
CS162
Operating Systems and
Systems Programming

Lecture 4

Abstractions 2: Files and I/O
A quick programmer’s viewpoint

September 9th, 2020

Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 4.29/9/20 Kubiatowicz CS162 © UCB Fall 2020

Goals for Today: The File Abstraction

� Finish discussion of process management

� High-Level File I/O: Streams

� Low-Level File I/O: File Descriptors

� How and Why of High-Level File I/O

� Process State for File Descriptors

� Common Pitfalls with OS Abstractions

Lec 4.39/9/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Synchronization between threads

� Mutual Exclusion: Ensuring only one thread does a particular thing at a
time (one thread excludes the others)

� Critical Section: Code that exactly one thread can execute at once

– Result of mutual exclusion

� Lock: An object only one thread can hold at a time

– Provides mutual exclusion

� Offers two atomic operations:

– Lock.Acquire() – wait until lock is free; then grab

– Lock.Release() – Unlock, wake up waiters

� Need other tools for “cooperation”

– e.g., semaphores

Lec 4.49/9/20 Kubiatowicz CS162 © UCB Fall 2020

Semaphores: A quick look

� Semaphores are a kind of generalized lock

– First defined by Dijkstra in late 60s

– Main synchronization primitive used in original UNIX (& Pintos)

� Definition: a Semaphore has a non-negative integer value and supports
the following two operations:

– P() or down(): atomic operation that waits for semaphore to become
positive, then decrements it by 1

– V() or up(): an atomic operation that increments the semaphore by 1,
waking up a waiting P, if any

P() stands for “proberen” (to test) and V() stands for “verhogen” (to increment) in Dutch

Lec 4.59/9/20 Kubiatowicz CS162 © UCB Fall 2020

Two Semaphore Patterns

� Mutual Exclusion: (like lock)

– Called a "binary semaphore“ or “mutex”

initial value of semaphore = 1;
semaphore.down();

// Critical section goes here
semaphore.up();

� Signaling other threads, e.g. ThreadJoin

Initial value of semaphore = 0

ThreadJoin {
semaphore.down();

}

ThreadFinish {
semaphore.up();

}

Lec 4.69/9/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Processes

� Definition: execution environment with
restricted rights

– One or more threads executing in a single
address space

– Owns file descriptors, network connections

� Instance of a running program

– When you run an executable, it runs in its
own process

– Application: one or more processes
working together

� Protected from each other; OS protected from them

� In modern OSes, anything that runs outside of the kernel runs in a process

Lec 4.79/9/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Creating Processes

� pid_t fork() – copy the current process

– New process has different pid

– New process contains a single thread

� Return value from fork(): pid (like an integer)

– When > 0:

» Running in (original) Parent process

» return value is pid of new child

– When = 0:

» Running in new Child process

– When < 0:

» Error! Must handle somehow

» Running in original process

� State of original process duplicated in both Parent and Child!

– Address Space (Memory), File Descriptors (covered later), etc…

Lec 4.89/9/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: fork_race.c

int i;
pid_t cpid = fork();
if (cpid > 0) {
for (i = 0; i < 10; i++) {
printf("Parent: %d\n", i);
// sleep(1);

}
} else if (cpid == 0) {
for (i = 0; i > ‐10; i‐‐) {
printf("Child: %d\n", i);
// sleep(1);

}
} else { /* ERROR! */ }

� What does this print?

� Would adding the calls to sleep() matter?

Parent Process

Runs HERE!

Child Process

Runs HERE!

Lec 4.99/9/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Start new Program with exec
…
cpid = fork();
if (cpid > 0) { /* Parent Process */
tcpid = wait(&status);

} else if (cpid == 0) { /* Child Process */
char *args[] = {“ls”, “‐l”, NULL};
execv(“/bin/ls”, args);

/* execv doesn’t return when it works.
So, if we got here, it failed! */

perror(“execv”);
exit(1);

}
…

Lec 4.109/9/20 Kubiatowicz CS162 © UCB Fall 2020

main() {

…

}

exec

wait

Starting New Program (for instance in Shell)

pid=fork();
if (pid==0)
exec(…);

else
wait(&stat)

parent

child

pid=fork();
if (pid==0)
exec(…);

else
wait(&stat)

fork

fork

pid=fork();
if (pid==0)
exec(…);

else
wait(&stat)

Lec 4.119/9/20 Kubiatowicz CS162 © UCB Fall 2020

Finishing up: Process Management API

� exit – terminate a process

� fork – copy the current process

� exec – change the program being run by the current process

� wait – wait for a process to finish

� kill – send a signal (interrupt-like notification) to another process

� sigaction – set handlers for signals

Lec 4.129/9/20 Kubiatowicz CS162 © UCB Fall 2020

fork2.c – parent waits for child to finish

int status;
pid_t tcpid;
…
cpid = fork();
if (cpid > 0) { /* Parent Process */
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
tcpid = wait(&status);
printf("[%d] bye %d(%d)\n", mypid, tcpid, status);

