manipulating control gates

— Complex sequences of pulses perform NMR-like operations
» Temperature < 1° Kelvin!

Now add Superposition!

* The bit can be in a combination of “1” and “0:

— Written as: W= C;|0> + C,|1>

— The C’s are complex numbers!

— Important Constraint: |C,|? + |C,[? =1
* If measure bit to see what looks like,

— With probability |C,|? we will find |0> (say “UP”)

— With probability |C,|? we will find [1> (say “DOWN”)
+ Is this a real effect? Options:

— This is just statistical — given a large number of protons, a fraction of them
(ICyl? ) are “UP” and the rest are down.

— This is a real effect, and the proton is really both things until you try to look at it
* Reality: second choice!
— There are experiments to prove it!
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A register can have many values! Spooky action at a distance
« Implications of superposition: » Consider the following simple 2-bit state:
— An n-bit register can have 2" values simultaneously! W= Cyol00>+ Cyyf 11>
— 3-bit example: — Called an “EPR” pair for “Einstein, Podolsky, Rosen”
W= Cypol000>+ Cpq[001>+ Cy1g[010>+ Cyy 011>+ + Now, separate the two bits:
.C'190|100>+ C1o1|10.1>+ C11o|:|10>+ Cyyl111> o Light-Years?
» Probabilities of measuring all bits are set by coefficients:
— So, prob of getting |000> is |Cyq|?, etc.
— Suppose we measure only one bit (first): « If we measure one of them, it instantaneously sets other one!
» We get “0” with probability: Py=|Cq|2+ [Cgo1/>+ |Co10l>+ |Co14]? — Einstein called this a “spooky action at a distance”
Result: W= (Cgp0l000>+ Cg4|001>+ Cy40|010>+ Cy44|011>) — In particular, if we measure a |0> at one side, we get a [0> at the other (and vice versa)
» We get “1” with probability: P;=|Cygo|*+ |C14[*+ |Cy40*+ |Cy44]? + Teleportation
Result \{J=Y (C1ool 00?+ Cio[101>+ Cyyol 110>+ Cyq]111>) — Can “pre-transport” an EPR pair (say bits X and Y)
* Problem: Don’t want environment to measure — Later to transport bit A from one side to the other we:
before ready! » Perform operation between A and X, yielding two classical bits
— Solution: Quantum Error Correction Codes! » Send the two bits to the other side
» Use the two bits to operate on Y
» Poof! State of bit A appears in place of Y
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Model: Operations on coefficients + measurements

Input ity Output

1 — e e ('] ical
Complex Transformations Measure Classica
State Answer

+ Basic Computing Paradigm:
— Input is a register with superposition of many values
» Possibly all 2n inputs equally probable!
— Unitary transformations compute on coefficients
» Must maintain probability property (sum of squares = 1)
» Looks like doing computation on all 2n inputs simultaneously!
— Output is one result attained by measurement
« If do this poorly, just like probabilistic computation:
— If 2n inputs equally probable, may be 2n outputs equally probable.
— After measure, like picked random input to classical function!

— All interesting results have some form of “fourier transform” computation being
done in unitary transformation
Kubiatowicz CS162 © UCB Fall 2020
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Shor’s Factoring Algorithm
* The Security of RSA Public-key cryptosystems depends on the
difficulty of factoring a number N=pq (product of two primes)
— Classical computer: sub-exponential time factoring
— Quantum computer: polynomial time factoring
+ Shor’s Factoring Algorithm (for a quantum computer)

Easy 1) Choose random x: 2 < x < N-1.

Easy 2) If gcd(x,N) = 1, Bingo!

