CS162
Operating Systems and
Systems Programming

Lecture 5

Abstractions 3: IPC, Pipes and Sockets
A quick programmer’s viewpoint

September 14t 2020
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Goals for Today: IPC and Sockets

* Key Idea: Communication between processes and
across the world looks like File /O

* Introduce Pipes and Sockets
* Introduce TCP/IP Connection setup for Webserver

operating
system

write(wfd, wbuf, wlen);

Process

Process

n = read(rfd, rbuf, rmax);

Socket

9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec5.2

Recall: Creating Processes with fork()

e pid_t fork() — copy the current process

— State of original process duplicated in
Parent and Child!

— Address Space (Memory), File Descriptors, etc...
* Return value from fork(): pid (like an integer)
— When > 0:
» Running in (original) Parent process

int status;
pid_t tcpid;

cpid = fork();
if (cpid > @) {
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
tcpid = wait(&status);
printf("[%d] bye %d(%d)\n",mypid,tcpid,status);

» return value is pid of new child } else if (cpid == @) {
_ =0: mypid = getpid();
When O'_ i . printf("[%d] child\n", mypid);
» Running in new Child process exit(42);

— When <0: }
» Error! Must handle somehow
» Running in original process

+ WHY FORK?
— (mostly true) without fork(), you cannot create new processes!
— Fork was the original mechanism for creating concurrency in UNIX (long before Linux!)
— See, however, Linux clone() which gives you more flexibility

9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec5.3

Recall: Key Unix I/0O Design Concepts

* Uniformity — Everything Is a File!

- file operations, device 1/0, and interprocess communication through open, read/write,
close

— Allows simple composition of programs
» find | grep | wc ...

* Open before use

— Provides opportunity for access control and arbitration

— Sets up the underlying machinery, i.e., data structures
* Byte-oriented

— Even if blocks are transferred, addressing is in bytes
» Kernel buffered reads

— Streaming and block devices looks the same, read blocks yielding processor to other task
» Kernel buffered writes

— Completion of out-going transfer decoupled from the application, allowing it to continue
» Explicit close

9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec5.4

Putting it together: web server

4. parse request

Server 9. format reply
Process request reply
buffer buffer
1.network 4 3. kernel 5. file 8. kernel
write() read()| copy
Kernel \.it syscall wait syscall T RTU

11. kernel copy
from user buffer
to network buffel

interrupt
7. disk data
request (DMA)

interrupt 1 2. copy arriving [12. format outgoing 6. disk

packet (DMA)l packet and DMA

Putting it together: web server

Kernel buffer f——

reads
Server
Process
10. network
soqke
Kernel syscall

interrupt

packet (DMA)

J to network buffer

| 2. copy arriving [12. format outgoing 61 disk

11. kernel copy
from user buffer

interrupt
7. disk data

packet and DMA request (DMA)

Hardware | Hardware |
_Network Disk interface _Network Disk interface
interface interface
{) |
Request Reply [¢— Today: Network Communication Request Reply (4= Today: Network Communication
9/14/20 Rubratowicz CoT62 © UCB Fall 2020 Lec 5.5 9/14/20 Kubiatowicz CS1 62;© UCB Fall 2020 Lec 5.6
Putting it together: web server Recall: C High-Level File APl — Streams
/’"” - | Kernel buffer » Operates on “streams” — unformatted sequences of bytes (wither text or binary data), with
/ - i a position:
orver [4. parse request - wite f P e
Process request \ reply T
buffer \\ buffer #include <stdio.h>
e 1). network ‘ FILE *fopen(const char *filename, const char);
‘socket socket 5. file TB kernel int fclose(FILE *fp);
— — ; - o /
Kernel]
ernel copy r rb Open existing file for reading
from user buffer w wb Open for writing; created if does not exist
to network buffer
’ a ab Open for appending; created if does not exist
o . interrupt o ; -
terruy 2. Caofkye?I(rDl\;\l/;E;) 12 forl::att OU(;QSIICI% 6. disk 7 disk data r+ rb+ Open existing file for reading & writing.
p packetan request (DMA) w+ wb+ Open for reading & writing; truncated to zero if exists, create otherwise
at+ ab+ Open for reading & writing. Created if does not exist. Read from beginning, write
Hardware | as append -
Network Diskinteifacs » Open stream represented by pointer to a FILE data structure
lilziree — Error reported by returning a NULL pointer
— Pointer used in subsequent operations on the stream
Request Repl .
9 L — Data buffered in user space
9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.7 9/14/20 Kubiatowicz CS162 © UCB Fall 2020