} else if (cpid == 0) { /* Child Process */
mypid = getpid();
printf("[%d] child\n", mypid);
exit(42);

}
…

Lec 4.139/9/20 Kubiatowicz CS162 © UCB Fall 2020

Finishing up: Process Management API

� exit – terminate a process

� fork – copy the current process

� exec – change the program being run by the current process

� wait – wait for a process to finish

� kill – send a signal (interrupt-like notification) to another process

� sigaction – set handlers for signals

Lec 4.149/9/20 Kubiatowicz CS162 © UCB Fall 2020

inf_loop.c

#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <signal.h>

void signal_callback_handler(int signum) {
printf(“Caught signal!\n”);
exit(1);

}
int main() {
struct sigaction sa;
sa.sa_flags = 0;
sigemptyset(&sa.sa_mask);
sa.sa_handler = signal_callback_handler;
sigaction(SIGINT, &sa, NULL);
while (1) {}

}

Q: What would happen if the process

receives a SIGINT signal, but does

not register a signal handler?

A: The process dies!

For each signal, there is a default

handler defined by the system

Lec 4.159/9/20 Kubiatowicz CS162 © UCB Fall 2020

Common POSIX Signals

� SIGINT – control-C

� SIGTERM – default for kill shell command

� SIGSTP – control-Z (default action: stop process)

� SIGKILL, SIGSTOP – terminate/stop process

– Can’t be changed with sigaction

– Why?

Lec 4.169/9/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: UNIX System Structure

Lec 4.179/9/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: System Calls (“Syscalls”)

Compilers

Web Servers

Web Browsers

Databases

Email

Word Processing

Portable OS Library

System Call

Interface

Portable OS Kernel

Platform support, Device Drivers

x86 ARMPowerPC

Ethernet (1Gbs/10Gbs) 802.11 a/g/n/ac SCSI ThunderboltGraphics

PCI
Hardware

Software

System

User
OS

Application / Service

Lec 4.189/9/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: OS Library Issues Syscalls

OS

Proc

1

Proc

2

Proc

n…

OS

Appln login Window

Manager

…

OS library OS library OS librarylibc

Lec 4.199/9/20 Kubiatowicz CS162 © UCB Fall 2020

Administrivia: Game On!

� Project 0 due today!

– To be done on your own – like a homework!

� Slip days: I’d bank these and not spend them right away!

– No credit when late and run out of slip days

� Group assignment in process (preferences were due Monday night)

– Plan on attending your permanent discussion section this Friday

– Remember to turn on your camera in Zoom

– Discussion section attendance is mandatory

� Midterm 1: October 1st, 5-7PM (Three weeks from tomorrow!)

– We understand that this partially conflicts with CS170, but those of you in CS170 can start
that exam after 7PM (according to CS170 staff)

– Video Proctored, No curve, Use of computer to answer questions

– More details as we get closer to exam

� Start Planning on how your group will collaborate on projects!

– Virtual Coffee Hours with your group (with camera)

– Regular Brainstorming meetings?

– Try to meet multiple times a week

Hello!

Hi!

Lec 4.209/9/20 Kubiatowicz CS162 © UCB Fall 2020

What does pthread stand for?

� pthread library: POSIX thread library

� POSIX: Portable Operating System Interface (for uniX?)

– Interface for application programmers (mostly)

– Defines the term “Unix,” derived from AT&T Unix

– Created to bring order to many Unix-derived OSes, so applications are
portable

» Partially available on non-Unix OSes, like Windows

– Requires standard system call interface

Lec 4.219/9/20 Kubiatowicz CS162 © UCB Fall 2020

Unix/POSIX Idea: Everything is a “File”

� Identical interface for:

– Files on disk

– Devices (terminals, printers, etc.)

– Regular files on disk

– Networking (sockets)

– Local interprocess communication (pipes, sockets)

� Based on the system calls open(), read(), write(), and close()

� Additional: ioctl() for custom configuration that doesn’t quite fit

� Note that the “Everything is a File” idea was a radical idea when proposed

– Dennis Ritchie and Ken Thompson described this idea in their seminal paper
on UNIX called “The UNIX Time-Sharing System” from 1974

– I posted this on the resources page if you are curious

Lec 4.229/9/20 Kubiatowicz CS162 © UCB Fall 2020

The File System Abstraction

� File

– Named collection of data in a file system

– POSIX File data: sequence of bytes

» Could be text, binary, serialized objects, …

– File Metadata: information about the file

» Size, Modification Time, Owner, Security info, Access control

� Directory

– “Folder” containing files & directories

– Hierachical (graphical) naming

» Path through the directory graph

» Uniquely identifies a file or directory

� /home/ff/cs162/public_html/fa14/index.html

– Links and Volumes (later)

