
CS162
Operating Systems and
Systems Programming

Lecture 26

Key Value Stores (Con’t), Chord, DataCapsules
Quantum Computing

December 7th, 2020
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 26.212/7/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Network-Attached Storage and the CAP Theorem

• Consistency: 
– Changes appear to everyone in the same serial order

• Availability:
– Can get a result at any time

• Partition-Tolerance
– System continues to work even when network becomes partitioned

• Consistency, Availability, Partition-Tolerance (CAP) Theorem: Cannot have all three 
at same time

– Otherwise known as “Brewer’s Theorem”

Network
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Recall: Key Value Storage
Simple interface

• put(key, value);  // Insert/write "value" associated with key

• get(key);  // Retrieve/read value associated with key
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Recall: Key Value Store
• Also called Distributed Hash Tables (DHT)
• Main idea: simplify storage interface (i.e. put/get), then partition set of 

key-values across many machines
key, value

…
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Recall: Recursive vs. Iterative

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory

get(K14)
V14

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory
get(K14)

V14
N3

Recursive Iterative

+ Faster, as directory server is typically close 
to storage nodes

+ Easier for consistency: directory can 
enforce an order for all puts and gets

- Directory is a performance bottleneck

+ More scalable, clients do more work
- Harder to enforce consistency
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Recall: Scaling Up Directory
• Challenge:

– Directory contains a number of entries equal to number of (key, value) 
tuples in the system

– Can be tens or hundreds of billions of entries in the system!
• Solution: Consistent Hashing

– Provides mechanism to divide [key,value] pairs amongst a (potentially 
large!) set of machines (nodes) on network

• Associate to each node a unique id in an uni-dimensional space 0..2m-1 
 Wraps around: Call this “the ring!”

– Partition this space across n machines
– Assume keys are in same uni-dimensional space
– Each [Key, Value] is stored at the node with the smallest ID larger than 

Key
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Key to Node Mapping Example
• Paritioning example with

m = 6  ID space: 0..63
– Node  8 maps keys [5,8]
– Node 15 maps keys [9,15]
– Node 20 maps keys [16, 20]
– …
– Node 4 maps keys [59, 4]

• For this example, the mapping 
[14, V14] maps to node with 
ID=15

– Node with smallest ID larger than 
14 (the key)

• In practice, m=256 or more!
– Uses cryptographically secure 

hash such as SHA-256 to 
generate the node IDs

14 V14

4

20

3235

8

15

44

58

63 0

“The Ring”
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Chord: Distributed Lookup (Directory) Service
• “Chord” is a Distributed Lookup Service

– Designed at MIT and here at Berkeley (Ion Stoica among others)
– Simplest and cleanest algorithm for distributed storage

» Serves as comparison point for other optims
• Import aspect of the design space:

– Decouple correctness from efficiency
– Combined Directory and Storage

• Properties 
– Correctness: 

» Each node needs to know about neighbors on ring (one predecessor and one 
successor)

» Connected rings will perform their task correctly
– Performance: 

» Each node needs to know about O(log(M)), where M is the total number of nodes
» Guarantees that a tuple is found in O(log(M)) steps

• Many other Structured, Peer-to-Peer lookup services: 
– CAN, Tapestry, Pastry, Bamboo, Kademlia, …
– Several designed here at Berkeley!
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Chord’s Lookup Mechanism: Routing!
• Each node maintains pointer to its 

successor 
• Route packet (Key, Value) to the 

node responsible for ID using 
successor pointers
– E.g., node=4 lookups for node 

responsible for Key=37 
• Worst-case (correct) lookup is O(n)

– But much better normal lookup time is 
O(log n)

– Dynamic performance optimization 
(finger table mechanism)

» More later!!!

4

20

3235

8

15

44

58

lookup(37)

node=44 is 
responsible 
for Key=37
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But what does this really mean??

ID: 4

ID: 44

ID: 8

ID: 20

ID: 35

ID: 58

ID: 15

ID: 32

• Node names intentionally scrambled WRT geography!
– Node IDs generated by secure hashes over metadata 

» Including things like the IP address
– This geographic scrambling spreads load and avoids hotspots

• Clients access distributed storage through any member of the network

4

20

3235

8

15

44

58

14 V14

63 0

Client

Client

Client

Client

Client

14 V14
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Stabilization Procedure
• Periodic operation performed by each node n to maintain its successor 

when new nodes join the system
– The primary Correctness constraint

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;      // if x better successor, update 
succ.notify(n); // n tells successor about itself

n.notify(n’)
if (pred = nil or n’    (pred, n))

pred = n’;       // if n’ is better predecessor, update




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Joining Operation

4

20

3235

8

15

44

58

50

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

• Node with id=50 
joins the ring

• Node 50 must know 
at least one node 
already in system

– Assume known 
node is 15
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Joining Operation

4

20

3235

8

15

44

58

50

join(50)

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

58

succ=58

• n=50 sends join(50)
to node 15

– Join propagated 
around ring!

