
CS162
Operating Systems and
Systems Programming

Lecture 5

Abstractions 3: IPC, Pipes and Sockets
A quick programmer’s viewpoint

September 14th, 2020

Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 5.29/14/20 Kubiatowicz CS162 © UCB Fall 2020

Goals for Today: IPC and Sockets

� Key Idea: Communication between processes and
across the world looks like File I/O

� Introduce Pipes and Sockets

� Introduce TCP/IP Connection setup for Webserver

write(wfd, wbuf, wlen);

n = read(rfd, rbuf, rmax);

SocketProcess

Socket
Process

Lec 5.39/14/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Creating Processes with fork()

� pid_t fork() – copy the current process

– State of original process duplicated in
Parent and Child!

– Address Space (Memory), File Descriptors, etc…

� Return value from fork(): pid (like an integer)

– When > 0:

» Running in (original) Parent process

» return value is pid of new child

– When = 0:

» Running in new Child process

– When < 0:

» Error! Must handle somehow

» Running in original process

� WHY FORK?

– (mostly true) without fork(), you cannot create new processes!

– Fork was the original mechanism for creating concurrency in UNIX (long before Linux!)

– See, however, Linux clone() which gives you more flexibility

int status;

pid_t tcpid;

…

cpid = fork();
if (cpid > 0) {
mypid = getpid();
printf("[%d] parent of [%d]\n", mypid, cpid);
tcpid = wait(&status);
printf("[%d] bye %d(%d)\n",mypid,tcpid,status);

} else if (cpid == 0) {
mypid = getpid();
printf("[%d] child\n", mypid);
exit(42);

}

…

Lec 5.49/14/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Key Unix I/O Design Concepts

� Uniformity – Everything Is a File!
– file operations, device I/O, and interprocess communication through open, read/write,

close

– Allows simple composition of programs
» find | grep | wc …

� Open before use
– Provides opportunity for access control and arbitration

– Sets up the underlying machinery, i.e., data structures

� Byte-oriented
– Even if blocks are transferred, addressing is in bytes

� Kernel buffered reads
– Streaming and block devices looks the same, read blocks yielding processor to other task

� Kernel buffered writes
– Completion of out-going transfer decoupled from the application, allowing it to continue

� Explicit close

Lec 5.59/14/20 Kubiatowicz CS162 © UCB Fall 2020

Putting it together: web server

Server

Process

Kernel

Hardware

request

buffer

reply

buffer

11. kernel copy
from user buffer
to network buffer

Network

interface
Disk interface

12. format outgoing
packet and DMA

6. disk
request

1.network
socket
read()

2. copy arriving
packet (DMA)

syscall
wait

interrupt

3. kernel
copy

RTU

5. file
read()

syscall

8. kernel
copy

RTU

7. disk data
(DMA)

interrupt

4. parse request 9. format reply

Request Reply Today: Network Communication

10. network
socket
write()

syscall
wait

Lec 5.69/14/20 Kubiatowicz CS162 © UCB Fall 2020

Putting it together: web server

Server

Process

Kernel

Hardware

request

buffer

reply

buffer

11. kernel copy
from user buffer
to network buffer

Network

interface
Disk interface

12. format outgoing
packet and DMA

6. disk
request

1.network
socket
read()

2. copy arriving
packet (DMA)

syscall

interrupt

3. kernel
copy

RTU

5. file
read()

syscall

8. kernel
copy

RTU

7. disk data
(DMA)

interrupt

4. parse request 9. format reply

Request Reply Today: Network Communication

10. network
socket
write()

syscall

Kernel buffer

reads

Lec 5.79/14/20 Kubiatowicz CS162 © UCB Fall 2020

Putting it together: web server

Server

Process

Kernel

Hardware

request

buffer

reply

buffer

11. kernel copy
from user buffer
to network buffer

Network

interface
Disk interface

12. format outgoing
packet and DMA

6. disk
request

1.network
socket
read()

2. copy arriving
packet (DMA)

syscall

interrupt

3. kernel
copy

RTU

5. file
read()

syscall

8. kernel
copy

RTU

7. disk data
(DMA)

interrupt

4. parse request 9. format reply

Request Reply

10. network
socket
write()

syscall

Kernel buffer

write

Lec 5.89/14/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: C High-Level File API – Streams