Lec 4.239/9/20 Kubiatowicz CS162 © UCB Fall 2020

Connecting Processes, File Systems, and Users

� Every process has a current working directory (CWD)

– Can be set with system call:
int chdir(const char *path); //change CWD

� Absolute paths ignore CWD

– /home/oski/cs162

� Relative paths are relative to CWD

– index.html, ./index.html

» Refers to index.html in current working directory

– ../index.html

» Refers to index.html in parent of current working directory

– ~/index.html, ~cs162/index.html

» Refers to index.html in the home directory

Lec 4.249/9/20 Kubiatowicz CS162 © UCB Fall 2020

I/O and Storage Layers

High Level I/O

Low Level I/O

Syscall

File System

I/O Driver

Application / Service

Streams

File Descriptors

open(), read(), write(), close(), …

Files/Directories/Indexes

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Focus of today’s lecture

Open File Descriptions

Lec 4.259/9/20 Kubiatowicz CS162 © UCB Fall 2020

Today: The File Abstraction

� High-Level File I/O: Streams

� Low-Level File I/O: File Descriptors

� How and Why of High-Level File I/O

� Process State for File Descriptors

� Common Pitfalls with OS Abstractions

Lec 4.269/9/20 Kubiatowicz CS162 © UCB Fall 2020

C High-Level File API – Streams

� Operates on “streams” – unformatted sequences of bytes (wither text or
binary data), with a position:

� Open stream represented by pointer to a FILE data structure

– Error reported by returning a NULL pointer

#include <stdio.h>

FILE *fopen(const char *filename, const char *mode);

int fclose(FILE *fp);

Mode Text Binary Descriptions

r rb Open existing file for reading

w wb Open for writing; created if does not exist

a ab Open for appending; created if does not exist

r+ rb+ Open existing file for reading & writing.

w+ wb+ Open for reading & writing; truncated to zero if exists, create otherwise

a+ ab+ Open for reading & writing. Created if does not exist. Read from beginning, write

as append

Lec 4.279/9/20 Kubiatowicz CS162 © UCB Fall 2020

C API Standard Streams – stdio.h

� Three predefined streams are opened implicitly when the program is
executed.

– FILE *stdin – normal source of input, can be redirected

– FILE *stdout – normal source of output, can too

– FILE *stderr – diagnostics and errors

� STDIN / STDOUT enable composition in Unix

� All can be redirected

– cat hello.txt | grep “World!”
– cat’s stdout goes to grep’s stdin

Lec 4.289/9/20 Kubiatowicz CS162 © UCB Fall 2020

// character oriented
int fputc(int c, FILE *fp); // rtn c or EOF on err
int fputs(const char *s, FILE *fp); // rtn > 0 or EOF

int fgetc(FILE * fp);

char *fgets(char *buf, int n, FILE *fp);

// block oriented
size_t fread(void *ptr, size_t size_of_elements,

size_t number_of_elements, FILE *a_file);
size_t fwrite(const void *ptr, size_t size_of_elements,

size_t number_of_elements, FILE *a_file);

// formatted
int fprintf(FILE *restrict stream, const char *restrict format, ...);
int fscanf(FILE *restrict stream, const char *restrict format, ...);

C High-Level File API

Lec 4.299/9/20 Kubiatowicz CS162 © UCB Fall 2020

C Streams: Char-by-Char I/O

int main(void) {
FILE* input = fopen(“input.txt”, “r”);
FILE* output = fopen(“output.txt”, “w”);
int c;

c = fgetc(input);
while (c != EOF) {
fputc(output, c);
c = fgetc(input);

}

fclose(input);

fclose(output);

}

Lec 4.309/9/20 Kubiatowicz CS162 © UCB Fall 2020

// character oriented
int fputc(int c, FILE *fp); // rtn c or EOF on err
int fputs(const char *s, FILE *fp); // rtn > 0 or EOF

int fgetc(FILE * fp);

char *fgets(char *buf, int n, FILE *fp);

// block oriented
size_t fread(void *ptr, size_t size_of_elements,

size_t number_of_elements, FILE *a_file);
size_t fwrite(const void *ptr, size_t size_of_elements,

size_t number_of_elements, FILE *a_file);

// formatted
int fprintf(FILE *restrict stream, const char *restrict format, ...);
int fscanf(FILE *restrict stream, const char *restrict format, ...);

C High-Level File API

Lec 4.319/9/20 Kubiatowicz CS162 © UCB Fall 2020

C Streams: Block-by-Block I/O

#define BUFFER_SIZE 1024
int main(void) {
FILE* input = fopen("input.txt", "r");
FILE* output = fopen("output.txt", "w");
char buffer[BUFFER_SIZE];
size_t length;

length = fread(buffer, BUFFER_SIZE, sizeof(char), input);
while (length > 0) {
fwrite(buffer, length, sizeof(char), output);
length = fread(buffer, BUFFER_SIZE, sizeof(char), input);

}

fclose(input);

fclose(output);

}

Lec 4.329/9/20 Kubiatowicz CS162 © UCB Fall 2020

Aside: System Programming

� Systems programmers should always be paranoid!

