
CS162
Operating Systems and
Systems Programming

Lecture 6

Synchronization 1: Concurrency
and Mutual Exclusion

September 16th, 2020

Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 6.29/16/20 Kubiatowicz CS162 © UCB Fall 2020

Goals for Today: Synchronization

� How does an OS provide concurrency through threads?

– Brief discussion of process/thread states and scheduling

– High-level discussion of how stacks contribute to concurrency

� Introduce needs for synchronization

� Discussion of Locks and Semaphores

Lec 6.39/16/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Inter-Process Communication (IPC)

� Mechanism to create communication channel between distinct processes

– Same or different machines, same or different programming language…

� Requires serialization format understood by both

� Failure in one process isolated from the other

– Sharing is done in a controlled way through IPC

– Still have to be careful handling what is received via IPC

� Later in the term: Many uses and interaction patterns

– Logging process, window management, …

– Potentially allows us to move some system functions outside of kernel to
userspace

Lec 6.49/16/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: POSIX/Unix PIPE

� Memory Buffer is finite:

– If producer (A) tries to write when buffer full, it blocks (Put sleep until space)

– If consumer (B) tries to read when buffer empty, it blocks (Put to sleep until data)

int pipe(int fileds[2]);

– Allocates two new file descriptors in the process

– Writes to fileds[1] read from fileds[0]

– Implemented as a fixed‐size queue

UNIX Pipe

write(wfd, wbuf, wlen);

n = read(rfd, rbuf, rmax);

Process

A

Process

B

Lec 6.59/16/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Socket Endpoint for Communication

� Key Idea: Communication across the world looks like File I/O

� Sockets: Bidirectional Endpoint for Communication

– Queues to temporarily hold results

– Queues are NOT Pipes!

� Connection: Two Sockets Connected Over the network IPC over network!

– How to open()?

– What is the namespace?

– How are they connected in time?

write(wfd, wbuf, wlen);

n = read(rfd, rbuf, rmax);

SocketProcess

Socket
Process

Lec 6.69/16/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Connection Setup over TCP/IP

� 5-Tuple identifies each
connection:

1. Source IP Address
2. Destination IP Address
3. Source Port Number
4. Destination Port Number
5. Protocol (always TCP here)

socket

ServerClient

Server

Socket

new
socket

Connection

socket
connection

� Often, Client Port “randomly”
assigned

– Done by OS during client socket setup

� Server Port often “well known”
– 80 (web), 443 (secure web), 25

(sendmail), etc

– Well-known ports from 0—1023

Lec 6.79/16/20 Kubiatowicz CS162 © UCB Fall 2020

// Create socket to listen for client connections
char *port_name;
struct addrinfo *server = setup_address(port_name);
int server_socket = socket(server‐>ai_family,

server‐>ai_socktype, server‐>ai_protocol);
// Bind socket to specific port
bind(server_socket, server‐>ai_addr, server‐>ai_addrlen);
// Start listening for new client connections
listen(server_socket, MAX_QUEUE);

while (1) {
// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);
serve_client(conn_socket);

close(conn_socket);

}

close(server_socket);

Recall: Server Protocol (v1)

Lec 6.89/16/20 Kubiatowicz CS162 © UCB Fall 2020

� Kernel represents each process as a process
control block (PCB)

– Status (running, ready, blocked, …)

– Register state (when not ready)

– Process ID (PID), User, Executable, Priority, …

– Execution time, …

– Memory space, translation, …

� Kernel Scheduler maintains a data structure
containing the PCBs

– Give out CPU to different processes

– This is a Policy Decision

� Give out non-CPU resources

– Memory/IO

– Another policy decision

Process

Control

Block

Multiplexing Processes: The Process Control Block

Lec 6.99/16/20 Kubiatowicz CS162 © UCB Fall 2020

Context Switch

Privilege Level: 0 - sysPrivilege Level: 3 - user Privilege Level: 3 - user

Lec 6.109/16/20 Kubiatowicz CS162 © UCB Fall 2020

Lifecycle of a Process or Thread

� As a process executes, it changes state:

– new: The process/thread is being created

– ready: The process is waiting to run

– running: Instructions are being executed

– waiting: Process waiting for some event to occur

– terminated: The process has finished execution

Lec 6.119/16/20 Kubiatowicz CS162 © UCB Fall 2020

Scheduling: All About Queues

� PCBs move from queue to queue

� Scheduling: which order to remove from queue

– Much more on this soon

Lec 6.129/16/20 Kubiatowicz CS162 © UCB Fall 2020

Ready Queue And Various I/O Device Queues
� Process not running PCB is in some scheduler queue

