
CS162
Operating Systems and
Systems Programming

Lecture 6

Synchronization 1: Concurrency 
and Mutual Exclusion

September 16th, 2020

Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 6.29/16/20 Kubiatowicz CS162 © UCB Fall 2020

Goals for Today: Synchronization

� How does an OS provide concurrency through threads?

– Brief discussion of process/thread states and scheduling

– High-level discussion of how stacks contribute to concurrency

� Introduce needs for synchronization

� Discussion of Locks and Semaphores
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Recall: Inter-Process Communication (IPC)

� Mechanism to create communication channel between distinct processes

– Same or different machines, same or different programming language…

� Requires serialization format understood by both

� Failure in one process isolated from the other

– Sharing is done in a controlled way through IPC

– Still have to be careful handling what is received via IPC

� Later in the term: Many uses and interaction patterns

– Logging process, window management, …

– Potentially allows us to move some system functions outside of kernel to 
userspace
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Recall: POSIX/Unix PIPE

� Memory Buffer is finite:

– If producer (A) tries to write when buffer full, it blocks (Put sleep until space)

– If consumer (B) tries to read when buffer empty, it blocks (Put to sleep until data)

int pipe(int fileds[2]);

– Allocates two new file descriptors in the process

– Writes to fileds[1] read from fileds[0]

– Implemented as a fixed‐size queue

UNIX Pipe

write(wfd, wbuf, wlen); 

n = read(rfd, rbuf, rmax); 

Process 

A

Process 

B
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Recall: Socket Endpoint for Communication

� Key Idea: Communication across the world looks like File I/O

� Sockets: Bidirectional Endpoint for Communication

– Queues to temporarily hold results

– Queues are NOT Pipes!

� Connection: Two Sockets Connected Over the network  IPC over network!

– How to open()? 

– What is the namespace?

– How are they connected in time?

write(wfd, wbuf, wlen); 

n = read(rfd, rbuf, rmax); 

SocketProcess

Socket
Process
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Recall: Connection Setup over TCP/IP

� 5-Tuple identifies each 
connection:

1. Source IP Address
2. Destination IP Address
3. Source Port Number
4. Destination Port Number
5. Protocol (always TCP here)

socket

ServerClient

Server

Socket

new
socket

Connection

socket
connection

� Often, Client Port “randomly” 
assigned

– Done by OS during client socket setup

� Server Port often “well known”
– 80 (web), 443 (secure web), 25 

(sendmail), etc

– Well-known ports from 0—1023 
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// Create socket to listen for client connections
char *port_name;
struct addrinfo *server = setup_address(port_name);
int server_socket = socket(server‐>ai_family,

server‐>ai_socktype, server‐>ai_protocol);
// Bind socket to specific port
bind(server_socket, server‐>ai_addr, server‐>ai_addrlen);
// Start listening for new client connections
listen(server_socket, MAX_QUEUE);

while (1) {
// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);
serve_client(conn_socket);

close(conn_socket);

}

close(server_socket);

Recall: Server Protocol (v1)
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� Kernel represents each process as a process 
control block (PCB)

– Status (running, ready, blocked, …)

– Register state (when not ready)

– Process ID (PID), User, Executable, Priority, …

– Execution time, …

– Memory space, translation, …

� Kernel Scheduler maintains a data structure 
containing the PCBs

– Give out CPU to different processes

– This is a Policy Decision

� Give out non-CPU resources

– Memory/IO

– Another policy decision

Process

Control

Block

Multiplexing Processes: The Process Control Block
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Context Switch

Privilege Level: 0 - sysPrivilege Level: 3 - user Privilege Level: 3 - user
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Lifecycle of a Process or Thread

� As a process executes, it changes state:

– new:  The process/thread is being created

– ready:  The process is waiting to run

– running:  Instructions are being executed

– waiting:  Process waiting for some event to occur

– terminated:  The process has finished execution
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Scheduling: All About Queues

� PCBs move from queue to queue

� Scheduling: which order to remove from queue

– Much more on this soon
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Ready Queue And Various I/O Device Queues
� Process not running  PCB is in some scheduler queue

– Separate queue for each device/signal/condition 

– Each queue can have a different scheduler policy
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Scheduler

� Scheduling: Mechanism for deciding which 
processes/threads receive the CPU

� Lots of different scheduling policies provide …

– Fairness or

– Realtime guarantees or

– Latency optimization or ..

if ( readyProcesses(PCBs) ) {

nextPCB = selectProcess(PCBs);

run( nextPCB );

} else {

run_idle_process();

}
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Recall: Single and Multithreaded Processes

� Threads encapsulate concurrency: “Active” component

� Address spaces encapsulate protection: “Passive” part

– Keeps buggy program from trashing the system

� Why have multiple threads per address space?
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Recall: Shared vs. Per-Thread State
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The Core of Concurrency: the Dispatch Loop

� Conceptually, the scheduling loop of the operating system looks as 
follows:

Loop {
RunThread(); 
ChooseNextThread();

SaveStateOfCPU(curTCB);

LoadStateOfCPU(newTCB);

}

� This is an infinite loop

– One could argue that this is all that the OS does

� Should we ever exit this loop???