• n=44 returns node 58
• n=50 updates its

successor to 58
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

• n=50 executes 
stabilize()

• n’s successor (58)
returns x = 44
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

• n=50 executes 
stabilize()

– x = 44
– succ = 58
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

• n=50 executes 
stabilize()

– x = 44
– succ = 58

• n=50 sends to it’s 
successor (58) 
notify(50)
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• n=58 executes
notify(50)

– pred = 44
– n’ = 50

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

succ=58

n.notify(n’)
if (pred = nil or n’   (pred, n))

pred = n’
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

succ=58

pred=50
• n=58 executes

notify(50)
– pred = 44
– n’ = 50

• set pred = 50

n.notify(n’)
if (pred = nil or n’   (pred, n))

pred = n’
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

x=50

• n=44 executes 
stabilize()

• n’s successor (58) 
returns x=50
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

• n=44 executes 
stabilize()

– x=50
– succ=58
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

• n=44 executes 
stabilize()

– x=50
– succ=58

• n=44 sets 
succ=50

succ=50
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=50
pred=35

succ=4
pred=50

n.stabilize()
x = succ.pred;
if (x (n, succ))

succ = x;
succ.notify(n);



succ=58

notify(44)

• n=44 executes 
stabilize()

• n=44 sends notify(44) 
to its successor
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=50
pred=35

succ=4
pred=50

n.notify(n’)
if (pred = nil or n’    (pred, n))

pred = n’


succ=58

notify(44)

• n=50 executes 
notify(44)

– pred=nil
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=50
pred=35

succ=4
pred=50

succ=58

notify(44)

pred=44

• n=50 executes 
notify(44)

– pred=nil
• n=50 sets pred=44

n.notify(n’)
if (pred = nil or n’   (pred, n))

pred = n’
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Joining Operation (cont’d)

4

20

3235

8

15

44

58

50succ=58

succ=50

pred=44

pred=50
• This completes the joining 

operation!
• The same stabilizing process 

will deal with failed nodes by 
reconnecting the ring

• What if 2 or more nodes in a 
row fail?

– Keep track of
more neighbors!

– Called the “leaf set”
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Achieving Efficiency: finger tables

80 + 2080 + 21
80 + 22

80 + 23

80 + 24

80 + 25
(80 + 26) mod 27 = 16

0
Say m=7

ith entry at peer with id n is first peer with id >=                          )2(mod2 min 

i   ft[i]
0  96
1  96
2  96
3  96
4  96
5  112
6  20

Finger Table at 80

32

4580

20
112

96
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Achieving Fault Tolerance for Lookup Service
• To improve robustness each node maintains the k (> 1) immediate 

successors instead of only one successor
– Again – called the “leaf set”
– In the pred() reply message, node A can send its k-1 successors to its 

predecessor B
– Upon receiving pred() message, B can update its successor list by 

concatenating the successor list received from A with its own list
• If k = log(M), lookup operation works with high probability even if half 

of nodes fail, where M is number of nodes in the system
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Storage Fault Tolerance
• Replicate tuples on 

successor nodes
• Example: replicate (K14, 

V14) on nodes 20 and 32

4

20

3235

8

15

44

58

14 V14

63 0

14 V14

14 V14
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Storage Fault Tolerance
• If node 15 fails, no 

reconfiguration needed
– Still have two replicas 
– All lookups will be correctly 

routed after stabilization

• Will need to add a new 
replica on node 35

4

20

3235

8

15

44

58

14 V14

63 0

14 V14

14 V14

14 V14
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0…

10…

110…

111…

Lookup ID

Source• Assign IDs to nodes
– Map hash values to node with 

closest ID
• Leaf set is successors and 

predecessors
– All that’s needed for correctness

• Routing table matches 
successively longer prefixes

– Allows efficient lookups

Lookup with Leaf Set
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Replication in Physical Space

ID: 4

ID: 44

ID: 8

ID: 20

ID: 35

ID: 58

ID: 15

ID: 32

• Replicating in Adjacent nodes of virtual space  Geographic 
Separation in physical space

– Avoids single-points of failure through randomness
– More nodes, more replication, more geographic spread

Client

Client

Client

Client

Client

14 V14

4

20

3235

8

15

44

58

14 V14

630

14 V14

14 V14

14 V14

14 V14
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DynamoDB Example: Service Level Agreements (SLA)

• Dynamo is Amazon’s storage system 
using “Chord” ideas

• Application can deliver its functionality in 
a bounded time: 

– Every dependency in the platform needs 
to deliver its functionality with even tighter 
bounds.

• Example: service guaranteeing that it will 
provide a response within 300ms for 
99.9% of its requests for a peak client 
load of 500 requests per second

• Contrast to services which focus on 
mean response time

Service-oriented architecture of 
Amazon’s platform
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What is Computer Security Today?
• Computing in the presence of an adversary!