– Separate queue for each device/signal/condition

– Each queue can have a different scheduler policy

Other
State
PCB9

Link

Registers
Other
State
PCB6

Link

Registers
Other
State
PCB16

Link

Registers

Other
State
PCB8

Link

Registers

Other
State
PCB2

Link

Registers
Other
State
PCB3

Link

Registers

Head

Tail

Head

Tail

Head

Tail

Head

Tail

Head

Tail

Ready
Queue

USB
Unit 0

Disk
Unit 0

Disk
Unit 2

Ether
Netwk 0

Lec 6.139/16/20 Kubiatowicz CS162 © UCB Fall 2020

Scheduler

� Scheduling: Mechanism for deciding which
processes/threads receive the CPU

� Lots of different scheduling policies provide …

– Fairness or

– Realtime guarantees or

– Latency optimization or ..

if (readyProcesses(PCBs)) {

nextPCB = selectProcess(PCBs);

run(nextPCB);

} else {

run_idle_process();

}

Lec 6.149/16/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Single and Multithreaded Processes

� Threads encapsulate concurrency: “Active” component

� Address spaces encapsulate protection: “Passive” part

– Keeps buggy program from trashing the system

� Why have multiple threads per address space?

Lec 6.159/16/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Shared vs. Per-Thread State

Lec 6.169/16/20 Kubiatowicz CS162 © UCB Fall 2020

The Core of Concurrency: the Dispatch Loop

� Conceptually, the scheduling loop of the operating system looks as
follows:

Loop {
RunThread();
ChooseNextThread();

SaveStateOfCPU(curTCB);

LoadStateOfCPU(newTCB);

}

� This is an infinite loop

– One could argue that this is all that the OS does

� Should we ever exit this loop???

– When would that be?

Lec 6.179/16/20 Kubiatowicz CS162 © UCB Fall 2020

Administrivia
� Homework 1 due Today

� Project 1 in full swing!

– We expect that your design document will give intuitions behind your designs, not
just a dump of pseudo-code

– Think of this you are in a company and your TA is you manager

� Paradox: need code for design document?

– Not full code, just enough prove you have thought through complexities of design

� Should be attending your permanent discussion section!

– Remember to turn on your camera in Zoom

– Discussion section attendance is mandatory

� Midterm 1: October 1st, 5-7PM (Three weeks from tomorrow!)

– We understand that this partially conflicts with CS170, but those of you in CS170
can start that exam after 7PM (according to CS170 staff)

– Video Proctored, No curve, Use of computer to answer questions

– More details as we get closer to exam
Lec 6.189/16/20 Kubiatowicz CS162 © UCB Fall 2020

Running a thread

Consider first portion: RunThread()

� How do I run a thread?

– Load its state (registers, PC, stack pointer) into CPU

– Load environment (virtual memory space, etc)

– Jump to the PC

� How does the dispatcher get control back?

– Internal events: thread returns control voluntarily

– External events: thread gets preempted

Lec 6.199/16/20 Kubiatowicz CS162 © UCB Fall 2020

Internal Events

� Blocking on I/O

– The act of requesting I/O implicitly yields the CPU

� Waiting on a “signal” from other thread

– Thread asks to wait and thus yields the CPU

� Thread executes a yield()

– Thread volunteers to give up CPU

computePI() {

while(TRUE) {

ComputeNextDigit();

yield();

}

}

Lec 6.209/16/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: POSIX API for Threads: pthreads

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

– thread is created executing start_routine with arg as its sole argument.

– return is implicit call to pthread_exit

void pthread_exit(void *value_ptr);
– terminates the thread and makes value_ptr available to any successful join

int pthread_join(pthread_t thread, void **value_ptr);
– suspends execution of the calling thread until the target thread terminates.

– On return with a non-NULL value_ptr the value passed to pthread_exit() by
the terminating thread is made available in the location referenced
by value_ptr.

void pthread_yield(void);
void sched_yield(void);

– Current thread yields (gives up) CPU so that another thread can run

Lec 6.219/16/20 Kubiatowicz CS162 © UCB Fall 2020

Stack for Yielding Thread

� How do we run a new thread?

run_new_thread() {

newThread = PickNewThread();

switch(curThread, newThread);

ThreadHouseKeeping(); /* Do any cleanup */

}

� How does dispatcher switch to a new thread?
– Save anything next thread may trash: PC, regs, stack pointer

– Maintain isolation for each thread

yield

ComputePI

S
ta

c
k
 g

ro
w

thrun_new_thread

kernel_yield
Trap to OS

switch

Lec 6.229/16/20 Kubiatowicz CS162 © UCB Fall 2020

What Do the Stacks Look Like?