– Otherwise you get intermittently buggy code

� We should really be writing things like:

FILE* input = fopen(“input.txt”, “r”);
if (input == NULL) {
// Prints our string and error msg.
perror(“Failed to open input file”)

}

� Be thorough about checking return values!

– Want failures to be systematically caught and dealt with

� I may be a bit loose with error checking for examples in class (to keep short)

– Do as I say, not as I show in class!

Lec 4.339/9/20 Kubiatowicz CS162 © UCB Fall 2020

C High-Level File API: Positioning The Pointer
int fseek(FILE *stream, long int offset, int whence);
long int ftell (FILE *stream)
void rewind (FILE *stream)

� For fseek(), the offset is interpreted based on the whence argument
(constants in stdio.h):

– SEEK_SET: Then offset interpreted from beginning (position 0)

– SEEK_END: Then offset interpreted backwards from end of file

– SEEK_CUR: Then offset interpreted from current position

� Overall preserves high-level abstraction of a uniform stream of objects

offset (SEEK_CUR)

offset (SEEK_SET) offset (SEEK_END)

whence

Lec 4.349/9/20 Kubiatowicz CS162 © UCB Fall 2020

Today: The File Abstraction

� High-Level File I/O: Streams

� Low-Level File I/O: File Descriptors

� How and Why of High-Level File I/O

� Process State for File Descriptors

� Common Pitfalls with OS Abstractions [if time]

Lec 4.359/9/20 Kubiatowicz CS162 © UCB Fall 2020

Key Unix I/O Design Concepts

� Uniformity – everything is a file
– file operations, device I/O, and interprocess communication through open, read/write,

close

– Allows simple composition of programs
» find | grep | wc …

� Open before use
– Provides opportunity for access control and arbitration

– Sets up the underlying machinery, i.e., data structures

� Byte-oriented
– Even if blocks are transferred, addressing is in bytes

� Kernel buffered reads
– Streaming and block devices looks the same, read blocks yielding processor to other

task

� Kernel buffered writes
– Completion of out-going transfer decoupled from the application, allowing it to

continue

� Explicit close

Lec 4.369/9/20 Kubiatowicz CS162 © UCB Fall 2020

Low-Level File I/O: The RAW system-call interface

� Integer return from open() is a file descriptor

– Error indicated by return < 0: the global errno variable set with error (see man pages)

� Operations on file descriptors:

– Open system call created an open file description entry in system-wide table of open files

– Open file description object in the kernel represents an instance of an open file

– Why give user an integer instead of a pointer to the file description in kernel?

#include <fcntl.h>

#include <unistd.h>

#include <sys/types.h>

int open (const char *filename, int flags [, mode_t mode])

int creat (const char *filename, mode_t mode)

int close (int filedes)

Bit vector of:

� Access modes (Rd, Wr, …)

� Open Flags (Create, …)

� Operating modes (Appends, …)

Bit vector of Permission Bits:

� User|Group|Other X R|W|X

Lec 4.379/9/20 Kubiatowicz CS162 © UCB Fall 2020

C Low-Level (pre-opened) Standard Descriptors

#include <unistd.h>
STDIN_FILENO ‐ macro has value 0
STDOUT_FILENO ‐ macro has value 1
STDERR_FILENO ‐ macro has value 2

// Get file descriptor inside FILE *
int fileno (FILE *stream)

// Make FILE * from descriptor
FILE * fdopen (int filedes, const char *opentype)

Lec 4.389/9/20 Kubiatowicz CS162 © UCB Fall 2020

Low-Level File API

� Read data from open file using file descriptor:

ssize_t read (int filedes, void *buffer, size_t maxsize)

– Reads up to maxsize bytes – might actually read less!