Lec5.8

Recall: Low-Level File 1/0: The RAW system-call interface

#include <fentl.h>
#include <unistd.h>
#include <sys/types.h>

int flags‘ [, h\ode t modej)
ame, mode_t mode)

int open (const char *filename
int creat (const char *fi
int close (int filed

Bit vector of:

* Access modes (Rd, Wr, ...)

» Open Flags (Create, ...)

+ Operating modes (Appends, ...)

Bit vector of Permission Bits:
« User|Group|Other X R|W|X

* Integer return from open() is a file descriptor
— Error indicated by return < 0: the global errno variable set with error
— File Descriptor used in subsequent operations on the file

» Streams (opened with fopen()) have a file descriptor inside of them!
— Retrievable with fileno(FILE *stream) = internal file descriptor

9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec5.9

Recall: Representation of a Process (inside kernel!)

Process
Suppose that we execute
Thread's open(“foo.txt”)
Regs Address P))
Space and that the resultis 3
(Memory)

User Space

Kernel Space

File Descriptors

3 Open File Description

___’ File: foo.txt

Position: 0

Not shown:
Initially contains 0,
1, and 2 (stdin,
stdout, stderr)

Each open file has file description
Descriptor Table provides redirection

9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec5.10

Recall: What Happens on fork()?

Process 1 Process 2
N\
Thread’s Thread’s
Regs Address Regs Address
Space Space
(Memory) (Memory)
User Space

Kernel Space

File Descriptors
3

File Descriptors
3

Open File Description

__, File: foo.txt

Position: 100
« After fork():

— File Descriptors copied: child has same descriptor table as parent!

— File Descriptions shared: child and parent can both manipulate/change open files
9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.11

Not shown:
Initially contains 0,
1, and 2 (stdin,
stdout, stderr)

Recall standard file descriptors: 0, 1, 2

Parent Process Child Process

Thread’s Thread’s
Regs Address Regs Address
Space Space
(Memory) (Memory)
User Space

Kernel Space

Terminal Emulator

o o oL
1 T /1/
2 2

0: stdout (terminal output)
1: stderr (error output)
2: stdin (terminal input)

9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec5.12

Administrivia

Homework 1 due Wednesday
Project 1 in full swing!

— We expect that your design document will give intuitions behind your designs, not just a
dump of pseudo-code

— Think of this you are in a company and your TA is you manager
Should be attending your permanent discussion section!

— Remember to turn on your camera in Zoom

— Discussion section attendance is mandatory
Midterm 1: October 15!, 5-7PM (Three weeks from tomorrow!)

— We understand that this partially conflicts with CS170, but those of you in CS170 can start
that exam after 7PM (according to CS170 staff)

— Video Proctored, No curve, Use of computer to answer questions
— More details as we get closer to exam

Start Planning on how your group will collaborate on projects!
— Virtual Coffee Hours with your group (with camera)
— Regular Brainstorming meetings?
— Try to meet multiple times a week

Today: Communication Between Processes

* What if processes wish to communicate with one another?
—Why? Shared Task, Cooperative Venture with Security Implications

Process Abstraction Designed to Discourage Inter-Process Communication!
— Prevent one process from interfering with/stealing information from another

* So, must do something special (and agreed upon by both processes)
— Must “Punch Hole” in security

This is called “Interprocess Communication” (or IPC)

9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.13 9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec5.14
Recall: Processes Protected from each other Communication Between Processes
» Producer (writer) and consumer (reader) may be distinct processes
code Code Potenti (II ! ted in ti (ymay P
i i — Potentially separated in time
Data Stack 1 Data y separae o

Heap 1 — How to allow selective communication?