� Consider the following
code blocks:

proc A() {

B();

}

proc B() {

while(TRUE) {

yield();

}

}

� Suppose we have 2
threads:

– Threads S and T

Thread S

S
t
a
c
k
 g

ro
w

th

A

B(while)

yield

run_new_thread

switch

Thread T

A

B(while)

yield

run_new_thread

switch

Thread S's switch returns to
Thread T's (and vice versa)

Lec 6.239/16/20 Kubiatowicz CS162 © UCB Fall 2020

Saving/Restoring state (often called “Context Switch)
Switch(tCur,tNew) {

/* Unload old thread */

TCB[tCur].regs.r7 = CPU.r7;

…

TCB[tCur].regs.r0 = CPU.r0;

TCB[tCur].regs.sp = CPU.sp;

TCB[tCur].regs.retpc = CPU.retpc; /*return addr*/

/* Load and execute new thread */

CPU.r7 = TCB[tNew].regs.r7;

…

CPU.r0 = TCB[tNew].regs.r0;

CPU.sp = TCB[tNew].regs.sp;

CPU.retpc = TCB[tNew].regs.retpc;

return; /* Return to CPU.retpc */

}

Lec 6.249/16/20 Kubiatowicz CS162 © UCB Fall 2020

Switch Details (continued)
� TCB+Stacks (user/kernel) contains complete restartable state of Thread!

– Can put it on any queue for later revival!

� What if you make a mistake in implementing switch?

– Suppose you forget to save/restore register 32

– Get intermittent failures depending on when context switch occurred and whether new
thread uses register 32

– System will give wrong result without warning

� Can you devise an exhaustive test to test switch code?

– No! Too many combinations and inter-leavings

� Cautionary tale:

– For speed, Topaz kernel saved one instruction in switch()

– Carefully documented! Only works as long as kernel size < 1MB

– What happened?
» Time passed, People forgot.

» Later, they added features to kernel (no one removes features!)

» Very weird behavior started happening

– Moral of story: Design for simplicity

Lec 6.259/16/20 Kubiatowicz CS162 © UCB Fall 2020

Aren't we still switching contexts?
� Yes, but much cheaper than switching processes

– No need to change address space

� Some numbers from Linux:

– Frequency of context switch: 10-100ms

– Switching between processes: 3-4 μsec.

– Switching between threads: 100 ns

� Even cheaper: switch threads (using “yield”) in user-space!

Simple One-to-One

Threading Model Many-to-One Many-to-Many

What we are talking about
in Today’s lecture

Lec 6.269/16/20 Kubiatowicz CS162 © UCB Fall 2020

Processes vs. Threads

Process 1

CPU

sched.
OS

CPU

(1 core)

1 thread

at a time

IO

state

Mem.

…

threads

Process N

IO

state

Mem.

…

threads

…

� Switch overhead:

– Same process: low

– Different proc.: high

� Protection

– Same proc: low

– Different proc: high

� Sharing overhead

– Same proc: low

– Different proc: high

� Parallelism: no

CPU

state

CPU

state

CPU

state

CPU

state

Lec 6.279/16/20 Kubiatowicz CS162 © UCB Fall 2020

Processes vs. Threads

Process 1

CPU

sched.
OS

Core

1

4 threads

at a time

IO

state

Mem.

…

threads

Process N

IO

state

Mem.

…

threads

…

CPU

state

CPU

state

CPU

state

CPU

state

Core

2

Core

3

Core

4

� Switch overhead:

– Same process: low

– Different proc.: high

� Protection

– Same proc: low

– Different proc: high

� Sharing overhead

– Same proc: low

– Different proc,
simultaneous core: medium

– Different proc,
offloaded core: high

� Parallelism: yes

Lec 6.289/16/20 Kubiatowicz CS162 © UCB Fall 2020

Simultaneous MultiThreading/Hyperthreading

� Hardware scheduling technique

– Superscalar processors can execute multiple

instructions that are independent.

– Hyperthreading duplicates register state to make a

second “thread,” allowing more instructions to run.

� Can schedule each thread as if were separate CPU

– But, sub-linear speedup!

� Original technique called “Simultaneous Multithreading”

– http://www.cs.washington.edu/research/smt/index.html

– SPARC, Pentium 4/Xeon (“Hyperthreading”), Power 5

Colored blocks show

instructions executed

Lec 6.299/16/20 Kubiatowicz CS162 © UCB Fall 2020

run_new_thread

kernel_read
Trap to OS

switch

What happens when thread blocks on I/O?

� What happens when a thread requests a block of data
from the file system?

– User code invokes a system call

– Read operation is initiated

– Run new thread/switch

� Thread communication similar

– Wait for Signal/Join

– Networking

CopyFile

read

S
ta

c
k
 g

ro
w

th

Lec 6.309/16/20 Kubiatowicz CS162 © UCB Fall 2020

External Events

� What happens if thread never does any I/O, never
waits, and never yields control?

– Could the ComputePI program grab all resources and
never release the processor?

» What if it didn’t print to console?

– Must find way that dispatcher can regain control!