– returns bytes read, 0 => EOF, -1 => error

� Write data to open file using file descriptor

ssize_t write (int filedes, const void *buffer, size_t size)

– returns number of bytes written

� Reposition file offset within kernel (this is independent of any position held by
high-level FILE descriptor for this file!

off_t lseek (int filedes, off_t offset, int whence)

Lec 4.399/9/20 Kubiatowicz CS162 © UCB Fall 2020

Example: lowio.c

int main() {
char buf[1000];
int fd = open("lowio.c", O_RDONLY, S_IRUSR | S_IWUSR);
ssize_t rd = read(fd, buf, sizeof(buf));
int err = close(fd);
ssize_t wr = write(STDOUT_FILENO, buf, rd);

}

� How many bytes does this program read?

Lec 4.409/9/20 Kubiatowicz CS162 © UCB Fall 2020

POSIX I/O: Design Patterns

� Open before use

– Access control check, setup happens here

� Byte-oriented

– Least common denominator

– OS responsible for hiding the fact that real devices may not work this way
(e.g. hard drive stores data in blocks)

� Explicit close

Lec 4.419/9/20 Kubiatowicz CS162 © UCB Fall 2020

POSIX I/O: Kernel Buffering

� Reads are buffered inside kernel

– Part of making everything byte-oriented

– Process is blocked while waiting for device

– Let other processes run while gathering result

� Writes are buffered inside kernel

– Complete in background (more later on)

– Return to user when data is “handed off” to kernel

� This buffering is part of global buffer management and caching for block
devices (such as disks)

– Items typically cached in quanta of disk block sizes

– We will have many interesting things to say about this buffering when we dive
into the kernel

Lec 4.429/9/20 Kubiatowicz CS162 © UCB Fall 2020

Low-Level I/O: Other Operations

� Operations specific to terminals, devices, networking, …

– e.g., ioctl

� Duplicating descriptors

– int dup2(int old, int new);
– int dup(int old);

� Pipes – channel

– int pipe(int pipefd[2]);
– Writes to pipefd[1] can be read from pipefd[0]

� File Locking

� Memory-Mapping Files

� Asynchronous I/O

Lec 4.439/9/20 Kubiatowicz CS162 © UCB Fall 2020

Today: The File Abstraction

� High-Level File I/O: Streams

� Low-Level File I/O: File Descriptors

� How and Why of High-Level File I/O

� Process State for File Descriptors

� Some Pitfalls with OS Abstractions [if time]

Lec 4.449/9/20 Kubiatowicz CS162 © UCB Fall 2020

High-Level vs. Low-Level File API

High-Level Operation:

size_t fread(…) {

Do some work like a normal fn…

asm code … syscall # into %eax

put args into registers %ebx, …

special trap instruction

get return values from regs

Do some more work like a normal fn…

};

Kernel:

get args from regs

dispatch to system func

Do the work to read from the file

Store return value in %eax

Low-Level Operation:

ssize_t read(…) {

asm code … syscall # into %eax

put args into registers %ebx, …

special trap instruction

get return values from regs

};

Kernel:

get args from regs

dispatch to system func

Do the work to read from the file

Store return value in %eax

Lec 4.459/9/20 Kubiatowicz CS162 © UCB Fall 2020

High-Level vs. Low-Level File API

� Streams are buffered in user memory:
printf("Beginning of line ");
sleep(10); // sleep for 10 seconds
printf("and end of line\n");

Prints out everything at once

� Operations on file descriptors are visible immediately
write(STDOUT_FILENO, "Beginning of line ", 18);
sleep(10);

write("and end of line \n", 16);

Outputs "Beginning of line" 10 seconds earlier than “and end of line”

Lec 4.469/9/20 Kubiatowicz CS162 © UCB Fall 2020

What’s in a FILE?

� What’s in the FILE* returned by fopen?

– File descriptor (from call to open) <= Need this to interface with the kernel!

– Buffer (array)

– Lock (in case multiple threads use the FILE concurrently)

� Of course there’s other stuff in a FILE too…

� … but this is useful model to have

Lec 4.479/9/20 Kubiatowicz CS162 © UCB Fall 2020

FILE Buffering

� When you call fwrite, what happens to the data you provided?

– It gets written to the FILE’s buffer

– If the FILE’s buffer is full, then it is flushed

» Which means it’s written to the underlying file descriptor

– The C standard library may flush the FILE more frequently

» e.g., if it sees a certain character in the stream

� When you write code, make the weakest possible assumptions about how
data is flushed from FILE buffers

Lec 4.489/9/20 Kubiatowicz CS162 © UCB Fall 2020

Example

char x = ‘c’;
FILE* f1 = fopen(“file.txt”, “w”);
fwrite(“b”, sizeof(char), 1, f1);
FILE* f2 = fopen(“file.txt”, “r”);
fread(&x, sizeof(char), 1, f2);

� The call to fread might see the latest write ‘b’

� Or it might miss it and see end of file (in which case x will remain ‘c’)