Heap Heap
Code 1

Stack Stack » Simple option: use a file!

Prog 1 Prog 2 — We have already shown how parents and children share file descriptions:

Virtual Virtual)

Address Address write(wfd, wbuf, wlen);

Space 1 Space 2 P

[A Storage B

0S code n = read(rfd, rbuf, rmax);

Translation Map 1 0S data Translation Map 2 _ . ,

0S heap & * Why might this be wasteful”
Stacks — Very expensive if you only want transient communication (non-persistent)
Physical Address Space
9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec5.15 9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.16

Shared Memory: Better Option?
Topic for another day!

Code
Data

Code
Data

Stack 1

Heap 1

Code 1

Heap Heap
Stack Stack
Prog 1 Prog 2
Virtual Virtual
Address Address
Space 1 [Space 2
OS code
Translation Map 1 0S data Translation Map 2
OS heap &
I Stacks
9/14/20 KubEQv%?(ljg%E ©Aﬂ)g Fgg%ospace Lec 5.17

Communication Between Processes (Another Option)

» Suppose we ask Kernel to help?
— Consider an in-memory queue
— Accessed via system calls (for security reasons):

write(wfd, wbuf, wlen);

A Queue B
n = read(rfd, rbuf, rmax);

» Data written by A is held in memory until B reads it

— Same interface as we use for files!

— Internally more efficient, since nothing goes to disk
* Some questions:

— How to set up?

— What if A generates data faster than B can consume it?

— What if B consumes data faster than A can produce it?
9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec5.18

One example of this pattern: POSIX/Unix PIPE

write(wfd, wbuf, wlen);

Process Process
A B

n = read(rfd, rbuf, rmax);

* Memory Buffer is finite:
— If producer (A) tries to write when buffer full, it blocks (Put sleep until space)
— If consumer (B) tries to read when buffer empty, it blocks (Put to sleep until data)

int pipe(int fileds[2]);
— Allocates two new file descriptors in the process
— Writesto fileds[1] read from fileds[©@]
— Implemented as a fixed-size queue

9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec5.19

Single-Process Pipe Example

#include <unistd.h>
int main(int argc, char *argv[])
{
char *msg = "Message in a pipe.\n";
char buf[BUFSIZE];
int pipe_fd[2];
if (pipe(pipe_fd) == -1) {
fprintf (stderr, "Pipe failed.\n"); return EXIT_FAILURE;
}
ssize_t writelen = write(pipe_fd[1], msg, strlen(msg)+l);
printf("Sent: %s [%1d, %1d]\n", msg, strlen(msg)+1l, writelen);

ssize t readlen = read(pipe_fd[@], buf, BUFSIZE);
printf("Rcvd: %s [%1d]\n", msg, readlen);

close(pipe_fd[e]);
close(pipe_fd[1]);

9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.20

Pipes Between Processes

pipe(..)
fork()

User Space

Kernel Space

Parent Process Child Process

/N
Thread’s Thread’s
Regs Address Regs Address
Space Space
(Memory) (Memory)

Inter-Process Communication (IPC): Parent = Child

// continuing from earlier

pid_t pid = fork();

if (pid < 0) {
fprintf (stderr, "Fork failed.\n");
return EXIT_FAILURE;

}

if (pid != @) {
ssize_t writelen =
printf("Parent: %s
close(pipe_fd[@]);

} else {
ssize_t readlen =
printf("Child Rcvd:
close(pipe_fd[1]);

write(pipe_fd[1], msg, msglen);
[%1d, %1d]\n", msg, msglen, writelen);

read(pipe_fd[@], buf, BUFSIZE);
%s [%1d]\n", msg, readlen);

<=) }
9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.21 9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.22
Channel from Parent = Child Instead: Channel from Child = Parent
. Parent Process Child Process . Parent Process Child Process
pipe(..)) R pipe(..)
fork () Thread’s Thread’s fork () Thread’s Thread’s
close(3) Regs || Address Regs Address close(4) Regs || Address Regs || Address
Space Space close(4) Space Space close(3)
(Memory) (Memory) (Memory) (Memory)
User Space User Space
Kernel sPace File Descriptors Kernel sPace File Descriptors
3 3
4 4
Out Out
9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.23 9/14/20

Kubiatowicz CS162 © UCB Fall 2020 Lec 5.24

When do we get EOF on a pipe?