� Answer: utilize external events

– Interrupts: signals from hardware or software that stop
the running code and jump to kernel

– Timer: like an alarm clock that goes off every some
milliseconds

� If we make sure that external events occur frequently
enough, can ensure dispatcher runs

Lec 6.319/16/20 Kubiatowicz CS162 © UCB Fall 2020

Interrupt Controller

� Interrupts invoked with interrupt lines from devices

� Interrupt controller chooses interrupt request to honor

– Interrupt identity specified with ID line

– Mask enables/disables interrupts

– Priority encoder picks highest enabled interrupt

– Software Interrupt Set/Cleared by Software

� CPU can disable all interrupts with internal flag

� Non-Maskable Interrupt line (NMI) can’t be disabled

Network

IntID

Interrupt

In
te

rru
p
t M

a
s
k

ControlSoftware

Interrupt NMI

CPU

P
rio

rity
 E

n
c
o

d
e

r

T
im

e
r

Int Disable

Lec 6.329/16/20 Kubiatowicz CS162 © UCB Fall 2020

...
add $r1,$r2,$r3
subi $r4,$r1,#4
slli $r4,$r4,#2

...

Raise priority
(set mask)

Reenable All Ints
Save registers
Dispatch to Handler

Transfer Network Packet

from hardware
to Kernel Buffers

Restore registers
Clear current Int
Disable All Ints
Restore priority

(clear Mask)
RTI

“I
n

te
rr

u
p

t
H

a
n

d
le

r”

Example: Network Interrupt

� An interrupt is a hardware-invoked context switch

– No separate step to choose what to run next

– Always run the interrupt handler immediately

E
x
te

rn
a

l
In

te
rr

u
p

t

Pipeline Flush
...

lw $r2,0($r4)
lw $r3,4($r4)
add $r2,$r2,$r3
sw 8($r4),$r2

...

Lec 6.339/16/20 Kubiatowicz CS162 © UCB Fall 2020

Use of Timer Interrupt to Return Control

� Solution to our dispatcher problem

– Use the timer interrupt to force scheduling decisions

� Timer Interrupt routine:

TimerInterrupt() {
DoPeriodicHouseKeeping();
run_new_thread();

}

Some Routine

run_new_thread

TimerInterrupt
Interrupt

switch

S
ta

c
k
 g

ro
w

th

Lec 6.349/16/20 Kubiatowicz CS162 © UCB Fall 2020

How do we initialize TCB and Stack?

� Initialize Register fields of TCB

– Stack pointer made to point at stack

– PC return address OS (asm) routine ThreadRoot()

– Two arg registers (a0 and a1) initialized to fcnPtr and
fcnArgPtr, respectively

� Initialize stack data?

– No. Important part of stack frame is in registers (ra)

– Think of stack frame as just before body of ThreadRoot()
really gets started

ThreadRoot stub

Initial Stack

S
ta

c
k
 g

ro
w

th

Lec 6.359/16/20 Kubiatowicz CS162 © UCB Fall 2020

How does Thread get started?

� Eventually, run_new_thread() will select this TCB and
return into beginning of ThreadRoot()

– This really starts the new thread

S
ta

c
k
 g

ro
w

th A

B(while)

yield

run_new_thread

switch

ThreadRoot

Other Thread

ThreadRoot stub

New Thread

Lec 6.369/16/20 Kubiatowicz CS162 © UCB Fall 2020

How does a thread get started?

� How do we make a new thread?

– Setup TCB/kernel thread to point at new user stack and ThreadRoot code

– Put pointers to start function and args in registers

– This depends heavily on the calling convention (i.e. RISC-V vs x86)

� Eventually, run_new_thread() will select this TCB and return into beginning of ThreadRoot()

– This really starts the new thread

S
ta

c
k
 g

ro
w

th A

B(while)

yield

run_new_thread

switch

Other Thread

ThreadRoot stub

New Thread

SetupNewThread(tNew) {
…

TCB[tNew].regs.sp = newStackPtr;
TCB[tNew].regs.retpc = &ThreadRoot;
TCB[tNew].regs.r0 = fcnPtr
TCB[tNew].regs.r1 = fcnArgPtr

}

ThreadRoot

Lec 6.379/16/20 Kubiatowicz CS162 © UCB Fall 2020

What does ThreadRoot() look like?

� ThreadRoot() is the root for the thread routine:

ThreadRoot(fcnPTR,fcnArgPtr) {
DoStartupHousekeeping();

UserModeSwitch(); /* enter user mode */
Call fcnPtr(fcnArgPtr);
ThreadFinish();

}

� Startup Housekeeping

– Includes things like recording start time of thread

– Other statistics

� Stack will grow and shrink with
execution of thread

� Final return from thread returns into ThreadRoot() which calls ThreadFinish()
– ThreadFinish() wake up sleeping threads

ThreadRoot

Running Stack

S
ta

c
k
 g

ro
w

th

Thread Code
*fcnPtr()

Lec 6.389/16/20 Kubiatowicz CS162 © UCB Fall 2020

Correctness with Concurrent Threads?