� Operates on “streams” – unformatted sequences of bytes (wither text or binary data), with
a position:

� Open stream represented by pointer to a FILE data structure

– Error reported by returning a NULL pointer

– Pointer used in subsequent operations on the stream

– Data buffered in user space

#include <stdio.h>

FILE *fopen(const char *filename, const char *mode);

int fclose(FILE *fp);

Mode Text Binary Descriptions

r rb Open existing file for reading

w wb Open for writing; created if does not exist

a ab Open for appending; created if does not exist

r+ rb+ Open existing file for reading & writing.

w+ wb+ Open for reading & writing; truncated to zero if exists, create otherwise

a+ ab+ Open for reading & writing. Created if does not exist. Read from beginning, write

as append

Lec 5.99/14/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Low-Level File I/O: The RAW system-call interface

� Integer return from open() is a file descriptor

– Error indicated by return < 0: the global errno variable set with error

– File Descriptor used in subsequent operations on the file

� Streams (opened with fopen()) have a file descriptor inside of them!

– Retrievable with fileno(FILE *stream) internal file descriptor

#include <fcntl.h>

#include <unistd.h>

#include <sys/types.h>

int open (const char *filename, int flags [, mode_t mode])

int creat (const char *filename, mode_t mode)

int close (int filedes)

Bit vector of:

� Access modes (Rd, Wr, …)

� Open Flags (Create, …)

� Operating modes (Appends, …)

Bit vector of Permission Bits:

� User|Group|Other X R|W|X

Lec 5.109/14/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Representation of a Process (inside kernel!)

Suppose that we execute

open(“foo.txt”)

and that the result is 3

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

…

File Descriptors

Not shown:

Initially contains 0,

1, and 2 (stdin,

stdout, stderr)

3

File: foo.txt

Position: 0

Open File Description

Process

Descriptor Table provides redirection

Each open file has file description

Lec 5.119/14/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: What Happens on fork()?

� After fork():

– File Descriptors copied: child has same descriptor table as parent!

– File Descriptions shared: child and parent can both manipulate/change open files

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

Not shown:

Initially contains 0,

1, and 2 (stdin,

stdout, stderr)

3

File: foo.txt

Position: 100

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

Process 2

… …

Open File Description

Lec 5.129/14/20 Kubiatowicz CS162 © UCB Fall 2020

Recall standard file descriptors: 0, 1, 2

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

0

1

2

Parent Process

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

0

1

2

Child Process

… …

Terminal Emulator

0: stdout (terminal output)

1: stderr (error output)

2: stdin (terminal input)

Lec 5.139/14/20 Kubiatowicz CS162 © UCB Fall 2020

Administrivia
� Homework 1 due Wednesday

� Project 1 in full swing!

– We expect that your design document will give intuitions behind your designs, not just a
dump of pseudo-code

– Think of this you are in a company and your TA is you manager

� Should be attending your permanent discussion section!

– Remember to turn on your camera in Zoom

– Discussion section attendance is mandatory

� Midterm 1: October 1st, 5-7PM (Three weeks from tomorrow!)

– We understand that this partially conflicts with CS170, but those of you in CS170 can start
that exam after 7PM (according to CS170 staff)

– Video Proctored, No curve, Use of computer to answer questions

– More details as we get closer to exam

� Start Planning on how your group will collaborate on projects!

– Virtual Coffee Hours with your group (with camera)

– Regular Brainstorming meetings?

– Try to meet multiple times a week

Hello!

Hi!

Lec 5.149/14/20 Kubiatowicz CS162 © UCB Fall 2020

� What if processes wish to communicate with one another?

– Why? Shared Task, Cooperative Venture with Security Implications

� Process Abstraction Designed to Discourage Inter-Process Communication!