– Adversary is the security field’s defining characteristic
• Reliability, robustness, and fault tolerance

– Dealing with Mother Nature (random failures)
• Security

– Dealing with actions of a knowledgeable attacker dedicated to causing harm
– Surviving malice, and not just mischance

• Wherever there is an adversary, there is a computer security problem!

70-110 million
users

.5 million
hosts ? ??? million

? ??? million? ??? million56 million
users

83 million users
BlackEnergy
SCADA  malware
(Supervisory Control 
and Data Acquisition)

Mirai IoT botnet
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Protection vs. Security
• Protection: mechanisms for controlling access of programs, processes, or 

users to resources
– Page table mechanism
– Round-robin schedule
– Data encryption

• Security: use of protection mechanisms to prevent misuse of resources
– Misuse defined with respect to policy

» E.g.: prevent exposure of certain sensitive information
» E.g.: prevent unauthorized modification/deletion of data

– Need to consider external operational environment 
» Most well-constructed system cannot protect information if user accidentally 

reveals password – social engineering challenge
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On The Importance of Data Integrity

• In July (2015), a team of researchers 
took total control of a Jeep SUV 
remotely

• They exploited a firmware update 
vulnerability and hijacked the vehicle 
over the Sprint cellular network

• They could make it speed up, slow 
down and even veer off the road

• Machine-to-Machine (M2M) 
communication has reached a 
dangerous tipping point

– Cyber Physical Systems use models and 
behaviors that from elsewhere

– Firmware, safety protocols, navigation 
systems, recommendations, …

– IoT (whatever it is) is everywhere
• Do you know where your data came 

from?  PROVENANCE
• Do you know that it is ordered 

properly? INTEGRITY
• The rise of Fake Data!

– Much worse than Fake News…
– Corrupt the data, make the system behave 

very badly
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Security Requirements
• Authentication 

– Ensures that a user is who they are claiming to be

• Data integrity 
– Ensure that data is not changed from source to destination or after 

being written on a storage device 

• Confidentiality 
– Ensures that data is read only by authorized users

• Non-repudiation
– Sender/client can’t later claim didn’t send/write data
– Receiver/server can’t claim didn’t receive/write data
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Securing Communication: Cryptography 
• Cryptography: communication in the presence of adversaries

• Studied for thousands of years
– See the Simon Singh’s The Code Book for an excellent, highly readable history

• Central goal: confidentiality
– How to encode information so that an adversary can’t extract it, but a friend can

• General premise: there is a key, possession of which allows decoding, but 
without which decoding is infeasible

– Thus, key must be kept secret and not guessable
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Basic Tool: Using Symmetric Keys 
• Same key for encryption and decryption
• Achieves confidentiality
• Vulnerable to tampering and replay attacks unless supplement with 

additional techniques such as nonces
• Good example: AES (“Advanced Encryption Standard”)

InternetEncrypt with
secret key

Decrypt with
secret key

Plaintext (m) m

Ciphertext
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Basic Tool: Secure Hash Function

• Hash Function: Short summary of data (message)
– For instance, h1=H(M1) is the hash of message M1

» h1 fixed length, despite size of message M1
» Often, h1 is called the “digest” of M1

• Hash function H is considered secure if 
– It is infeasible to find M2 with h1=H(M2); i.e., can’t easily find other message with same digest 

as given message
– It is infeasible to locate two messages, m1 and m2, which “collide”, i.e. for which H(m1) = 

H(m2)
– A small change in a message changes many bits of digest/can’t tell anything about message 

given its hash
• Good example: SHA-256

DFCD3454BBEA788A
751A696C24D97009
CA992D17

The red fox
runs across
the ice

Hash
Function

Hash
Function

52ED879E70F71D92
6EB6957008E03CE4
CA6945D3

Fox
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Using Hashing for Integrity

InternetDigest
HMAC(K,m)

plaintext (m)

Encrypted Digest

Digest
HMAC(K,m)

=

digest’

NO

corrupted msg m

Unencrypted Message

Can encrypt m for confidentiality
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Basic Tool: Public Key / Asymmetric Encryption
• Instead of one key, have two keys: public and private
• Sender uses receiver’s public key

– Advertised to everyone
• Receiver uses complementary private key

– Must be kept secret

Internet
Encrypt with
public key

Decrypt with
private key

Plaintext Plaintext

Ciphertext
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• Idea: Kpublic can be made public, keep Kprivate private

• Gives message privacy (restricted receiver):
– Public keys (secure destination points) can be acquired by anyone/used by anyone
– Only person with private key can decrypt message

• What about authentication?
– Use combination of private and public key
– AliceBob: [(I’m Alice)Aprivate Rest of message]Bpublic

– Provides restricted sender and receiver
• But: how does Alice know it was Bob who sent her Bpublic?  And vice versa… 

– Need a key distribution mechanism/Public Key Infrastructure

Bprivate
Aprivate

Public Key Encryption Details

Alice Bob

Bpublic
Apublic

Insecure Channel

Insecure Channel
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Public Key Crypto & Signatures