 After last “write” descriptor is closed, pipe is effectively closed:
— Reads return only “EOF”

« After last “read” descriptor is closed, writes generate SIGPIPE signals:
— If process ignores, then the write fails with an “EPIPE” error

close(4)

EOF on a Pipe
. Process 1 Process 2
pipe(..)
'For'k() Thread’s Thread’s
close(3) Regs Address Regs Address
close(4) Space Space
(Memory) (Memory)
User Space
Kernel Space - - ‘ - -
File Descriptors File Descriptors
.’\ 3
4 In
Pipe

;/ Out

- EOF

9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.25 9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.26
Once we have communication, we need a protocol Examples of Protocols in Human Interaction
» A protocol is an agreement on how to communicate
* Includes 1. Telephone
— Syntax: how a communication is specified & structured 2. (Pick up / open up the phone)
» Format, order messages are sent and received 3. Li'sten for a dial tone / see that you have service
— Semantics: what a communication means 4. Dial o
» Actions taken when transmitting, receiving, or when a timer expires 5. Should hear ringing ...
. T ’ 6. . Callee: “Hello?”
+ Described formally by a state machine 7. Caller: “Hi, it's John....”
— Often represented as a message transaction diagram Or: *Hi, it's me” (what’_s that about?)
8. Caller: “Hey, do you think ... blah blah blah ...” pause

+ In fact, across network may need a way to translate between different
representations for numbers, strings, etc

— Such translation typically part of a Remote Procedure Call (RPC) facility
— Don’t worry about this now, but it is clearly part of the protocol

9/14/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 5.27

9/14/20

9. , Callee: “Yeah, blah blah blah ...”

pause

10. Caller: Byq
11. ¢ Callee: Bye

12. Hang up

Kubiatowicz CS162 © UCB Fall 2020

Lec5.28

9/14/20

Web Server

Request

Reply
Web Server

Kubiatowicz CS162 © UCB Fall 2020 Lec 5.29

9/14/20

Client-Server Protocols: Cross-Network IPC

\\ Client 1

Client 2
Client n

* Many clients accessing a common server
 File servers, www, FTP, databases

Kubiatowicz CS162 © UCB Fall 2020 Lec 5.30

9/14/20

Client-Server Communication

 Client is “sometimes on”

— Sends the server requests for
services when interested

— E.g., Web browser on laptop/phone

— Doesn’t communicate directly with
other clients

+ Server is “always on”

— Services requests from many
clients

—E.g., Web server for www.cnn.com
— Doesn't initiate contact with clients
— Needs a fixed, well-known address

— Needs to know server’s address

@ = GET /index.

html

S~ “site under construction”

Kubiatowicz CS162 © UCB Fall 2020 Lec 5.31

9/14/20

What is a Network Connection?

« Bidirectional stream of bytes between two processes on possibly different
machines

— For now, we are discussing “TCP Connections”

+ Abstractly, a connection between two endpoints A and B consists of:
— A queue (bounded buffer) for data sent from A to B
— A queue (bounded buffer) for data sent from B to A

Kubiatowicz CS162 © UCB Fall 2020 Lec 5.32

The Socket Abstraction: Endpoint for Communication

+ Key Idea: Communication across the world looks like File 1/0

write(wfd, wbuf, wlen);

Process Socket N

Process

Socket -

n =

read(rfd, rbuf, rmax);

» Sockets: Endpoint for Communication
— Queues to temporarily hold results
» Connection: Two Sockets Connected Over the network = IPC over network!
— How to open()?
— What is the namespace?
— How are they connected in time?