� Non-determinism:

– Scheduler can run threads in any order

– Scheduler can switch threads at any time

– This can make testing very difficult

� Independent Threads

– No state shared with other threads

– Deterministic, reproducible conditions

� Cooperating Threads

– Shared state between multiple threads

� Goal: Correctness by Design

Lec 6.399/16/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Possible Executions

Lec 6.409/16/20 Kubiatowicz CS162 © UCB Fall 2020

ATM Bank Server

� ATM server problem:

– Service a set of requests

– Do so without corrupting database

– Don’t hand out too much money

Lec 6.419/16/20 Kubiatowicz CS162 © UCB Fall 2020

ATM bank server example
� Suppose we wanted to implement a server process to handle requests

from an ATM network:

BankServer() {
while (TRUE) {

ReceiveRequest(&op, &acctId, &amount);
ProcessRequest(op, acctId, amount);

}
}

ProcessRequest(op, acctId, amount) {
if (op == deposit) Deposit(acctId, amount);
else if …

}

Deposit(acctId, amount) {
acct = GetAccount(acctId); /* may use disk I/O */
acct->balance += amount;
StoreAccount(acct); /* Involves disk I/O */

}

� How could we speed this up?
– More than one request being processed at once

– Event driven (overlap computation and I/O)

– Multiple threads (multi-proc, or overlap comp and I/O)

Lec 6.429/16/20 Kubiatowicz CS162 © UCB Fall 2020

Event Driven Version of ATM server

� Suppose we only had one CPU
– Still like to overlap I/O with computation

– Without threads, we would have to rewrite in event-driven style

� Example

BankServer() {
while(TRUE) {

event = WaitForNextEvent();
if (event == ATMRequest)

StartOnRequest();
else if (event == AcctAvail)

ContinueRequest();
else if (event == AcctStored)

FinishRequest();
}

}

– What if we missed a blocking I/O step?

– What if we have to split code into hundreds of pieces which could be blocking?

– This technique is used for graphical programming

Lec 6.439/16/20 Kubiatowicz CS162 © UCB Fall 2020

Can Threads Make This Easier?

� Threads yield overlapped I/O and computation without “deconstructing”
code into non-blocking fragments

– One thread per request

� Requests proceeds to completion, blocking as required:

Deposit(acctId, amount) {
acct = GetAccount(actId); /* May use disk I/O */
acct->balance += amount;
StoreAccount(acct); /* Involves disk I/O */

}

� Unfortunately, shared state can get corrupted:
Thread 1 Thread 2

load r1, acct->balance
load r1, acct->balance
add r1, amount2
store r1, acct->balance

add r1, amount1
store r1, acct->balance

Lec 6.449/16/20 Kubiatowicz CS162 © UCB Fall 2020

Problem is at the Lowest Level
� Most of the time, threads are working on separate data, so

scheduling doesn’t matter:

Thread A Thread B

x = 1; y = 2;

� However, what about (Initially, y = 12):

Thread A Thread B

x = 1; y = 2;

x = y+1; y = y*2;

– What are the possible values of x?

� Or, what are the possible values of x below?

Thread A Thread B

x = 1; x = 2;

– X could be 1 or 2 (non-deterministic!)

– Could even be 3 for serial processors:
» Thread A writes 0001, B writes 0010 → scheduling order ABABABBA yields 3!

Lec 6.459/16/20 Kubiatowicz CS162 © UCB Fall 2020

Atomic Operations

� To understand a concurrent program, we need to know what the underlying

indivisible operations are!

� Atomic Operation: an operation that always runs to completion or not at all

– It is indivisible: it cannot be stopped in the middle and state cannot be modified

by someone else in the middle

– Fundamental building block – if no atomic operations, then have no way for

threads to work together

� On most machines, memory references and assignments (i.e. loads and

stores) of words are atomic

– Consequently – weird example that produces “3” on previous slide can’t happen

� Many instructions are not atomic

– Double-precision floating point store often not atomic

– VAX and IBM 360 had an instruction to copy a whole array

Lec 6.469/16/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Locks

� Lock: prevents someone from doing something

– Lock before entering critical section and before accessing shared data

– Unlock when leaving, after accessing shared data

– Wait if locked

» Important idea: all synchronization involves waiting

� Locks need to be allocated and initialized:

– structure Lock mylock or pthread_mutex_t mylock;

– lock_init(&mylock) or mylock = PTHREAD_MUTEX_INITIALIZER;
� Locks provide two atomic operations:

– acquire(&mylock) – wait until lock is free; then mark it as busy

» After this returns, we say the calling thread holds the lock

– release(&mylock) – mark lock as free

» Should only be called by a thread that currently holds the lock

» After this returns, the calling thread no longer holds the lock

Lec 6.479/16/20 Kubiatowicz CS162 © UCB Fall 2020

Thread C

� Identify critical sections (atomic instruction sequences) and add locking:
Deposit(acctId, amount) {
acquire(&mylock) // Wait if someone else in critical section!
acct = GetAccount(actId);
acct‐>balance += amount;
StoreAccount(acct);
release(&mylock) // Release someone into critical section

}

� Must use SAME lock (mylock) with all of the methods (Withdraw, etc…)

– Shared with all threads!