I will pay 
Bob $500

I will pay 
Bob $500
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Fog Robotics and the 
Global Data Plane (GDP)
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• An Application is a Connected Graph of Services
– Locality and QoS aware!
– Use local resources to limit external observability/interference

• Distributed storage everywhere
– Each arrow represents imbedded storage
– Transient or Long term 

• Computation on the edge of the network
– Perhaps Secure Enclaves (SES) for trusted computation…?
– Rapid launching of computation to close resources

Sensors
with

Aggregation
Real-Time

Components

SwarmLet
(“The Application”)

Transform
and Summarize

Cloud Services

SES

SES

Applications in the Era of IoT

Lec 26.4612/7/20 Kubiatowicz CS162 © UCB Fall 2020

Factory

Home

Warehouse/Cloud

Clusters
g

• Smart 
Manufacturing

• Smart Contracts
• Data Analytics

A Physical View of these Applications:
Distributed, Ad Hoc, and Vulnerable
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Full OS TCB

Really Large TCB

hh

Really Large TCB

SSL

SSL

SSL

Why are Data Breaches so Frequent?

• State of the art: AdHoc boundary construction!
– Protection mechanisms are all “roll-your-own” and different for each application
– Use of encrypted channels to “tunnel” across untrusted domains

• Data is protected at the Border rather than Inherently
– Large Trusted Computing Base (TCB): huge amount of code must be correct to protect data
– Make it through the border (firewall, OS, VM, container, etc…) data compromised!

• What about data integrity and provenance?
– Any bits inserted into “secure” environment get trusted as authentic 

manufacturing faults or human injury or exposure of sensitive information
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• Inspiration: Shipping Containers
– Invented in 1956.  Changed everything!  
– Ships, trains, trucks, cranes handle 

standardized format containers
– Each container has a unique ID
– Can ship (and store) anything

• Can we use this idea to help?

• DataCapsule (DC): 
– Standardized metadata wrapped around 

opaque data transactions
– Uniquely named and globally findable
– Every transaction explicitly sequenced in a 

hash-chain history
– Provenance enforced through signatures

• Underlying infrastructure assists and 
improves performance

– Anyone can verify validity, membership, and 
sequencing of transactions (like blockchain)

Fiber


 
Hole

Hash Ptr
SignatureMetadata Container

The Data-Centric Vision:
Cryptographically Hardened Data Containers
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• The “Networking” effect (Pun Intended!)
– Standardization  Infrastructure proliferation that benefits everyone
– Federation  Enable a market of service providers

• Data becomes a first-class entity in the network!
– Asserts its own requirements for security, privacy, which are enforced via cryptography
– Independent of physical location – policies can target durability, QoS, availability, etc
– No application silos – data producers own and chose how to share their information
– Network is informed about the information that it is carrying and where it may go

• First (Necessary) Step: Network Cannot Enforce what is not Specified!
• Related information bundled and kept together as it migrates

– Provenance and data ordering part of all information usage
– Information labeled with meta-data about (1) Where it is allowed to be in the network, 

and (2) Who is allowed to view and interact with it, (3) Who is allowed to modify it.

Why does this help? 
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Platform

A widely distributed system

App AppService

Platform Users: 
Applications/Services

Utility Providers:
Heterogeneous Infrastructure

Storage, Transport, QoS

App

Global Data Plane:
Routing, Multicast, 

Trust Domains, Accounting

A Platform Approach: the Utility-Provider Model
[ DataCapsule version of Ships, Trains, Trucks, and Cranes ]
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Transit (Provider)
Networks

Cloud data center Municipal data center

Home Smart Factory

GDP switch

DNR

DNR

DN
R

NR

NR

Name Resolver

Dristributed
Name Resolver

Peering

NR

NR

NR

NR

DataCapsule
Server

Client

DataCapsule

A Physical View of the GDP
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Refactoring of Applications around
Security, Integrity, and Provenance of Information

• Goal: A thin Standardized entity that can be 
easily adopted and have immediate impact

– Can be embedded in edge environments
– Can be exploited in the cloud
– Natural adjunct to Secure Enclaves for computation

• DataCapsules  bottom-half of a blockchain?
– Or a GIT-style version history
– Simplest mode: a secure log of information
– Universal unique name  permanent reference

• Applications writers think in terms of traditional 
storage access patterns:

– File Systems, Data Bases, Key-Value stores
– Called Common Access APIs (CAAPIs)
– DataCapsules are always the Ground Truth

File System, Stream,
SQL, Key-value,…

Home Control, Smart Office
Industrial Internet, …

Global
Data Plane

TCP/IP, UDP/IP, 
Others (non-IP), …

Ethernet, WI-FI,
Bluetooth, 802.15.4, AVB,…

Application
Common Access

APIs (CAAPI)

Network

Physical

DataCapsules / 
Secure Routing
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• Flat Address Space Routing
– Route queries to DCs by names, independent 

of location (e.g. no IP)
– DCs move, network deals with it
– Short-term Channels (“-SSL channels”)

• Black Hole Elimination: Delegation of Names
– Only servers authorized by owner of DC may 

advertise DC service
• Routing only through domains you trust!