– Prevent one process from interfering with/stealing information from another

� So, must do something special (and agreed upon by both processes)

– Must “Punch Hole” in security

� This is called “Interprocess Communication” (or IPC)

Today: Communication Between Processes

Lec 5.159/14/20 Kubiatowicz CS162 © UCB Fall 2020

Prog 1

Virtual

Address

Space 1

Prog 2

Virtual

Address

Space 2

Code

Data

Heap

Stack

Code

Data

Heap

Stack

Data 2

Stack 1

Heap 1

OS heap &

Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space

Recall: Processes Protected from each other

Lec 5.169/14/20 Kubiatowicz CS162 © UCB Fall 2020

� Producer (writer) and consumer (reader) may be distinct processes

– Potentially separated in time

– How to allow selective communication?

� Simple option: use a file!

– We have already shown how parents and children share file descriptions:

� Why might this be wasteful?

– Very expensive if you only want transient communication (non-persistent)

Communication Between Processes

write(wfd, wbuf, wlen);

n = read(rfd, rbuf, rmax);

Process
A

Process
B

Persistent

Storage

Lec 5.179/14/20 Kubiatowicz CS162 © UCB Fall 2020

Prog 1

Virtual

Address

Space 1

Prog 2

Virtual

Address

Space 2

Data 2

Stack 1

Heap 1

OS heap &

Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space

Shared Memory: Better Option?
Topic for another day!

Code

Data

Shared

Heap

Stack

Code

Data

Shared

Heap

Stack

Shared

Lec 5.189/14/20 Kubiatowicz CS162 © UCB Fall 2020

Communication Between Processes (Another Option)

� Suppose we ask Kernel to help?

– Consider an in-memory queue

– Accessed via system calls (for security reasons):

� Data written by A is held in memory until B reads it

– Same interface as we use for files!

– Internally more efficient, since nothing goes to disk

� Some questions:

– How to set up?

– What if A generates data faster than B can consume it?

– What if B consumes data faster than A can produce it?

write(wfd, wbuf, wlen);

n = read(rfd, rbuf, rmax);

Process

A

Process

B

In-Memory

Queue

Lec 5.199/14/20 Kubiatowicz CS162 © UCB Fall 2020

One example of this pattern: POSIX/Unix PIPE

� Memory Buffer is finite:

– If producer (A) tries to write when buffer full, it blocks (Put sleep until space)

– If consumer (B) tries to read when buffer empty, it blocks (Put to sleep until data)

int pipe(int fileds[2]);

– Allocates two new file descriptors in the process

– Writes to fileds[1] read from fileds[0]

– Implemented as a fixed‐size queue

UNIX Pipe

write(wfd, wbuf, wlen);

n = read(rfd, rbuf, rmax);

Process

A

Process

B

Lec 5.209/14/20 Kubiatowicz CS162 © UCB Fall 2020

#include <unistd.h>

int main(int argc, char *argv[])

{

char *msg = "Message in a pipe.\n";
char buf[BUFSIZE];

int pipe_fd[2];

if (pipe(pipe_fd) == ‐1) {
fprintf (stderr, "Pipe failed.\n"); return EXIT_FAILURE;

}

ssize_t writelen = write(pipe_fd[1], msg, strlen(msg)+1);
printf("Sent: %s [%ld, %ld]\n", msg, strlen(msg)+1, writelen);

ssize_t readlen = read(pipe_fd[0], buf, BUFSIZE);
printf("Rcvd: %s [%ld]\n", msg, readlen);

close(pipe_fd[0]);

close(pipe_fd[1]);

}

Single-Process Pipe Example

Lec 5.219/14/20 Kubiatowicz CS162 © UCB Fall 2020

Pipes Between Processes

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

4 In

Out

Parent Process

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

4

Child Process

… …

Pipe

pipe(…)

fork()

Lec 5.229/14/20 Kubiatowicz CS162 © UCB Fall 2020

// continuing from earlier
pid_t pid = fork();
if (pid < 0) {

fprintf (stderr, "Fork failed.\n");
return EXIT_FAILURE;

}

if (pid != 0) {
ssize_t writelen = write(pipe_fd[1], msg, msglen);
printf("Parent: %s [%ld, %ld]\n", msg, msglen, writelen);
close(pipe_fd[0]);