9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.33

9/14/20

Sockets: More Details

» Socket: An abstraction for one endpoint of a network connection
— Another mechanism for inter-process communication

— Most operating systems (Linux, Mac OS X, Windows) provide this, even if they
don’t copy rest of UNIX I/O

— Standardized by POSIX
* First introduced in 4.2 BSD (Berkeley Standard Distribution) Unix

— This release had some huge benefits (and excitement from potential users)

— Runners waiting at release time to get release on tape and take to businesses
+ Same abstraction for any kind of network

— Local (within same machine)

— The Internet (TCP/IP, UDP/IP)

— Things “no one” uses anymore (OSlI, Appletalk, IPX, ...)

Kubiatowicz CS162 © UCB Fall 2020 Lec 5.34

Sockets: More Details

* Looks just like a file with a file descriptor
— Corresponds to a network connection (two queues)
- write adds to output queue (queue of data destined for other side)

- read removes from it input queue (queue of data destined for this side)
— Some operations do not work, e.g. 1seek

* How can we use sockets to support real applications?
— A bidirectional byte stream isn’t useful on its own...
— May need messaging facility to partition stream into chunks

— May need RPC facility to translate one environment to another and provide
the abstraction of a function call over the network

9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.35

9/14/20

Simple Example: Echo Server

“hello, world”

“hello, world”

Web Server

Kubiatowicz CS162 © UCB Fall 2020 Lec 5.36

Simple Example: Echo Server

Client (issues requests)
fgets(sndbuf,bufsize,stdin);

Server (services requests)

rite(sockfd,sndbuf,strlen(sndbuf)+1); n = read(sockfd,reqbuf,..);
]
/W\ wait\
L"*'—»,;,; —/ \
— :
7;77 @ ’
d(sockfd, rcvbuf, %

Client Server
Socket Socket | |

.,
7

print

write(sockfd,reqgbuf)..);

9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.37

Echo client-server example

void client(int sockfd) {
int n;
char sndbuf[MAXIN]; char rcvbuf[MAXOUT];
while (1) {
fgets(sndbuf,MAXIN, stdin); /* prompt */
|write(sockfd, sndbuf, strlen(sndbuf)+1} send (including null terminator) */
memset (rcvbuf,@,MAXOUT) ; clear */
n=read(sockfd, rcvbuf, MAXOUT); | /* ceive */
write(STDOUT_FILENO, rcvbuf, n); /* gicho */

—vﬂﬂer‘ver‘(int consoc
char regbuf[MAXREQ];
int n;
while (1) {

memset(regbuf,®, MAXREQ);

\|1en = read(consocktd, reqbuf,MAXREQ);| /* Recv */

if (n <= @) return;
write(STDOUT_FILENO, regbuf, n);
|write(consockfd, regbuf, n); /* echo*/
}

9/14/20 ¥ Kubiatowicz CS162 © UCB Fall 2020 Lec 5.38

What Assumptions are we Making?

* Reliable
— Write to a file => Read it back. Nothing is lost.
— Write to a (TCP) socket => Read from the other side, same.
— Like pipes
* In order (sequential stream)
— Write X then write Y => read gets X then read gets Y

* When ready?
— File read gets whatever is there at the time.
— Assumes writing already took place
— Blocks if nothing has arrived yet
— Like pipes!

9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.39

Socket Creation

+ File systems provide a collection of permanent objects in a structured name space:
— Processes open, read/write/close them
— Files exist independently of processes
— Easy to name what file to open()
* Pipes: one-way communication between processes on same (physical) machine
— Single queue
— Created transiently by a call to pipe()
— Passed from parent to children (descriptors inherited from parent process)

» Sockets: two-way communication between processes on same or different
machine

— Two queues (one in each direction)
— Processes can be on separate machines: no common ancestor
— How do we name the objects we are opening?