– Secure Delegated Flat Address Routing

• Secure Multicast Protocol
– Only clients/DC storage servers with

proper (delegation) certificates may join
• Queries (messages) are Fibers

– Self-verifying chunks of DataCapsules
– Writes include appropriate credentials
– Reads include proofs of membership

• Incremental deployment as an overlay
– Prototype tunneling protocol  (“GDPinUDP”)
– Federated infrastructure w/routing certificates

C
1

C
2

Edge Domain #1

C
5

C
6

C
3

C
4

Edge Domain #2

C
7

Service Provider

Global Data Plane (GDP) and the 
Secure Datagram Routing Protocol
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Reasoning about the infrastructure: Trust Domains

• Trust Domains: Groups of Resources owned by single entity
– Reflect the ownership, trustworthiness, and degree of maintence
– Carry unique economic, political, or incentive structure of the owner
– Pay-for-service, Federated utility model

• Trust for: 
– Message Transport, Location Resolution, DataCapsule Service, Secure Enclave Service (SES)
– Conversations routed according to DataCapsule owner’s Trust Preferences

Global (Tier-1) Trust Domain
(Trusted Service Provider)

Trust Domain #2
(e.g. Remote Status/CTRL)Trust Domain #1

(e.g. Factory)
SES

SES

SES

Name
Resolver

Name
Resolver

Global
Name

Resolver

GDP Peering 

Mobile Domain

Name
Resolver

SES
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Common Access APIs (CAAPIs)
• Common Access APIs (CAAPIs) provide convenient/familiar Storage Access Patterns:

– Random File access, Indexing, SQL queries, Latest value for given Key, etc
– Optional Checkpoints for quick restart/cloning
– Refactoring: CAAPIs are services or libraries running in trusted or secured computing 

environments on top of DataCapsule infrastructure
• Many Consistency Models possible

– DataCapsules are “Conflict-free Replicated Data Types” (CRDTs): Synchronization via Union
– Single-Writer CAAPIs prevent branches if sufficient stable storage (strong consistency models)
– DataCapsules with branches: like GIT or Amazon Dynamo (write always, reader handles 

branches)
– CAAPIs can support anything from weak consistency to serializability

• Examples:
– Streaming storage 
– Key/Value store with time-travel
– Filesystem (changeable sequences of bytes organized in hierarchy)
– Multi-writer storage using Paxos or RAFT 
– Byzantine agreement with threshold admission to DataCapsules
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E.g. Using DataCapsules to support more familiar 
data access patterns (e.g. DataBase)

GDP Network:
Data Centric 
Messaging

RO DataBase
CAAPI (SQL)

(wo/Owner Key)

DataBase
Projection

(RAM)

OLAP
DB 

Client
(w/Key)

SQL (RO)
R/W DataBase
CAAPI (SQL)

(w/Owner Key)

DataBase
Projection

(RAM)

OLTP
DB 

Client
(w/Key)

SQL (R/W)

OLTP
DB 

Client
(w/Key)

SQL (R/W)
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ℝC
2 Top-Level

Location

Domain
Location

Trust Domain 2

Tier 1 
Trust Domain

Replica
DataCapsules

Domain
Location

Trust Domain 1

GDP 
Routers

DataCapsules

Edge
Computing

Edge
Computing

Edge
Computing

Fog Robotics on the Global Data Plane
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Edge Network
(Trust Domain)

Edge Training
(Secure Execution)

Model 
Refinement

Model.pb
Updated 
Model.pb

Sense and
Actuation Data

Mobile Compute
(Secure Execution)

Sense and
Actuation Data

Mobile Compute
(Secure Execution)

Example: Data Capsules as Part of Model Delivery

• Robotic grasping model distributed in DCs
– Intellectual property of producer (only unpacked in environments guaranteed not to leak model)
– Refinement on the edge is updated only by authorized enclaves with attested algorithms

Training 
Data Sets

Model
Building

And
Refinement

Model.pb

Cloud Based
Model Development

(w/ Secure Distribution)
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How to make DataCapsule Vision a Reality?

• Active Routing/Switching Components
– Federated/Utility storage infrastructure 
– Edge-local support for multicast
– Data Location Services

• Owned by service provider (trust domain)
– Secure boot/validated code in DataCapsule
– Multiple providers may own equipment in  single 

physical environment

• Multi-Tenant Secure Computation Services
– Secure Enclaves on Demand with specified 

attributes (e.g. GPU, special accelerator, etc.)
– Standardized packaging (e.g. Docket)
– Trustable computation through attestation, key 

exchange, resistance to physical attacks
• Computation is fungible: 

– Executable and state stored in DataCapsules!
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dev drivers
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DataCapsule Infrastructure
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Quantum Computing,
Shor’s Algorithm,

and the role of CAD design
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Use Quantum Mechanics to Compute?
• Weird but useful properties of quantum mechanics:

– Quantization: Only certain values or orbits are good
» Remember orbitals from chemistry???