– When would that be?



Lec 6.179/16/20 Kubiatowicz CS162 © UCB Fall 2020

Administrivia
� Homework 1 due Today

� Project 1 in full swing!

– We expect that your design document will give intuitions behind your designs, not 
just a dump of pseudo-code

– Think of this you are in a company and your TA is you manager

� Paradox: need code for design document?  

– Not full code, just enough prove you have thought through complexities of design

� Should be attending your permanent discussion section!

– Remember to turn on your camera in Zoom

– Discussion section attendance is mandatory

� Midterm 1: October 1st, 5-7PM (Three weeks from tomorrow!)

– We understand that this partially conflicts with CS170, but those of you in CS170 
can start that exam after 7PM (according to CS170 staff)

– Video Proctored, No curve, Use of computer to answer questions

– More details as we get closer to exam
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Running a thread

Consider first portion:   RunThread()

� How do I run a thread?

– Load its state (registers, PC, stack pointer) into CPU

– Load environment (virtual memory space, etc)

– Jump to the PC

� How does the dispatcher get control back?

– Internal events: thread returns control voluntarily

– External events: thread gets preempted
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Internal Events

� Blocking on I/O

– The act of requesting I/O implicitly yields the CPU

� Waiting on a “signal” from other thread

– Thread asks to wait and thus yields the CPU

� Thread executes a yield()

– Thread volunteers to give up CPU

computePI() {

while(TRUE) {

ComputeNextDigit();

yield();

}

}
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Recall: POSIX API for Threads: pthreads

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
void *(*start_routine)(void*), void *arg);

– thread is created executing start_routine with arg as its sole argument.

– return is implicit call to pthread_exit

void pthread_exit(void *value_ptr);
– terminates the thread and makes value_ptr available to any successful join

int pthread_join(pthread_t thread, void **value_ptr);
– suspends execution of the calling thread until the target thread terminates.

– On return with a non-NULL value_ptr the value passed to pthread_exit() by 
the terminating thread is made available in the location referenced 
by value_ptr.

void pthread_yield(void);   
void sched_yield(void);

– Current thread yields (gives up) CPU so that another thread can run
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Stack for Yielding Thread

� How do we run a new thread?

run_new_thread() {

newThread = PickNewThread();

switch(curThread, newThread);

ThreadHouseKeeping(); /* Do any cleanup */

}

� How does dispatcher switch to a new thread?
– Save anything next thread may trash: PC, regs, stack pointer

– Maintain isolation for each thread

yield

ComputePI

S
ta

c
k
 g

ro
w

thrun_new_thread

kernel_yield
Trap to OS

switch
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What Do the Stacks Look Like?

� Consider the following 
code blocks:

proc A() {

B();

}

proc B() {

while(TRUE) {

yield();

}

}

� Suppose we have 2 
threads:

– Threads S and T

Thread S

S
t
a
c
k
 g

ro
w

th

A

B(while)

yield

run_new_thread

switch

Thread T

A

B(while)

yield

run_new_thread

switch

Thread S's switch returns to 
Thread T's (and vice versa)
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Saving/Restoring state (often called “Context Switch)
Switch(tCur,tNew) {

/* Unload old thread */

TCB[tCur].regs.r7 = CPU.r7;

…

TCB[tCur].regs.r0 = CPU.r0;

TCB[tCur].regs.sp = CPU.sp;

TCB[tCur].regs.retpc = CPU.retpc; /*return addr*/

/* Load and execute new thread */

CPU.r7 = TCB[tNew].regs.r7;

…

CPU.r0 = TCB[tNew].regs.r0;

CPU.sp = TCB[tNew].regs.sp;

CPU.retpc = TCB[tNew].regs.retpc;

return; /* Return to CPU.retpc */

}
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Switch Details (continued)
� TCB+Stacks (user/kernel) contains complete restartable state of Thread!

– Can put it on any queue for later revival!

� What if you make a mistake in implementing switch?