Thread AThread B

Thread A

Fix banking problem with Locks!

Thread A Thread C

Thread B

Thread B

Critical Section

acquire(&mylock)

release(&mylock)

Critical Section

Threads serialized by lock

through critical section.

Only one thread at a time

Lec 6.489/16/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Definitions

� Synchronization: using atomic operations to ensure cooperation between threads

– For now, only loads and stores are atomic

– We are going to show that its hard to build anything useful with only reads and writes

� Mutual Exclusion: ensuring that only one thread does a particular thing at a time

– One thread excludes the other while doing its task

� Critical Section: piece of code that only one thread can execute at once. Only one

thread at a time will get into this section of code

– Critical section is the result of mutual exclusion

– Critical section and mutual exclusion are two ways of describing the same thing

Lec 6.499/16/20 Kubiatowicz CS162 © UCB Fall 2020

Another Concurrent Program Example
� Two threads, A and B, compete with each other

– One tries to increment a shared counter

– The other tries to decrement the counter

Thread A Thread B

i = 0; i = 0;
while (i < 10) while (i > ‐10)

i = i + 1; i = i – 1;
printf(“A wins!”); printf(“B wins!”);

� Assume that memory loads and stores are atomic, but incrementing and
decrementing are not atomic

– No difference between: “i=i+1” and “i++”

– Same instruction sequence, the ++ operator is just syntactic sugar

� Who wins? Could be either

� Is it guaranteed that someone wins? Why or why not?

� What if both threads have their own CPU running at same speed? Is it
guaranteed that it goes on forever?

Lec 6.509/16/20 Kubiatowicz CS162 © UCB Fall 2020

Hand Simulation Multiprocessor Example
� Inner loop looks like this:

Thread A Thread B
r1=0 load r1, M[i]

r1=0 load r1, M[i]
r1=1 add r1, r1, 1

r1=‐1 sub r1, r1, 1
M[i]=1 store r1, M[i]

M[i]=‐1 store r1, M[i]

� Hand Simulation:
– And we’re off. A gets off to an early start
– B says “hmph, better go fast” and tries really hard
– A goes ahead and writes “1”
– B goes and writes “-1”
– A says “HUH??? I could have sworn I put a 1 there”

� Uncontrolled race condition: two threads attempting to access same data
simultaneously with one of them performing a write

– Here “simultaneous” is defined even with one CPU as “could access at same
time if only there were two CPUs

Lec 6.519/16/20 Kubiatowicz CS162 © UCB Fall 2020

So – does this fix it?

� Put locks around increment/decrement:

Thread A Thread B

i = 0; i = 0;
while (i < 10) while (i > ‐10)

acquire(&mylock) acquire(&mylock)
i = i + 1; i = i – 1;
release(&mylock) release(&mylock)

printf(“A wins!”); printf(“B wins!”);

� What does this do? Is it better???

� Each increment or decrement operation is now atomic. Good!

– Technically, no race conditions, since lock prevents simultaneous reads/writes

� Program is likely still broken. Not so good…

– May or may not be what you intended (probably not)

– Still unclear who wins – it is a nondeterministic result: different on each run

� When might something like this make sense?

– If each thread needed to get a unique integer for some reason
Lec 6.529/16/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Red-Black tree example

� Here, the Lock is associated with the root of the tree

– Restricts parallelism but makes sure that tree always consistent

– No races at the operation level

� Threads are exchange information through a consistent data structure

� Could you make it faster with one lock per node? Perhaps, but must be careful!

– Need to define invariants that are always true despite many simultaneous threads…

Thread A
Insert(3) {
acquire(&treelock)

Tree.Insert(3)

release(&treelock)

}

Tree-Based Set Data Structure

Thread B
Insert(4) {
acquire(&treelock)

Tree.insert(4)

release(&treelock)

}

Get(6) {
acquire(&treelock)

Tree.search(6)

release(&treelock)

}

treelock

Lec 6.539/16/20 Kubiatowicz CS162 © UCB Fall 2020

Concurrency is Hard!