– Superposition: Schizophrenic physical elements don’t quite know whether 
they are one thing or another

• All existing digital abstractions try to eliminate QM
– Transistors/Gates designed with classical behavior
– Binary abstraction: a “1” is a “1” and a “0” is a “0”

• Quantum Computing: 
Use of Quantization and Superposition to compute.

• Interesting results:
– Shor’s algorithm: factors in polynomial time!
– Grover’s algorithm: Finds items in unsorted database in time proportional to 

square-root of n.
– Materials simulation: exponential classically, linear-time QM
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Current “Arms Race” of Quantum Computing

• Big companies looking at Quantum Computing Seriously
– Google, IBM, Microsoft

• Current Goal: Quantum Supremacy
– Show that Quantum Computers faster than Classical ones
– “If a quantum processor can be operated with low enough error, it would be able to 

outperform a classical supercomputer on a well-defined computer science problem, an 
achievement known as quantum supremacy.”

Google: Superconducting 
Devices up 72-qubits

IBM: Superconducting
Devices up to 50 qubits
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Quantization: Use of “Spin”

• Particles like Protons have an intrinsic “Spin” when 
defined with respect to an external magnetic field

• Quantum effect gives “1” and “0”:
– Either spin is “UP” or “DOWN” nothing between

North

South

Spin ½ particle:
(Proton/Electron)

Representation:
|0> or |1>
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Kane Proposal II 
(First one didn’t quite work)

• Bits Represented by combination of proton/electron spin
• Operations performed by manipulating control gates

– Complex sequences of pulses perform NMR-like operations
• Temperature < 1° Kelvin!

Phosphorus
Impurity Atoms

Single Spin
Control Gates

Inter-bit 
Control Gates
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Now add Superposition!
• The bit can be in a combination of “1” and “0”:

– Written as:  = C0|0> + C1|1>
– The C’s are complex numbers!
– Important Constraint: |C0|2 + |C1|2 =1

• If measure bit to see what looks like, 
– With probability |C0|2 we will find |0> (say “UP”)
– With probability |C1|2 we will find |1> (say “DOWN”)

• Is this a real effect?  Options:
– This is just statistical – given a large number of protons, a fraction of them 

(|C0|2 ) are “UP” and the rest are down.
– This is a real effect, and the proton is really both things until you try to look at it

• Reality: second choice! 
– There are experiments to prove it!
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A register can have many values!
• Implications of superposition:

– An n-bit register can have 2n values simultaneously!
– 3-bit example:

= C000|000>+ C001|001>+ C010|010>+ C011|011>+ 
C100|100>+ C101|101>+ C110|110>+ C111|111>

• Probabilities of measuring all bits are set by coefficients:
– So, prob of getting |000> is |C000|2, etc.
– Suppose we measure only one bit (first):

» We get “0” with probability: P0=|C000|2+ |C001|2+ |C010|2+ |C011|2
Result: =    (C000|000>+ C001|001>+ C010|010>+ C011|011>)

» We get “1” with probability: P1=|C100|2+ |C101|2+ |C110|2+ |C111|2
Result: =    (C100|100>+ C101|101>+ C110|110>+ C111|111>)

• Problem: Don’t want environment to measure
before ready!
– Solution: Quantum Error Correction Codes!
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Spooky action at a distance
• Consider the following simple 2-bit state:

= C00|00>+ C11|11>
– Called an “EPR” pair for “Einstein, Podolsky, Rosen”

• Now, separate the two bits:

• If we measure one of them, it instantaneously sets other one!
– Einstein called this a “spooky action at a distance”
– In particular, if we measure a |0> at one side, we get a |0> at the other (and vice versa)

• Teleportation
– Can “pre-transport” an EPR pair (say bits X and Y)
– Later to transport bit A from one side to the other we:

» Perform operation between A and X, yielding two classical bits
» Send the two bits to the other side
» Use the two bits to operate on Y
» Poof! State of bit A appears in place of Y

Light-Years?
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• Basic Computing Paradigm:
– Input is a register with superposition of many values 

» Possibly all 2n inputs equally probable!
– Unitary transformations compute on coefficients

» Must maintain probability property (sum of squares = 1)
» Looks like doing computation on all 2n inputs simultaneously!

– Output is one result attained by measurement
• If do this poorly, just like probabilistic computation:

– If 2n inputs equally probable, may be 2n outputs equally probable.
– After measure, like picked random input to classical function!
– All interesting results have some form of “fourier transform” computation being 

done in unitary transformation

Unitary 
Transformations

Input
Complex

State
Measure

Output
Classical
Answer

Model: Operations on coefficients + measurements
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Shor’s Factoring Algorithm
• The Security of RSA Public-key cryptosystems depends on the 

difficulty of factoring a number N=pq (product of two primes)
– Classical computer: sub-exponential time factoring
– Quantum computer: polynomial time factoring

• Shor’s Factoring Algorithm (for a quantum computer)
1) Choose random x : 2  x  N-1.
2) If gcd(x,N)  1, Bingo!
3) Find smallest integer r : xr  1 (mod N)
4) If r is odd, GOTO 1
5) If r is even, a  x r/2 (mod N)  (a-1)(a+1) = kN
6) If a  N-1(mod N) GOTO 1
7) ELSE gcd(a ± 1,N) is a non trivial factor of N.