– Suppose you forget to save/restore register 32

– Get intermittent failures depending on when context switch occurred and whether new 
thread uses register 32

– System will give wrong result without warning

� Can you devise an exhaustive test to test switch code?

– No! Too many combinations and inter-leavings

� Cautionary tale:

– For speed, Topaz kernel saved one instruction in switch()

– Carefully documented! Only works as long as kernel size < 1MB

– What happened?  
» Time passed, People forgot.  

» Later, they added features to kernel (no one removes features!)

» Very weird behavior started happening

– Moral of story: Design for simplicity
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Aren't we still switching contexts?
� Yes, but much cheaper than switching processes

– No need to change address space

� Some numbers from Linux:

– Frequency of context switch: 10-100ms

– Switching between processes: 3-4 μsec.

– Switching between threads: 100 ns

� Even cheaper: switch threads (using “yield”) in user-space!

Simple One-to-One

Threading Model Many-to-One Many-to-Many

What we are talking about
in Today’s lecture
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Processes vs. Threads

Process 1

CPU 

sched.
OS

CPU

(1 core)

1 thread 

at a time

IO

state

Mem.

…

threads

Process N

IO

state

Mem.

…

threads

…

� Switch overhead: 

– Same process:  low

– Different proc.: high

� Protection

– Same proc: low

– Different proc: high

� Sharing overhead

– Same proc: low

– Different proc: high

� Parallelism: no

CPU

state

CPU

state

CPU

state

CPU

state
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Processes vs. Threads

Process 1

CPU 

sched.
OS

Core

1

4 threads 

at a time

IO

state

Mem.

…

threads

Process N

IO

state

Mem.

…

threads

…

CPU

state

CPU

state

CPU

state

CPU

state

Core

2

Core

3

Core

4

� Switch overhead: 

– Same process:  low

– Different proc.: high

� Protection

– Same proc: low

– Different proc: high

� Sharing overhead

– Same proc: low

– Different proc, 
simultaneous core: medium

– Different proc,
offloaded core: high

� Parallelism: yes
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Simultaneous MultiThreading/Hyperthreading

� Hardware scheduling technique 

– Superscalar processors can execute multiple 

instructions that are independent.

– Hyperthreading duplicates register state to make a

second “thread,” allowing more instructions to run.

� Can schedule each thread as if were separate CPU

– But, sub-linear speedup!

� Original technique called “Simultaneous Multithreading”

– http://www.cs.washington.edu/research/smt/index.html

– SPARC, Pentium 4/Xeon (“Hyperthreading”), Power 5

Colored blocks show 

instructions executed
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run_new_thread

kernel_read
Trap to OS

switch

What happens when thread blocks on I/O?

� What happens when a thread requests a block of data 
from the file system?

– User code invokes a system call

– Read operation is initiated

– Run new thread/switch

� Thread communication similar

– Wait for Signal/Join

– Networking

CopyFile

read

S
ta

c
k
 g

ro
w

th
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External Events

� What happens if thread never does any I/O, never 
waits, and never yields control?

– Could the ComputePI program grab all resources and 
never release the processor?

» What if it didn’t print to console?

– Must find way that dispatcher can regain control!

� Answer: utilize external events

– Interrupts: signals from hardware or software that stop 
the running code and jump to kernel

– Timer: like an alarm clock that goes off every some 
milliseconds

� If we make sure that external events occur frequently 
enough, can ensure dispatcher runs
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Interrupt Controller

� Interrupts invoked with interrupt lines from devices

� Interrupt controller chooses interrupt request to honor

– Interrupt identity specified with ID line 

– Mask enables/disables interrupts

– Priority encoder picks highest enabled interrupt 

– Software Interrupt Set/Cleared by Software

� CPU can disable all interrupts with internal flag

� Non-Maskable Interrupt line (NMI) can’t be disabled

Network

IntID

Interrupt

In
te

rru
p
t M

a
s
k

ControlSoftware

Interrupt NMI

CPU

P
rio

rity
 E

n
c
o

d
e

r

T
im

e
r

Int Disable
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...
add  $r1,$r2,$r3
subi $r4,$r1,#4
slli $r4,$r4,#2

...