� Even for practicing engineers trying to write mission-critical, bulletproof code!
– Threaded programs must work for all interleavings of thread instruction sequences

– Cooperating threads inherently non-deterministic and non-reproducible

– Really hard to debug unless carefully designed!

� Therac-25: Radiation Therapy Machine with Unintended Overdoses (reading on
course site)

– Concurrency errrors caused the death of a number
of patients by misconfiguring the radiation production

– Improper synchronization between input from operators
and positioning software

� Mars Pathfinder Priority Inversion (JPL Account)

� Toyota Uncontrolled Acceleration (CMU Talk)

– 256.6K Lines of C Code, ~9-11K global variables

– Inconsistent mutual exclusion on reads/writes

Lec 6.549/16/20 Kubiatowicz CS162 © UCB Fall 2020

Producer-Consumer with a Bounded Buffer

� Problem Definition
– Producer(s) put things into a shared buffer

– Consumer(s) take them out

– Need synchronization to coordinate producer/consumer

� Don’t want producer and consumer to have to work in lockstep, so put
a fixed-size buffer between them

– Need to synchronize access to this buffer

– Producer needs to wait if buffer is full

– Consumer needs to wait if buffer is empty

� Example 1: GCC compiler
– cpp | cc1 | cc2 | as | ld

� Example 2: Coke machine
– Producer can put limited number of Cokes in machine

– Consumer can’t take Cokes out if machine is empty

� Others: Web servers, Routers, ….

Consumer
Consumer

Producer ConsumerBuffer
Producer

Lec 6.559/16/20 Kubiatowicz CS162 © UCB Fall 2020

� Insert: write & bump write ptr (enqueue)

� Remove: read & bump read ptr (dequeue)

� How to tell if Full (on insert) Empty (on remove)?

� And what do you do if it is?

� What needs to be atomic?

typedef struct buf {
int write_index;
int read_index;
<type> *entries[BUFSIZE];

} buf_t;

w
r

di di+1di+2

Circular Buffer Data Structure (sequential case)

Lec 6.569/16/20 Kubiatowicz CS162 © UCB Fall 2020

mutex buf_lock = <initially unlocked>

Producer(item) {
acquire(&buf_lock);
while (buffer full) {}; // Wait for a free slot
enqueue(item);
release(&buf_lock);

}

Consumer() {
acquire(&buf_lock);
while (buffer empty) {}; // Wait for arrival
item = dequeue();
release(&buf_lock);
return item

}

Will we ever come out
of the wait loop?

Circular Buffer – first cut

Lec 6.579/16/20 Kubiatowicz CS162 © UCB Fall 2020

mutex buf_lock = <initially unlocked>

Producer(item) {
acquire(&buf_lock);
while (buffer full) {release(&buf_lock); acquire(&buf_lock);}
enqueue(item);
release(&buf_lock);

}

Consumer() {
acquire(&buf_lock);
while (buffer empty) {release(&buf_lock); acquire(&buf_lock);}
item = dequeue();
release(&buf_lock);
return item

}

What happens when one
is waiting for the other?
- Multiple cores ?
- Single core ?

Circular Buffer – 2nd cut

Lec 6.589/16/20 Kubiatowicz CS162 © UCB Fall 2020

Higher-level Primitives than Locks

� What is right abstraction for synchronizing threads that share memory?

– Want as high a level primitive as possible

� Good primitives and practices important!

– Since execution is not entirely sequential, really hard to find bugs, since they
happen rarely

– UNIX is pretty stable now, but up until about mid-80s
(10 years after started), systems running UNIX would crash every week or so –
concurrency bugs

� Synchronization is a way of coordinating multiple concurrent activities that are
using shared state

– This lecture and the next presents a some ways of structuring sharing

Lec 6.599/16/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Semaphores

� Semaphores are a kind of generalized lock

– First defined by Dijkstra in late 60s

– Main synchronization primitive used in original UNIX

� Definition: a Semaphore has a non-negative integer value and supports
the following two operations:

– Down() or P(): an atomic operation that waits for semaphore to become
positive, then decrements it by 1

» Think of this as the wait() operation

– Up() or V(): an atomic operation that increments the semaphore by 1, waking
up a waiting P, if any

» This of this as the signal() operation

– Note that P() stands for “proberen” (to test) and V() stands for “verhogen”
(to increment) in Dutch

Lec 6.609/16/20 Kubiatowicz CS162 © UCB Fall 2020

Value=2Value=1Value=0

Semaphores Like Integers Except…

� Semaphores are like integers, except:

– No negative values

– Only operations allowed are P and V – can’t read or write value, except initially

– Operations must be atomic

» Two P’s together can’t decrement value below zero

» Thread going to sleep in P won’t miss wakeup from V – even if both happen at same time

� POSIX adds ability to read value, but technically not part of proper interface!