Lec 4.499/9/20 Kubiatowicz CS162 © UCB Fall 2020

Example

char x = ‘c’;
FILE* f1 = fopen(“file.txt”, “wb”);
fwrite(“b”, sizeof(char), 1, f1);
fflush(f1);

FILE* f2 = fopen(“file.txt”, “rb”);
fread(&x, sizeof(char), 1, f2);

� Now, the call to fread will definitely see the latest write ‘b’

Lec 4.509/9/20 Kubiatowicz CS162 © UCB Fall 2020

Writing Correct Code with FILE

� Your code should behave correctly regardless of when C Standard Library
flushes its buffer

– Add your own calls to fflush so that data is written when you need to

– Calls to fclose flush the buffer before deallocating memory and closing the
file descriptor

� With the low-level file API, we don’t have this problem

– After write completes, data is visible to any subsequent reads

Lec 4.519/9/20 Kubiatowicz CS162 © UCB Fall 2020

Why Buffer in Userspace? Overhead!

� Syscalls are 25x more expensive than function calls (~100 ns)

– This example about special shared-memory interface to the getpid()
functionality, but point is the same!

� read/write a file byte by byte? Max throughput of ~10MB/second

� With fgetc? Keeps up with your SSD

Lec 4.529/9/20 Kubiatowicz CS162 © UCB Fall 2020

Why Buffer in Userspace? Functionality!

� System call operations less capable

–Simplifies operating system

� Example: No “read until new line” operation in kernel

–Why? Kernel agnostic about formatting!

–Solution: Make a big read syscall, find first new line in userspace

» i.e. use one of the following high-level options:

char *fgets(char *s, int size, FILE *stream);
ssize_t getline(char **lineptr, size_t *n, FILE *stream);

Lec 4.539/9/20 Kubiatowicz CS162 © UCB Fall 2020

Today: The File Abstraction

� High-Level File I/O: Streams

� Low-Level File I/O: File Descriptors

� How and Why of High-Level File I/O

� Process State for File Descriptors

� Some Pitfalls with OS Abstractions [if time]

Lec 4.549/9/20 Kubiatowicz CS162 © UCB Fall 2020

I/O and Storage Layers

High Level I/O

Low Level I/O

Syscall

File System

I/O Driver

Application / Service

Streams

File Descriptors

open(), read(), write(), close(), …

Files/Directories/Indexes

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Focus of today’s lecture

Open File Descriptions

Lec 4.559/9/20 Kubiatowicz CS162 © UCB Fall 2020

State Maintained by the Kernel
� Recall: On a successful call to open():

– A file descriptor (int) is returned to the user

– An open file description is created in the kernel

� For each process, kernel maintains mapping from file descriptor to open
file description

– On future system calls (e.g., read()), kernel looks up open file description
using file descriptor and uses it to service the system call:

char buffer1[100];
char buffer2[100];
int fd = open(“foo.txt”, O_RDONLY);
read(fd, buffer1, 100);
read(fd, buffer2, 100);

The kernel remembers that the

int it receives (stored in fd)

corresponds to foo.txt

The kernel picks up where it left

off in the file

Lec 4.569/9/20 Kubiatowicz CS162 © UCB Fall 2020

What’s in an Open File Description?

For our purposes, the two most important things are:

� Where to find the file data on disk

� The current position within the file

Lec 4.579/9/20 Kubiatowicz CS162 © UCB Fall 2020

Abstract Representation of a Process

Suppose that we execute

open(“foo.txt”)

and that the result is 3

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

…

File Descriptors

Not shown:

Initially contains 0,

1, and 2 (stdin,

stdout, stderr)

3

File: foo.txt

Position: 0

Open File Description

Process

Lec 4.589/9/20 Kubiatowicz CS162 © UCB Fall 2020

Abstract Representation of a Process

Suppose that we execute

open(“foo.txt”)

and that the result is 3

Next, suppose that we execute

read(3, buf, 100)

and that the result is 100

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

Not shown:

Initially contains 0,

1, and 2 (stdin,

stdout, stderr)

3

File: foo.txt

Position: 0

Open File Description

Process

…

Lec 4.599/9/20 Kubiatowicz CS162 © UCB Fall 2020

Abstract Representation of a Process

Suppose that we execute

open(“foo.txt”)

and that the result is 3

Next, suppose that we execute

read(3, buf, 100)

and that the result is 100

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

Not shown:

Initially contains 0,

1, and 2 (stdin,

stdout, stderr)

3

File: foo.txt

Position: 100

Open File Description

Process

…

Lec 4.609/9/20 Kubiatowicz CS162 © UCB Fall 2020

Abstract Representation of a Process

Suppose that we execute

open(“foo.txt”)

and that the result is 3

Next, suppose that we execute

read(3, buf, 100)

and that the result is 100

Finally, suppose that we
execute

close(3)

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

Not shown:

Initially contains 0,

1, and 2 (stdin,

stdout, stderr)

3

File: foo.txt

Position: 100

Open File Description

Process

…

Lec 4.619/9/20 Kubiatowicz CS162 © UCB Fall 2020

Instead of Closing, let’s fork()!