— How go these completely independent programs know that the other wants to “talk” to
them®

9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.40

Namespaces for Communication over IP

* Hostname
— www.eecs.berkeley.edu
* |P address
—128.32.244 172 (IPv4, 32-bit Integer)
—2607:f140:0:81::f (IPv6, 128-bit Integer)
* Port Number
—0-1023 are “well known” or “system” ports
» Superuser privileges to bind to one
— 1024 — 49151 are “registered” ports (registry)
» Assigned by IANA for specific services
—49152-65535 (215+2'4 to 2'6-1) are “dynamic” or “private”
» Automatically allocated as “ephemeral ports”

Connection Setup over TCP/IP

» Special kind of socket: server socket
— Has file descriptor
— Can’t read or write
» Two operations:
1. listen(): Start allowing clients to connect
2. accept(): Create a new socket for a particular client

9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.41 9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.42
Connection Setup over TCP/IP Sockets in concept
Client Server
,\(\ \/,V/\ “ Server Create Server Socket
oy
. Socket -
/ ot \ . Create Client Socket Bind it to an Address
= (host:port)
new
t?cket Connect it to server (host:port) - - - - - > Listen for Connection
connection 0::::;? Tl N
Client _ Server "~ Accept syscall()
)\/\ Connection Socket&= Connection Socke‘t/ AT
’ géﬁ%%lgtiig’?ntiﬁes each * aogg?ghgd“em Port “randomly” I,’\lwrite request - - — - - oo > read request ¥+
- A\
. . ', read reSponse <- — - - — - — - -~ i .
;- gourpe IP Aﬁ:"jfss — Done by OS during client socket setup - reacresponse < write response . _ !
- Destination [P Address « Server Port often “well known” _ |
3. Source Port Number Close Client Socket Close Connection Socket
4. Destination Port Number =80 (web), 443 (secure web), 25 |
: (sendmail), etc /!
5. Protocol (always TCP here) Well-k s f 0—1023 v
— Vvell-known ports from U— Close Server Socket
Lec 543 9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec5.44

9/14/20 Kubiatowicz CS162 © UCB Fall 2020

9/14/20

Client Protocol

char *host_name, *port_name;

// Create a socket

struct addrinfo *server = lookup_host(host_name, port_name);

int sock_fd = socket(server->ai_family, server->ai_socktype,
server->ai_protocol);

// Connect to specified host and port
connect(sock_fd, server->ai_addr, server->ai_addrlen);

// Carry out Client-Server protocol
run_client(sock_fd);

/* Clean up on termination */
close(sock_fd);

Kubiatowicz CS162 © UCB Fall 2020

Server Protocol (v1)

// Create socket to listen for client connections
char *port_name;
struct addrinfo *server = setup_address(port_name);

int server_socket = socket(server->ai_family,
server->ai_socktype, server->ai_protocol);

// Bind socket to specific port

bind(server_socket, server->ai_addr, server->ai_addrlen);
// Start listening for new client connections
listen(server_socket, MAX_QUEUE);

while (1) {
// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);
serve_client(conn_socket);
close(conn_socket);

}

close(server_socket);

Lec5.45 914120 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.46
How Could the Server Protect Itself? Sockets With Protection (each connection has own process)
* Handl h tion i t Client Server
andie each connection In a separate process Create Server Socket
Create Client Socket Bind it to an Address
(host:port)
Connect it to server (host:port) o= > Listen for Connection
~~ Accept syscall()lv Y
A} -
Connection Socket€ » Connection Socket
| Child Parent
Close Listen Socket ;
,” N\ write request - — — - — - — _ _ ~read request - - Close Connection
' . Socket
'__sread response « - — - - - —
Wait for child
Close Client Socket
Close Server Socket
9114120 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.47 914120 Kubiatowicz CS162 © UCB Fall 2020 Lec5.48

Server Protocol (v2)

// Socket setup code elided..
while (1) {
// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);
pid_t pid = fork();
if (pid == 0) {
close(server_socket);
serve_client(conn_socket);
close(conn_socket);

Concurrent Server

+ So far, in the server:
— Listen will queue requests
— Buffering present elsewhere
— But server waits for each connection to terminate before servicing the next