� Semaphore from railway analogy

– Here is a semaphore initialized to 2 for resource control:

Value=1Value=0Value=2

Lec 6.619/16/20 Kubiatowicz CS162 © UCB Fall 2020

Two Uses of Semaphores
Mutual Exclusion (initial value = 1)

� Also called “Binary Semaphore” or “mutex”.

� Can be used for mutual exclusion, just like a lock:
semaP(&mysem);
// Critical section goes here

semaV(&mysem);

Scheduling Constraints (initial value = 0)

� Allow thread 1 to wait for a signal from thread 2

– thread 2 schedules thread 1 when a given event occurs

� Example: suppose you had to implement ThreadJoin which must wait for
thread to terminate:

Initial value of semaphore = 0
ThreadJoin {

semaP(&mysem);
}

ThreadFinish {
semaV(&mysem);

}
Lec 6.629/16/20 Kubiatowicz CS162 © UCB Fall 2020

Revisit Bounded Buffer: Correctness constraints for solution

� Correctness Constraints:

– Consumer must wait for producer to fill buffers, if none full (scheduling
constraint)

– Producer must wait for consumer to empty buffers, if all full (scheduling
constraint)

– Only one thread can manipulate buffer queue at a time (mutual exclusion)

� Remember why we need mutual exclusion

– Because computers are stupid

– Imagine if in real life: the delivery person is filling the machine and somebody
comes up and tries to stick their money into the machine

� General rule of thumb: Use a separate semaphore for each constraint

– Semaphore fullBuffers; // consumer’s constraint
– Semaphore emptyBuffers;// producer’s constraint
– Semaphore mutex; // mutual exclusion

Lec 6.639/16/20 Kubiatowicz CS162 © UCB Fall 2020

Semaphore fullSlots = 0; // Initially, no coke
Semaphore emptySlots = bufSize;

// Initially, num empty slots
Semaphore mutex = 1; // No one using machine

Producer(item) {
semaP(&emptySlots); // Wait until space
semaP(&mutex); // Wait until machine free
Enqueue(item);
semaV(&mutex);
semaV(&fullSlots); // Tell consumers there is

// more coke
}

Consumer() {
semaP(&fullSlots); // Check if there’s a coke
semaP(&mutex); // Wait until machine free
item = Dequeue();
semaV(&mutex);
semaV(&emptySlots); // tell producer need more
return item;

}

fullSlots signals coke

emptySlots
signals space

Full Solution to Bounded Buffer (coke machine)

Critical sections

using mutex

protect integrity

of the queue

Lec 6.649/16/20 Kubiatowicz CS162 © UCB Fall 2020

Discussion about Solution

� Why asymmetry?

– Producer does: semaP(&emptyBuffer), semaV(&fullBuffer)
– Consumer does: semaP(&fullBuffer), semaV(&emptyBuffer)

� Is order of P’s important?

– Yes! Can cause deadlock

� Is order of V’s important?

– No, except that it might
affect scheduling efficiency

� What if we have 2 producers
or 2 consumers?

– Do we need to change anything?

Decrease # of

empty slots

Increase # of

occupied slots

Increase # of

empty slots

Decrease # of

occupied slots

Producer(item) {
semaP(&mutex);
semaP(&emptySlots);
Enqueue(item);
semaV(&mutex);
semaV(&fullSlots);

}
Consumer() {
semaP(&fullSlots);
semaP(&mutex);
item = Dequeue();
semaV(&mutex);
semaV(&emptySlots);
return item;

}

Lec 6.659/16/20 Kubiatowicz CS162 © UCB Fall 2020

Hardware

Higher-
level
API

Programs

Where are we going with synchronization?

� We are going to implement various higher-level synchronization
primitives using atomic operations

– Everything is pretty painful if only atomic primitives are load and store

– Need to provide primitives useful at user-level

� Talk about how to structure programs so that they are correct

– Under any scheduling and number of processors

Load/Store Disable Ints Test&Set
Compare&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

Lec 6.669/16/20 Kubiatowicz CS162 © UCB Fall 2020

Conclusion
� Concurrency accomplished by multiplexing CPU time:

– Unloading current thread (PC, registers)

– Loading new thread (PC, registers)

– Such context switching may be voluntary (yield(), I/O) or involuntary (interrupts)

� TCB + Stacks hold complete state of thread for restarting

� Atomic Operation: an operation that always runs to completion or not at all

� Synchronization: using atomic operations to ensure cooperation between threads

� Mutual Exclusion: ensuring that only one thread does a particular thing at a time

– One thread excludes the other while doing its task

� Critical Section: piece of code that only one thread can execute at once. Only one
thread at a time will get into this section of code

� Locks: synchronization mechanism for enforcing mutual exclusion on critical
sections to construct atomic operations

� Semaphores: synchronization mechanism for enforcing resource constraints