} else {

ssize_t readlen = read(pipe_fd[0], buf, BUFSIZE);
printf("Child Rcvd: %s [%ld]\n", msg, readlen);
close(pipe_fd[1]);

}

Inter-Process Communication (IPC): Parent  Child

Lec 5.239/14/20 Kubiatowicz CS162 © UCB Fall 2020

Channel from Parent  Child

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

4 In

Out

Parent Process

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

4

Child Process

… …

Pipe

pipe(…)

fork()

close(3)
close(4)

Lec 5.249/14/20 Kubiatowicz CS162 © UCB Fall 2020

Instead: Channel from Child  Parent

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

4 In

Out

Parent Process

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

4

Child Process

… …

Pipe

pipe(…)

fork()

close(4)
close(3)

Lec 5.259/14/20 Kubiatowicz CS162 © UCB Fall 2020

When do we get EOF on a pipe?

� After last “write” descriptor is closed, pipe is effectively closed:

– Reads return only “EOF”

� After last “read” descriptor is closed, writes generate SIGPIPE signals:

– If process ignores, then the write fails with an “EPIPE” error

Lec 5.269/14/20 Kubiatowicz CS162 © UCB Fall 2020

EOF on a Pipe

User Space

Kernel Space

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

4 In

Out

Process 1

Address

Space

(Memory)

Thread’s

Regs

File Descriptors

3

Process 2

… …

Pipe

pipe(…)

fork()

close(3)

close(4)
close(4)

EOF

Lec 5.279/14/20 Kubiatowicz CS162 © UCB Fall 2020

Once we have communication, we need a protocol

� A protocol is an agreement on how to communicate

� Includes

– Syntax: how a communication is specified & structured

» Format, order messages are sent and received

– Semantics: what a communication means

» Actions taken when transmitting, receiving, or when a timer expires

� Described formally by a state machine

– Often represented as a message transaction diagram

� In fact, across network may need a way to translate between different
representations for numbers, strings, etc

– Such translation typically part of a Remote Procedure Call (RPC) facility

– Don’t worry about this now, but it is clearly part of the protocol

Lec 5.289/14/20 Kubiatowicz CS162 © UCB Fall 2020

Examples of Protocols in Human Interaction

1. Telephone

2. (Pick up / open up the phone)

3. Listen for a dial tone / see that you have service

4. Dial

5. Should hear ringing …

6. Callee: “Hello?”

7. Caller: “Hi, it’s John….”
Or: “Hi, it’s me” (what’s that about?)

8. Caller: “Hey, do you think … blah blah blah …” pause

9. Callee: “Yeah, blah blah blah …”
pause

10. Caller: Bye

11. Callee: Bye

12. Hang up

Lec 5.299/14/20 Kubiatowicz CS162 © UCB Fall 2020

Web Server

Client Web Server

Request

Reply

Lec 5.309/14/20 Kubiatowicz CS162 © UCB Fall 2020

Client-Server Protocols: Cross-Network IPC

� Many clients accessing a common server

� File servers, www, FTP, databases

Server

Client 1

Client 2

Client n

Lec 5.319/14/20 Kubiatowicz CS162 © UCB Fall 2020

Client-Server Communication

� Client is “sometimes on”

– Sends the server requests for
services when interested

– E.g., Web browser on laptop/phone

– Doesn’t communicate directly with
other clients

– Needs to know server’s address

� Server is “always on”

– Services requests from many
clients

– E.g., Web server for www.cnn.com

– Doesn’t initiate contact with clients

– Needs a fixed, well-known address

GET /index.html

“Site under construction”

Lec 5.329/14/20 Kubiatowicz CS162 © UCB Fall 2020

What is a Network Connection?

� Bidirectional stream of bytes between two processes on possibly different
machines

– For now, we are discussing “TCP Connections”

� Abstractly, a connection between two endpoints A and B consists of:

– A queue (bounded buffer) for data sent from A to B

– A queue (bounded buffer) for data sent from B to A

Lec 5.339/14/20 Kubiatowicz CS162 © UCB Fall 2020

The Socket Abstraction: Endpoint for Communication

� Key Idea: Communication across the world looks like File I/O

� Sockets: Endpoint for Communication

– Queues to temporarily hold results

� Connection: Two Sockets Connected Over the network  IPC over network!