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

Not shown:

Initially contains 0,

1, and 2 (stdin,

stdout, stderr)

3

File: foo.txt

Position: 100

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

Process 2

… …

Open File Description

� File descriptor is

copied

� Open file

description is

aliased

Lec 4.629/9/20 Kubiatowicz CS162 © UCB Fall 2020

Open File Description is Aliased

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

Not shown:

Initially contains 0,

1, and 2 (stdin,

stdout, stderr)

3

File: foo.txt

Position: 100

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

Process 2

… …

Open File Description

read(3, buf, 100)

Lec 4.639/9/20 Kubiatowicz CS162 © UCB Fall 2020

Open File Description is Aliased

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

Not shown:

Initially contains 0,

1, and 2 (stdin,

stdout, stderr)

3

File: foo.txt

Position: 200

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

Process 2

… …

Open File Description

read(3, buf, 100)

Lec 4.649/9/20 Kubiatowicz CS162 © UCB Fall 2020

Open File Description is Aliased

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

Not shown:

Initially contains 0,

1, and 2 (stdin,

stdout, stderr)

3

File: foo.txt

Position: 200

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

Process 2

… …

Open File Description

read(3, buf, 100) read(3, buf, 100)
Process 1

Lec 4.659/9/20 Kubiatowicz CS162 © UCB Fall 2020

Open File Description is Aliased

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

Not shown:

Initially contains 0,

1, and 2 (stdin,

stdout, stderr)

3

File: foo.txt

Position: 300

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

Process 2

… …

Open File Description

read(3, buf, 100) read(3, buf, 100)

Lec 4.669/9/20 Kubiatowicz CS162 © UCB Fall 2020

File Descriptor is Copied

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

Not shown:

Initially contains 0,

1, and 2 (stdin,

stdout, stderr)

3

File: foo.txt

Position: 300

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

Process 2

… …

Open File Description

read(3, buf, 100)

close(3)

read(3, buf, 100)

Lec 4.679/9/20 Kubiatowicz CS162 © UCB Fall 2020

File Descriptor is Copied

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

Not shown:

Initially contains 0,

1, and 2 (stdin,

stdout, stderr)

File: foo.txt

Position: 300

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

Process 2

… …

Open File Description

read(3, buf, 100)

close(3)

read(3, buf, 100)

� Open file

description remains

alive until no file

descriptors in any

process refer to it

Lec 4.689/9/20 Kubiatowicz CS162 © UCB Fall 2020

� It allows for shared resources between processes

Why is Aliasing the Open File Description a Good Idea?

Lec 4.699/9/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: In POSIX, Everything is a “File”

� Identical interface for:

– Files on disk

– Devices (terminals, printers, etc.)

– Regular files on disk

– Networking (sockets)

– Local interprocess communication (pipes, sockets)

� Based on the system calls open(), read(), write(), and close()

Lec 4.709/9/20 Kubiatowicz CS162 © UCB Fall 2020

Example: Shared Terminal Emulator

� When you fork() a process, the parent’s and child’s printf outputs go
to the same terminal

Lec 4.719/9/20 Kubiatowicz CS162 © UCB Fall 2020

Example: Shared Terminal Emulator

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

0

1

2

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

0

1

2

Process 2

… …

Terminal Emulator

Lec 4.729/9/20 Kubiatowicz CS162 © UCB Fall 2020

Example: Shared Terminal Emulator

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

0

1

2

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

0

1

2

Process 2

… …

Terminal Emulator

close(0)

Lec 4.739/9/20 Kubiatowicz CS162 © UCB Fall 2020

Example: Shared Terminal Emulator

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

0

1

2

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

0

1

2

Process 2

… …

Terminal Emulator

close(0)

� If one process

closes stdin (0), it

remains open in

other processes

Lec 4.749/9/20 Kubiatowicz CS162 © UCB Fall 2020

Other Examples

� Shared network connections after fork()

– Allows handling each connection in a separate process

– We’ll explore this next time

� Shared access to pipes

– Useful for interprocess communication

– And in writing a shell (Homework 2)

Lec 4.759/9/20 Kubiatowicz CS162 © UCB Fall 2020

Other Syscalls: dup and dup2

� They allow you to duplicate the file descriptor

� But the open file description remains aliased

Lec 4.769/9/20 Kubiatowicz CS162 © UCB Fall 2020

Other Syscalls: dup and dup2

Suppose that we execute

open(“foo.txt”)

and that the result is 3

Next, suppose that we execute

read(3, buf, 100)

and that the result is 100

Next, suppose that we execute

dup(3)