« A concurrent server can handle and service a new connection before the
previous client disconnects

exit(0);
} else {
close(conn_socket);
wait(NULL);
}
}
close(server_socket);
9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.49 9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.50
Sockets With Protection and Concurrency Server Protocol (v3)
Client Server // Socket setup code elided..
Create Server Socket while (1) {
Bindi Add // Accept a new client connection, obtaining a new socket
Create Client Socket in Ftoa" ress int conn_socket = accept(server_socket, NULL, NULL);
(host:port) . = -
pid_t pid = fork();
Connect it to server (host:port) o= > Listen for Connection if (pid == @) {
S~ close(server_socket);
RN Accept sysca"o“ \\\ serve_client(conn_socket);
N close(conn_socket);
Connection Socket& » Connection Socket exit(0);
l Chilc}/ Parent } else {
. Close Listen Socket | ¢ ; close(conn_socket);
“ywriterequest - - - - - - _ _ _ g 7~ ose Connection -
;e fedd readrequest g5 cicet //wait(NULL);
'__read response « - — - - - — }
}
Close Client Socket Close Server Socket close(server_socket);
Kubiatowicz CS162 © UCB Fall 2020 Lec 5.51 9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.52

9/14/20

Server Address: Itself

struct addrinfo *setup_address(char *port) {
struct addrinfo *server;
struct addrinfo hints;
memset(&hints, @, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_PASSIVE;
getaddrinfo(NULL, port, &hints, &server);
return server;

* Accepts any connections on the specified port

9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.53

Client: Getting the Server Address

struct addrinfo *lookup_host(char *host_name, char *port) {
struct addrinfo *server;
struct addrinfo hints;
memset(&hints, @, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;

int rv = getaddrinfo(host_name, port_name,
&hints, &server);
if (rv 1= 0) {
printf("getaddrinfo failed: %s\n", gai_strerror(rv));
return NULL;
}

return server;

9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.54

Concurrent Server without Protection

* Spawn a new thread to handle each connection

* Main thread initiates new client connections without waiting for previously
spawned threads

» Why give up the protection of separate processes?
— More efficient to create new threads
— More efficient to switch between threads

9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.55

Sockets with Concurrency, without Protection

Client Server
Create Server Socket

Create Client Socket Bind it to an Address

(host:port)
Connect it to server (host:port) o= > Listen for Connection
TS~ ~ v \
~ Accept syscall() \
A} -
Connection Socket€ » Connection Socket
l pthread_create
Spawned Thread/
I/’ ywrite request - - — - — - _ ~ read request \\‘ Main Thread

'_ _sread response « - — - - - -

Close Client Socket Close Server Socket

9/14/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 5.56

Thread Pools

* Problem with previous version: Unbounded Threads
— When web-site becomes too popular — throughput sinks

* Instead, allocate a bounded “pool” of worker threads, representing the

maximum level of multiprogramming

/\ Master

Thread Pool

master() { worker(queue) {
allocThreads(worker,queue); while(TRUE) {
while(TRUE) {
con=AcceptCon();

Enqueue (queue,con); sleepOn(queue);
wakeUp(queue); else
ServiceWebPage(con);

} }

9/14/20 Kubiatowicz CS162 © UCB Fall 2020

con=Dequeue(queue);
if (con==null)

Lec 5.57

9/14/20

Conclusion

Interprocess Communication (IPC)
— Communication facility between protected environments (i.e. processes)

Pipes are an abstraction of a single queue
— One end write-only, another end read-only
— Used for communication between multiple processes on one machine
— File descriptors obtained via inheritance

Sockets are an abstraction of two queues, one in each direction
— Can read or write to either end

— Used for communication between multiple processes on different machines

— File descriptors obtained via socket/bind/connect/listen/accept

— Inheritance of file descriptors on fork() facilitates handling each connection in a separate

process

Both support read/write system calls, just like File I/O

Kubiatowicz CS162 © UCB Fall 2020

Lec 5.58