– How to open()?

– What is the namespace?

– How are they connected in time?

write(wfd, wbuf, wlen);

n = read(rfd, rbuf, rmax);

SocketProcess

Socket
Process

Lec 5.349/14/20 Kubiatowicz CS162 © UCB Fall 2020

Sockets: More Details

� Socket: An abstraction for one endpoint of a network connection

– Another mechanism for inter-process communication

– Most operating systems (Linux, Mac OS X, Windows) provide this, even if they
don’t copy rest of UNIX I/O

– Standardized by POSIX

� First introduced in 4.2 BSD (Berkeley Standard Distribution) Unix

– This release had some huge benefits (and excitement from potential users)

– Runners waiting at release time to get release on tape and take to businesses

� Same abstraction for any kind of network

– Local (within same machine)

– The Internet (TCP/IP, UDP/IP)

– Things “no one” uses anymore (OSI, Appletalk, IPX, …)

Lec 5.359/14/20 Kubiatowicz CS162 © UCB Fall 2020

Sockets: More Details

� Looks just like a file with a file descriptor

– Corresponds to a network connection (two queues)

– write adds to output queue (queue of data destined for other side)

– read removes from it input queue (queue of data destined for this side)

– Some operations do not work, e.g. lseek

� How can we use sockets to support real applications?

– A bidirectional byte stream isn’t useful on its own…

– May need messaging facility to partition stream into chunks

– May need RPC facility to translate one environment to another and provide
the abstraction of a function call over the network

Lec 5.369/14/20 Kubiatowicz CS162 © UCB Fall 2020

Simple Example: Echo Server

Client Web Server

“hello, world”

“hello, world”

Lec 5.379/14/20 Kubiatowicz CS162 © UCB Fall 2020

write(sockfd,sndbuf,strlen(sndbuf)+1); n = read(sockfd,reqbuf,…);

Client (issues requests) Server (services requests)

write(sockfd,reqbuf,…);

print

wait

fgets(sndbuf,bufsize,stdin);

print

Simple Example: Echo Server

wait

n = read(sockfd,rcvbuf, …);

Client

Socket

Server

Socket

Lec 5.389/14/20 Kubiatowicz CS162 © UCB Fall 2020

Echo client-server example
void client(int sockfd) {
int n;

char sndbuf[MAXIN]; char rcvbuf[MAXOUT];
while (1) {
fgets(sndbuf,MAXIN,stdin); /* prompt */
write(sockfd, sndbuf, strlen(sndbuf)+1); /* send (including null terminator) */
memset(rcvbuf,0,MAXOUT); /* clear */
n=read(sockfd, rcvbuf, MAXOUT); /* receive */
write(STDOUT_FILENO, rcvbuf, n); /* echo */

}

void server(int consockfd) {
char reqbuf[MAXREQ];
int n;

while (1) {
memset(reqbuf,0, MAXREQ);
len = read(consockfd,reqbuf,MAXREQ); /* Recv */

if (n <= 0) return;
write(STDOUT_FILENO, reqbuf, n);
write(consockfd, reqbuf, n); /* echo*/

}

}

Lec 5.399/14/20 Kubiatowicz CS162 © UCB Fall 2020

What Assumptions are we Making?

� Reliable

– Write to a file => Read it back. Nothing is lost.

– Write to a (TCP) socket => Read from the other side, same.

– Like pipes

� In order (sequential stream)

– Write X then write Y => read gets X then read gets Y

� When ready?

– File read gets whatever is there at the time.

– Assumes writing already took place

– Blocks if nothing has arrived yet

– Like pipes!

Lec 5.409/14/20 Kubiatowicz CS162 © UCB Fall 2020

Socket Creation

� File systems provide a collection of permanent objects in a structured name space:

– Processes open, read/write/close them

– Files exist independently of processes

– Easy to name what file to open()

� Pipes: one-way communication between processes on same (physical) machine

– Single queue

– Created transiently by a call to pipe()

– Passed from parent to children (descriptors inherited from parent process)

� Sockets: two-way communication between processes on same or different
machine

– Two queues (one in each direction)

– Processes can be on separate machines: no common ancestor

– How do we name the objects we are opening?