Hard 3) Find smallest integer r: x’=1 (mod N)

Easy 4) If ris odd, GOTO 1

Easy 5) If ris even, a=x " (mod N) = (a-1)x(a+1) = kN
Easy 6) If a= N-1(mod N) GOTO 1

Easy 7) ELSE gcd(a £ 1,N) is a non trivial factor of N.
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Finding r with X" =1 (mod N)

1) =2k
- |w+ry)|x")

_qw=0y
Quantum Z ( N S N ) XN>
Tr':a%:;f:m - o 1 L

rr r

+ Finally: Perform measurement
— Find out r with high probability

— Get |ly>|a¥> where y is of form k/r and W’ is related
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Quantum Computing Architectures

* Why study quantum computing?
— Interesting, says something about physics
» Failure to build = quantum mechanics wrong?
— Mathematical Exercise (perfectly good reason)
— Hope that it will be practical someday:
» Shor’s factoring, Grover’s search, Design of Materials
» Quantum Co-processor included in your Laptop?
* To be practical, will need to hand quantum computer design off to classical
designers

- IBarlngf Adlabatlc algorithms, will probably need 100s to 1000s (millions?) of working
o ical Qubits =
00s to m||||ons of physical Qubits working together

- Current chips: ~1 billion transistors!
« Large number of components is realm of architecture

— What are ogtlmlzed structures of quantum algorithms when they are mapped to a
physical substrate?

— Optimization not possible by hand
» Abstraction of elements to design larger circuits
» Lessons of last 30 years of VLSI design: USE CAD
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Quantum Circuit Model

X Gate — [o 1]fe] =
Bit-lip, Not = [ oofls

2 Gate — [ ofe] - wo-pw
Phasefip = lo-fs
i

o o+ , 1000
0 offp| L A00BOD= =loouro
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1 0)|d 0001

Y Gate

Controlled Not
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CNot
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1
=
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5| _ 2000 +lon) +
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Adding Quantum ECC

U

&

n-physical Qubits
per logical Qubit

* Quantum Circuit model — graphical representation Quantum State Fragile = encode all Qubits L é‘_;n _‘)
— Time Flows from left to right — Uses many resources: e.g. 3-level [[711;3]] @,‘ ]
— Single Wires: persistent Qubits, Double Wires: classical bits St'IICOdej‘:S Ehys(;tlsal QUb'tst_/log'C‘afl Qrtbtlt)l. " 2] correct
» Qubit — coherent combination of 0 and 1: y = «|0) + B|1) il need 1o handie opera |ons“( ault-to er?n y)
. X . . b — Some set of gates are simply “transversal:
— Universal gate set: Sufficient to form all unitary transformations 7 . . . .
i X » Perform identical gate between each physical bit of logical encoding
¢ Example. Syndrome Measurement (for 3-bit COde) — Others (like T gate for [[7,1,3]] code) cannot be handled transversally
— Measurement (meter symbol) oL x] (e A— ] z, » Can be performed fault-tolerantly by preparing appropriate ancilla
produces classical bits o] LA J]j ﬁ b 2 Finally, need to perform periodical error correction
* Quantum CAD : J\ — Correct after every(?): Gate, Long distance movement, Long Idle Period
— Circuit expressed as netlist ) [x] [ E_|u_. — Correction reducing entropy = Consumes Ancilla bits
— Computer manpulated circuits [xHx] {j—w; Observation: > 90% of QEC gates are used for ancilla production
and implementations w [x] 2] I > 70-85% of all gates are used for ancilla production
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MEMs-Based lon Trap Devices Quantum Computing with lon Traps
+ lon Traps: One of the more promising quantum computer +  Qubits are atomic ions (e.g. Be*)
imp]ementation techno|ogies — State is stored in hyperfine levels
. - — lons suspended in channels between Electrode Control
— Built on Silicon electrodes ; m
» Can bootstrap the vast infrastructure that currently exists in the « Quantum gates performed by lasers ol
microchip industry (either one or two bit ops) mE
— Seems to be on a “Moore’s Law” like scaling curve — Only at certain trap locations
» Many researchers working on this problem - |0nr? move tbetween laser sites to B
T errorm gates
— Some optimistic researchers speculate about room temperature P . B EEEE EEN
] « Classical control
Properties: . . - Gate (laser) ops Elgtrodes Gate Location
— Has a long-distance Wire — Movement (electrode) ops
» So-called “ballistic movement” « Complex .pulse sequences to cause
lons to migrate
— Seems to have relatively long decoherence times + Care must be taken to avoid
— Seems to have relatively low error rates for: disturbing state
» Memory, Gates, Movement ‘ Demonstratlons.ln .the Lab A ||
— NIST, MIT, Michigan, many others RF i
~=>DC
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An Abstraction of lon Traps