Hard

Easy
Easy

Easy
Easy
Easy
Easy
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Finding r with xr  1 (mod N)

• Finally: Perform measurement
– Find out r with high probability
– Get |y>|aw’> where y is of form k/r and w’ is related


k

/
\k /

\xk
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/
\k /
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 /
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\x
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Quantum
Fourier

Transform
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Quantum Computing Architectures
• Why study quantum computing?

– Interesting, says something about physics
» Failure to build   quantum mechanics wrong?

– Mathematical Exercise (perfectly good reason)
– Hope that it will be practical someday:

» Shor’s factoring, Grover’s search, Design of Materials
» Quantum Co-processor included in your Laptop?

• To be practical, will need to hand quantum computer design off to classical 
designers

– Baring Adiabatic algorithms, will probably need 100s to 1000s (millions?) of working 
logical Qubits 
1000s to millions of physical Qubits working together

– Current chips: ~1 billion transistors!
• Large number of components is realm of architecture

– What are optimized structures of quantum algorithms when they are mapped to a 
physical substrate? 

– Optimization not possible by hand
» Abstraction of elements to design larger circuits
» Lessons of last 30 years of VLSI design: USE CAD
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• Quantum Circuit model – graphical representation
– Time Flows from left to right
– Single Wires: persistent Qubits, Double Wires: classical bits

» Qubit – coherent combination of 0 and 1:   = |0 + |1
– Universal gate set: Sufficient to form all unitary transformations

• Example: Syndrome Measurement (for 3-bit code)
– Measurement (meter symbol)

produces classical bits
• Quantum CAD 

– Circuit expressed as netlist
– Computer manpulated circuits

and implementations

Quantum Circuit Model
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• Quantum State Fragile  encode all Qubits
– Uses many resources: e.g. 3-level [[7,1,3]] 

code 343 physical Qubits/logical Qubit)!
• Still need to handle operations (fault-tolerantly)

– Some set of gates are simply “transversal:”
» Perform identical gate between each physical bit of logical encoding

– Others (like T gate for [[7,1,3]] code) cannot be handled transversally
» Can be performed fault-tolerantly by preparing appropriate ancilla

• Finally, need to perform periodical error correction
– Correct after every(?): Gate, Long distance movement, Long Idle Period
– Correction reducing entropy  Consumes Ancilla bits

• Observation:   90% of QEC gates are used for ancilla production
 70-85% of all gates are used for ancilla production

Adding Quantum ECC

H

T

Not Transversal!

n-physical Qubits
per logical Qubit H

TX

Encoded
/8 (T)
Ancilla

SXT:

C
orrect

C
orrect

C
orrect

C
orrect

C
orrect

C
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C
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C
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QEC
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Correct
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Correct

Syndrom
e
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MEMs-Based Ion Trap Devices
• Ion Traps: One of the more promising quantum computer 

implementation technologies 
– Built on Silicon

» Can bootstrap the vast infrastructure that currently exists in the 
microchip industry

– Seems to be on a “Moore’s Law” like scaling curve
» Many researchers working on this problem

– Some optimistic researchers speculate about room temperature
• Properties:

– Has a long-distance Wire
» So-called “ballistic movement”

– Seems to have relatively long decoherence times
– Seems to have relatively low error rates for:

» Memory, Gates, Movement
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Electrode Control

• Qubits are atomic ions (e.g. Be+)
– State is stored in hyperfine levels
– Ions suspended in channels between 

electrodes
• Quantum gates performed by lasers 

(either one or two bit ops)
– Only at certain trap locations
– Ions move between laser sites to 

perform gates
• Classical control

– Gate (laser) ops
– Movement (electrode) ops

• Complex pulse sequences to cause 
Ions to migrate

• Care must be taken to avoid 
disturbing state

• Demonstrations in the Lab
– NIST, MIT, Michigan, many others

Quantum Computing with Ion Traps

Gate Location

Qubit Ions

Electrodes

Courtesy of Chuang group, MIT
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An Abstraction of Ion Traps
• Basic block abstraction: Simplify Layout

• Evaluation of layout through simulation
– Yields Computation Time and Probability of Success

• Simple Error Model: Depolarizing Errors
– Errors for every Gate Operation and Unit of Waiting
– Ballistic Movement Error: Two error Models