And that the result is 4

Finally, suppose that we execute

dup2(3, 162)

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

Not shown:

Initially contains 0,

1, and 2 (stdin,

stdout, stderr)

3

4

162
File: foo.txt

Position: 100

Open File Description

Process

…

Lec 4.779/9/20 Kubiatowicz CS162 © UCB Fall 2020

Today: The File Abstraction

� High-Level File I/O: Streams

� Low-Level File I/O: File Descriptors

� How and Why of High-Level File I/O

� Process State for File Descriptors

� Some Pitfalls with OS Abstractions [if time]

Lec 4.789/9/20 Kubiatowicz CS162 © UCB Fall 2020

DON’T FORK() IN A PROCESS THAT
ALREADY HAS MULTIPLE THREADS

Unless you plan to call exec() in the child process

Lec 4.799/9/20 Kubiatowicz CS162 © UCB Fall 2020

fork() in Multithreaded Processes

� The child process always has just a single thread

– The thread in which fork() was called

� The other threads just vanish

Lec 4.809/9/20 Kubiatowicz CS162 © UCB Fall 2020

fork() in a Multithreaded Processes

User Space

Kernel Space

Address

Space

(Memory)

Thread 1

Regs

File Descriptors

Not shown:

Initially contains 0,

1, and 2 (stdin,

stdout, stderr)

3

File: foo.txt

Position: 100

Process 1

Address

Space

(Memory)

Thread 1

Regs

File Descriptors

3

Process 2

…

…

Open File Description

� Only the thread that

called fork() exists

in the new processThread 2

Regs

Lec 4.819/9/20 Kubiatowicz CS162 © UCB Fall 2020

Possible Problems with Multithreaded fork()

� When you call fork() in a multithreaded process, the other threads (the
ones that didn’t call fork()) just vanish

– What if one of these threads was holding a lock?

– What if one of these threads was in the middle of modifying a data structure?

– No cleanup happens!

� It’s safe if you call exec() in the child

– Replacing the entire address space

Lec 4.829/9/20 Kubiatowicz CS162 © UCB Fall 2020

DON’T CARELESSLY MIX LOW-LEVEL
AND HIGH-LEVEL FILE I/O

Lec 4.839/9/20 Kubiatowicz CS162 © UCB Fall 2020

Avoid Mixing FILE* and File Descriptors

char x[10];
char y[10];
FILE* f = fopen(“foo.txt”, “rb”);
int fd = fileno(f);
fread(x, 10, 1, f); // read 10 bytes from f
read(fd, y, 10); // assumes that this returns data starting at offset 10

� Which bytes from the file are read into y?

A. Bytes 0 to 9

B. Bytes 10 to 19

C. None of these?

� Answer: C! None of the above.

– The fread() reads a big chunk of file into user-level buffer

– Might be all of the file!

Lec 4.849/9/20 Kubiatowicz CS162 © UCB Fall 2020

BE CAREFUL WITH FORK() AND FILE*

Lec 4.859/9/20 Kubiatowicz CS162 © UCB Fall 2020

Be Careful Using fork() with FILE*

FILE* f = fopen(“foo.txt”, “w”);
fwrite(“a”, 1, 1, f);
fork();

fclose(f);

After all processes exit, what is in foo.txt?

Could be either a or aa

� Usually aa based on what I’ve observed in Linux…

� Depends on whether this

fwrite() call flushes…

Lec 4.869/9/20 Kubiatowicz CS162 © UCB Fall 2020

Be Careful Using fork() with FILE*

User Space

Kernel Space

Thread’s

Regs

File Descriptors

Not shown:

Initially contains 0,

1, and 2 (stdin,

stdout, stderr)

3

File: foo.txt

Position: 0

Process 1

Thread’s

Regs

File Descriptors

3

Process 2

Open File Description

� Open File

Description is

aliased

� But the FILE* buffer

is copied!

a

FILE* Buffer

a

FILE* Buffer

Lec 4.879/9/20 Kubiatowicz CS162 © UCB Fall 2020

Conclusion

High Level I/O

Low Level I/O

Syscall

File System

I/O Driver

Application / Service

Streams

File Descriptors

open(), read(), write(), close(), …

Files/Directories/Indexes

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Focus of today’s lecture

Open File Descriptions

Lec 4.889/9/20 Kubiatowicz CS162 © UCB Fall 2020

Conclusion

� POSIX idea: “everything is a file”

� All sorts of I/O managed by open/read/write/close

� We added two new elements to the PCB:

– Mapping from file descriptor to open file description

– Current working directory