» Basic block abstraction: Simplify Layout
DDPUDDDE]DD IR

= = .
z_ N m I m S~——in/out ports

1
EEE EEE E B EER BEE EEE
=, n I
EEE FE N B F F N OEE EEm
straight 3-way 4-way turn | gate locations

+ Evaluation of layout through simulation
— Yields Computation Time and Probability of Success
« Simple Error Model: Depolarizing Errors
— Errors for every Gate Operation and Unit of Waiting
— Ballistic Movement Error: Two error Models
1. Every Hop/Turn has probability of error
2. Only Accelerations cause error
Kubiatowicz CS162 © UCB Fall 2020

lon Trap Physical Layout

* Input: Gate level quantum circuit g

— Bitlines a0
- a [l
— 2-qubit gates 3 q4:m[] LT
+ Output: a5
6
— Layout of channels 4 *
— Gate locations EDE %E“E“
— Initial locations of ions olo Eﬂ;\@mmm
E [m) ‘W!’!—H%lqz
— Movement/gate schedule goma|a g
q
— Control for schedule mAegyeR 8 W
[m)oJm] o
glg [m]
Oe0 a
8 /pooa
B8 E Control
[W]e ]
apg
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Vision of Quantum Circuit Design Important Measurement Metrics
o * Traditional CAD Metrics:
q1 I I Correct ] - Area
i L | kil » What is the total area of a circuit?
a » Measured in macroblocks (ultimately um?2 or similar)
® -1“"““’e < — Latency (Latencygjnge)
gle
@ ::d » What is the total latency to compute circuit once
Schematic Capture Classical Control » Measured in seconds (or ps)
(Graphical Eﬂfl‘y) Telepormﬁon Network — Probability of Success (Pgyccess)
» Not common metric for classical circuits
OR ‘ » Account for occurrence of errors and error correction
* Quantum Circuit Metric: ADCR

oxql,qo; Custom Layout and — Area-Delay to Correct Result: Probabilistic Area-Delay metric

xql,q2; Scheduling Areax LaTenCYSinglz

correctql; — ADCR = Area x E(Latency) = I ——

hq2; CAD Tool Psuccess

3,q4; i
;:nqeasgre a3, ¢3; Implementation — ADCR y4ima- Best ADCR over all configurations
f;i’ffi‘?f; 4 » Optimization potential: Equipotential designs
S=LEL — Trade Area for lower latency
Quantum Assembly — Trade lower probability of success for lower latency
(QAsSMm)
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How to evaluate a circuit?

« First, generate a physical instance of circuit
— Encode the circuit in one or more QEC codes
— Partition and layout circuit: Highly dependant of layout heuristics!
» Create a physical layout and scheduling of bits
» Yields area and communication cost

Normal Vector
Monte Carlo: Monte Carlo:
n times single pass

Sample n times per

Sample once per !
point point

* Then, evaluate probability of success
— Technique that works well for depolarizing errors: Monte Carlo
» Possible error points: Operations, Idle Bits, Communications
— Vectorized Monte Carlo: n experiments with one pass
— Need to perform hybrid error analysis for larger circuits
» Smaller modules evaluated via vector Monte Carlo
. » Teleportation infrastructure evaluated via fidelity of EPR bits
* Finally — Compute ADCR for particular result

Quantum CAD flow

QEC Insert
cireut b, Q€
Synthesis |5, P Fault-Tolerant
. 09 Circuit
- c
Resyrinesis (aoch o 3 (Ne Toyou)
. NN N Teleportation Mapping,
Circuit C ation| 5
renn VNN s L | Network ! Scheduling,
E' o P>| Partitioning h Estimation Insertion o D Classical control|
g g3 54
MG [2] :' =+ = o)
S € 9o ® o S
33 33
14 8 & 5
. Hybrid Fault -
LE R R NN NRNNERENNNERNEDRSESRSSNSES.H..] . (=]
Error Analysis Analysis Complete Layout S
Most Vulnerable Circuits S