1. Every Hop/Turn has probability of error
2. Only Accelerations cause error

in/out ports

straight 3-way 4-way turn gate locations
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H
H
H

q0
q1
q2
q3
q4
q5
q6

Q
ub

its

Time

Ion Trap Physical Layout

• Input: Gate level quantum circuit
– Bit lines
– 1-qubit gates
– 2-qubit gates

• Output:
– Layout of channels
– Gate locations
– Initial locations of ions
– Movement/gate schedule
– Control for schedule

q0

q3

q4

q5
q6

q1

q2
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Classical Control
Teleportation Network

Vision of Quantum Circuit Design

Schematic Capture
(Graphical Entry)

Quantum Assembly
(QASM)

OR

QEC Insertion
Partitioning

Layout
Network Insertion

Error Analysis
…

Optimization

CAD Tool
Implementation

Custom Layout and
Scheduling
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Important Measurement Metrics
• Traditional CAD Metrics:

– Area
» What is the total area of a circuit?
» Measured in macroblocks (ultimately m2 or similar)

– Latency (Latencysingle)
» What is the total latency to compute circuit once
» Measured in seconds (or s)

– Probability of Success (Psuccess)
» Not common metric for classical circuits
» Account for occurrence of errors and error correction

• Quantum Circuit Metric: ADCR 
– Area-Delay to Correct Result: Probabilistic Area-Delay metric

– ADCR = Area  E(Latency) =

– ADCRoptimal: Best ADCR over all configurations
• Optimization potential: Equipotential designs

– Trade Area for lower latency
– Trade lower probability of success for lower latency

success

single

P
LatencyArea
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Normal 
Monte Carlo:

n times

• First, generate a physical instance of circuit
– Encode the circuit in one or more QEC codes
– Partition and layout circuit: Highly dependant of layout heuristics!

» Create a physical layout and scheduling of bits
» Yields area and communication cost

• Then, evaluate probability of success
– Technique that works well for depolarizing errors: Monte Carlo

» Possible error points: Operations, Idle Bits, Communications
– Vectorized Monte Carlo: n experiments with one pass
– Need to perform hybrid error analysis for larger circuits

» Smaller modules evaluated via vector Monte Carlo
» Teleportation infrastructure evaluated via fidelity of EPR bits

• Finally – Compute ADCR for particular result

How to evaluate a circuit?

Vector
Monte Carlo:
single pass
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Quantum CAD flow
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Comparison of 1024-bit adders

• 1024-bit Quantum Adder Architectures
– Ripple-Carry (QRCA)
– Carry-Lookahead (QCLA)

• Carry-Lookahead is better in all architectures
• QEC Optimization improves ADCR by order of magnitude in 

some circuit configurations

ADCRoptimal for 
1024-bit QCLA

ADCRoptimal for 
1024-bit QRCA and QCLA
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• Error Correction is not predominant use of area
– Only 20-40% of area devoted to QEC ancilla
– For Optimized Qalypso QCLA, 70% of operations for QEC ancilla 

generation, but only about 20% of area
• T-Ancilla generation is major component

– Often overlooked
• Networking is significant portion of area when allowed to  

optimize for ADCR (30%)
– CQLA and QLA variants didn’t really allow for much flexibility 

Area Breakdown for Adders



Lec 26.8512/7/20 Kubiatowicz CS162 © UCB Fall 2020

Investigating 1024-bit Shor’s

• Full Layout of all Elements
– Use of 1024-bit Quantum Adders
– Optimized error correction
– Ancilla optimization and Custom Network Layout

• Statistics:
– Unoptimized version: 1.351015 operations
– Optimized Version 1000X smaller
– QFT is only 1% of total execution time
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1024-bit Shor’s Continued

• Circuits too big to compute Psuccess
– Working on this problem

• Fastest Circuit: 6108 seconds ~ 19 years
– Speedup by classically computing recursive squares?

• Smallest Circuit: 7659 mm2

– Compare to previous estimate of 0.9 m2 = 9105 mm2
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Summary (1/2)
• Key-Value Store:

– Two operations
» put(key, value)
» value = get(key)

– Challenges
» Fault Tolerance  replication
» Scalability  serve get()’s in parallel; replicate/cache hot tuples
» Consistency  quorum consensus to improve put() performance

• Chord:
– Highly scalable distributed lookup protocol
– Each node needs to know about O(log(M)), where m is the total number of nodes
– Guarantees that a tuple is found in O(log(M)) steps
– Highly resilient: works with high probability even if half of nodes fail
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Summary (2/2)
• Cryptography is a mechanism that is helpful for enforcing a security policy

– Encryption, Hashing, Digital Signatures
• It’s all about the Data!

– Hardening the Data while freeing it to reside anywhere
– Edge Computing Enabled by DataCapsules

• Quantum Computing
– Computing using interesting properties of Physics
– Achieving Quantum Supremacy: Proof that Quantum Computers are more 

powerful than Classical Ones
» Not there yet!

• Most interesting Applications of Quantum Computing:
– Materials Simulation
– Optimization problems
– Machine learning?
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Thank you!

• Thanks for all your great questions!
• Good Bye!  You have all been great!

intro