– How do these completely independent programs know that the other wants to “talk” to
them?

Lec 5.419/14/20 Kubiatowicz CS162 © UCB Fall 2020

Namespaces for Communication over IP

� Hostname

– www.eecs.berkeley.edu

� IP address

– 128.32.244.172 (IPv4, 32-bit Integer)

– 2607:f140:0:81::f (IPv6, 128-bit Integer)

� Port Number

– 0-1023 are “well known” or “system” ports

» Superuser privileges to bind to one

– 1024 – 49151 are “registered” ports (registry)

» Assigned by IANA for specific services

– 49152–65535 (215+214 to 216−1) are “dynamic” or “private”

» Automatically allocated as “ephemeral ports”

Lec 5.429/14/20 Kubiatowicz CS162 © UCB Fall 2020

Connection Setup over TCP/IP

� Special kind of socket: server socket

– Has file descriptor

– Can’t read or write

� Two operations:

1. listen(): Start allowing clients to connect

2. accept(): Create a new socket for a particular client

socket

ServerClient

Server

Socket

connection

new
socket

Connection

socket
connection

Lec 5.439/14/20 Kubiatowicz CS162 © UCB Fall 2020

Connection Setup over TCP/IP

� 5-Tuple identifies each
connection:

1. Source IP Address
2. Destination IP Address
3. Source Port Number
4. Destination Port Number
5. Protocol (always TCP here)

socket

ServerClient

Server

Socket

new
socket

Connection

socket
connection

� Often, Client Port “randomly”
assigned

– Done by OS during client socket setup

� Server Port often “well known”
– 80 (web), 443 (secure web), 25

(sendmail), etc

– Well-known ports from 0—1023

Lec 5.449/14/20 Kubiatowicz CS162 © UCB Fall 2020

Sockets in concept

Client Server

read response

Close Client Socket

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address

(host:port)

Listen for Connection

Close Connection Socket

Close Server Socket

write request

write response

Accept syscall()

Connection SocketConnection Socket

read request

Lec 5.459/14/20 Kubiatowicz CS162 © UCB Fall 2020

char *host_name, *port_name;

// Create a socket
struct addrinfo *server = lookup_host(host_name, port_name);
int sock_fd = socket(server‐>ai_family, server‐>ai_socktype,

server‐>ai_protocol);

// Connect to specified host and port
connect(sock_fd, server‐>ai_addr, server‐>ai_addrlen);

// Carry out Client‐Server protocol
run_client(sock_fd);

/* Clean up on termination */
close(sock_fd);

Client Protocol

Lec 5.469/14/20 Kubiatowicz CS162 © UCB Fall 2020

// Create socket to listen for client connections
char *port_name;
struct addrinfo *server = setup_address(port_name);
int server_socket = socket(server‐>ai_family,

server‐>ai_socktype, server‐>ai_protocol);
// Bind socket to specific port
bind(server_socket, server‐>ai_addr, server‐>ai_addrlen);
// Start listening for new client connections
listen(server_socket, MAX_QUEUE);

while (1) {
// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);
serve_client(conn_socket);

close(conn_socket);

}

close(server_socket);

Server Protocol (v1)

Lec 5.479/14/20 Kubiatowicz CS162 © UCB Fall 2020

How Could the Server Protect Itself?

� Handle each connection in a separate process

Lec 5.489/14/20 Kubiatowicz CS162 © UCB Fall 2020

Sockets With Protection (each connection has own process)

Client Server

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address

(host:port)

Listen for Connection

Accept syscall()

Connection SocketConnection Socket

write request

read response

Close Client Socket

read request

write response

Close Connection

Socket
Close Server Socket

Child

Close Connection

Socket

Close Listen Socket

Parent

Wait for child

Lec 5.499/14/20 Kubiatowicz CS162 © UCB Fall 2020

// Socket setup code elided…
while (1) {

// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);
pid_t pid = fork();
if (pid == 0) {

close(server_socket);

serve_client(conn_socket);

close(conn_socket);

exit(0);