l ADCR computation
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Comparison of 1024-bit adders Area Breakdown for Adders
ADCRoptimal fOl‘ ADCchﬁmal for' 0 O T ancilla
10 1024-bit QRCA and QCLA - 1024-bit QCLA . E S
18 LQLA QRCA —+— 0 LQLA UEC ——t— = B Newor
10 CQLA+ QRCA —¢— 10'6 | CQLA+ UEC —%— £ 1500
10" Qalypso QRCA —x— LQLA OEC —%— £
1016 LQLA QCLA —8— 10'5 } CQLA+ OEC —&— g 1000
- CQLA+ QCLA —&— - Qalypso UEC <
8 10" Qalypso QCLA —e— S 10' } Qalypso OEC w00
< 4014 * <
103 N 10 o
$38% 3338 3338
10 100 1 10 100 o &R T&RCS T3
Sub-adder size in bits Sub-adder size in bits » Error Correction is not predominant use of area
« 1024-bit Quantum Adder Architectures — Only 20-40% of area devoted to QEC ancilla
. — For Optimized Qalypso QCLA, 70% of operations for QEC ancilla
— Ripple-Carry (QRCA) genergtlon, Bt onKPabout ﬁ'@% ofarea ¥
— Carry-Lookahead (QCLA) « T-Ancilla generation is major component
. . . — Often overlooked
Carry-Logkghegd |§ better in all architectures . . . Networki?g 'f\B'é[i'f{%%@) )Dortion of area when allowed to
+ QEC Optimization improves ADCR by order of magnitude in optimize for ()
some circuit configurations — CQLA and QLA variants didn’t really allow for much flexibility
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Investigating 1024-bit Shor’s

Modular Exponentiation QFT

Multiply mod N Controlled Phase

ak

Adder mod N

). 4
A

Random

Generate
zero
Init )

* Full Layout of all Elements

— Use of 1024-bit Quantum Adders

— Optimized error correction

— Ancilla optimization and Custom Network Layout
« Statistics:

— Unoptimized version: 1.35x10'5 operations

— Optimized Version 1000X smaller

— QFT is only 1% of total execution time

swap)
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1024-bit Shor’s Continued

10 5
10 M QalypsoUECTARCA —F— 10 I QalypsoUECTGELA —F—
10° QalypsoOEC+QRCA —>— QalypsoUEC+QRCA —x—
» QalypsoUEC+QCLA —¥— 4 QalypsoOEC+QCLA —¥—
2 108 } QalypsoOEC+QCLA —H— 10" F QalypsoOEC+QRCA —H—
s o~
2 e
® 447
10
> 10 o
T 10° 102
10*
10? 10’
10 100 1000 0 100 1000
Bits factored

Bits factored
+ Circuits too big to compute P ccqs
— Working on this problem
- Fastest Circuit: 6x108 seconds ~ 19 years
— Speedup by classically computing recursive squares?
+ Smallest Circuit: 7659 mm?
— Compare to previous estimate of 0.9 m2 = 9x10° mm?
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Summary (1/2)

» Key-Value Store:
— Two operations
» put(key, value)
» value = get(key)
— Challenges
» Fault Tolerance - replication
» Scalability > serve get()’s in parallel; replicate/cache hot tuples
» Consistency - quorum consensus to improve put() performance
+ Chord:
— Highly scalable distributed lookup protocol
— Each node needs to know about O(log(M)), where m is the total number of nodes
— Guarantees that a tuple is found in O(log(M)) steps
— Highly resilient: works with high probability even if half of nodes fail
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Summary (2/2)

Cryptography is a mechanism that is helpful for enforcing a security policy
— Encryption, Hashing, Digital Signatures
It's all about the Data!
— Hardening the Data while freeing it to reside anywhere
— Edge Computing Enabled by DataCapsules
Quantum Computing
— Computing using interesting properties of Physics

— Achieving Quantum Supremacy: Proof that Quantum Computers are more
powerful than Classical Ones

» Not there yet!
Most interesting Applications of Quantum Computing:
— Materials Simulation
— Optimization problems
— Machine learning?
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Thank you!
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» Thanks for all your great questions!
* Good Bye! You have all been great!

Kubiatowicz CS162 © UCB Fall 2020

Lec 26.89