} else {
close(conn_socket);

wait(NULL);

}

}

close(server_socket);

Server Protocol (v2)

Lec 5.509/14/20 Kubiatowicz CS162 © UCB Fall 2020

Concurrent Server

� So far, in the server:

– Listen will queue requests

– Buffering present elsewhere

– But server waits for each connection to terminate before servicing the next

� A concurrent server can handle and service a new connection before the
previous client disconnects

Lec 5.519/14/20 Kubiatowicz CS162 © UCB Fall 2020

Sockets With Protection and Concurrency

Client Server

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address

(host:port)

Listen for Connection

Accept syscall()

Connection SocketConnection Socket

write request

read response

Close Client Socket

read request

write response

Close Connection

Socket
Close Server Socket

Child

Close Connection

Socket

Close Listen Socket

Parent

Lec 5.529/14/20 Kubiatowicz CS162 © UCB Fall 2020

// Socket setup code elided…
while (1) {

// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);
pid_t pid = fork();
if (pid == 0) {

close(server_socket);

serve_client(conn_socket);

close(conn_socket);

exit(0);

} else {
close(conn_socket);

//wait(NULL);

}

}

close(server_socket);

Server Protocol (v3)

Lec 5.539/14/20 Kubiatowicz CS162 © UCB Fall 2020

Server Address: Itself

struct addrinfo *setup_address(char *port) {
struct addrinfo *server;

struct addrinfo hints;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_PASSIVE;
getaddrinfo(NULL, port, &hints, &server);
return server;

}

� Accepts any connections on the specified port

Lec 5.549/14/20 Kubiatowicz CS162 © UCB Fall 2020

Client: Getting the Server Address

struct addrinfo *lookup_host(char *host_name, char *port) {
struct addrinfo *server;

struct addrinfo hints;

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;

int rv = getaddrinfo(host_name, port_name,
&hints, &server);

if (rv != 0) {
printf("getaddrinfo failed: %s\n", gai_strerror(rv));
return NULL;

}

return server;
}

Lec 5.559/14/20 Kubiatowicz CS162 © UCB Fall 2020

Concurrent Server without Protection

� Spawn a new thread to handle each connection

� Main thread initiates new client connections without waiting for previously
spawned threads

� Why give up the protection of separate processes?

– More efficient to create new threads

– More efficient to switch between threads

Lec 5.569/14/20 Kubiatowicz CS162 © UCB Fall 2020

Client Server

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address

(host:port)

Listen for Connection

Accept syscall()

Connection SocketConnection Socket

write request

read response

Close Client Socket

read request

write response

Close Connection

Socket Close Server Socket

Spawned Thread

Main Thread

Sockets with Concurrency, without Protection

pthread_create

Lec 5.579/14/20 Kubiatowicz CS162 © UCB Fall 2020

Thread Pools
� Problem with previous version: Unbounded Threads

– When web-site becomes too popular – throughput sinks

� Instead, allocate a bounded “pool” of worker threads, representing the
maximum level of multiprogramming

master() {
allocThreads(worker,queue);

while(TRUE) {
con=AcceptCon();

Enqueue(queue,con);

wakeUp(queue);

}

}

worker(queue) {
while(TRUE) {

con=Dequeue(queue);

if (con==null)
sleepOn(queue);

else

ServiceWebPage(con);

}

}

Master

Thread

Thread Pool

q
u

e
u

e

Lec 5.589/14/20 Kubiatowicz CS162 © UCB Fall 2020

Conclusion
� Interprocess Communication (IPC)

– Communication facility between protected environments (i.e. processes)

� Pipes are an abstraction of a single queue

– One end write-only, another end read-only

– Used for communication between multiple processes on one machine

– File descriptors obtained via inheritance

� Sockets are an abstraction of two queues, one in each direction

– Can read or write to either end

– Used for communication between multiple processes on different machines

– File descriptors obtained via socket/bind/connect/listen/accept

– Inheritance of file descriptors on fork() facilitates handling each connection in a separate
process

� Both support read/write system calls, just like File I/O