Raise priority 
(set mask)

Reenable All Ints
Save registers
Dispatch to Handler


Transfer Network Packet 

from hardware
to Kernel Buffers


Restore registers
Clear current Int
Disable All Ints
Restore priority 

(clear Mask)
RTI

“I
n

te
rr

u
p

t 
H

a
n

d
le

r”

Example: Network Interrupt

� An interrupt is a hardware-invoked context switch

– No separate step to choose what to run next

– Always run the interrupt handler immediately

E
x
te

rn
a

l 
In

te
rr

u
p

t

Pipeline Flush
...

lw $r2,0($r4)
lw $r3,4($r4)
add $r2,$r2,$r3
sw 8($r4),$r2

...
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Use of Timer Interrupt to Return Control

� Solution to our dispatcher problem

– Use the timer interrupt to force scheduling decisions

� Timer Interrupt routine:

TimerInterrupt() {
DoPeriodicHouseKeeping();
run_new_thread();

}

Some Routine

run_new_thread

TimerInterrupt
Interrupt

switch

S
ta

c
k
 g

ro
w

th
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How do we initialize TCB and Stack?

� Initialize Register fields of TCB

– Stack pointer made to point at stack

– PC return address  OS (asm) routine ThreadRoot()

– Two arg registers (a0 and a1) initialized to fcnPtr and 
fcnArgPtr, respectively

� Initialize stack data?

– No. Important part of stack frame is in registers (ra)

– Think of stack frame as just before body of ThreadRoot() 
really gets started

ThreadRoot stub

Initial Stack

S
ta

c
k
 g

ro
w

th
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How does Thread get started?

� Eventually, run_new_thread() will select this TCB and 
return into beginning of ThreadRoot()

– This really starts the new thread

S
ta

c
k
 g

ro
w

th A

B(while)

yield

run_new_thread

switch

ThreadRoot

Other Thread

ThreadRoot stub

New Thread
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How does a thread get started?

� How do we make a new thread?

– Setup TCB/kernel thread to point at new user stack and ThreadRoot code

– Put pointers to start function and args in registers

– This depends heavily on the calling convention (i.e. RISC-V vs x86)

� Eventually, run_new_thread() will select this TCB and return into beginning of ThreadRoot()

– This really starts the new thread

S
ta

c
k
 g

ro
w

th A

B(while)

yield

run_new_thread

switch

Other Thread

ThreadRoot stub

New Thread

SetupNewThread(tNew) {
…

TCB[tNew].regs.sp = newStackPtr;
TCB[tNew].regs.retpc = &ThreadRoot;
TCB[tNew].regs.r0 = fcnPtr
TCB[tNew].regs.r1 = fcnArgPtr

}

ThreadRoot



Lec 6.379/16/20 Kubiatowicz CS162 © UCB Fall 2020

What does ThreadRoot() look like?

� ThreadRoot() is the root for the thread routine:

ThreadRoot(fcnPTR,fcnArgPtr) {
DoStartupHousekeeping();

UserModeSwitch(); /* enter user mode */
Call fcnPtr(fcnArgPtr);
ThreadFinish();

}

� Startup Housekeeping 

– Includes things like recording start time of thread

– Other statistics

� Stack will grow and shrink with 
execution of thread

� Final return from thread returns into ThreadRoot() which calls ThreadFinish()
– ThreadFinish() wake up sleeping threads

ThreadRoot

Running Stack

S
ta

c
k
 g

ro
w

th

Thread Code
*fcnPtr()
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Correctness with Concurrent Threads?

� Non-determinism:

– Scheduler can run threads in any order

– Scheduler can switch threads at any time

– This can make testing very difficult

� Independent Threads

– No state shared with other threads

– Deterministic, reproducible conditions

� Cooperating Threads

– Shared state between multiple threads

� Goal: Correctness by Design
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Recall: Possible Executions

Lec 6.409/16/20 Kubiatowicz CS162 © UCB Fall 2020

ATM Bank Server

� ATM server problem:

– Service a set of requests

– Do so without corrupting database

– Don’t hand out too much money
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ATM bank server example
� Suppose we wanted to implement a server process to handle requests 

from an ATM network:

BankServer() {
while (TRUE) {

ReceiveRequest(&op, &acctId, &amount);
ProcessRequest(op, acctId, amount);

}
}

ProcessRequest(op, acctId, amount) {
if (op == deposit) Deposit(acctId, amount);
else if …

}

Deposit(acctId, amount) {
acct = GetAccount(acctId); /* may use disk I/O */
acct->balance += amount;
StoreAccount(acct); /* Involves disk I/O */

}

� How could we speed this up?
– More than one request being processed at once

– Event driven (overlap computation and I/O)

– Multiple threads (multi-proc, or overlap comp and I/O)
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Event Driven Version of ATM server

� Suppose we only had one CPU
– Still like to overlap I/O with computation

– Without threads, we would have to rewrite in event-driven style

� Example

BankServer() {
while(TRUE) {

event = WaitForNextEvent();
if (event == ATMRequest)

StartOnRequest();
else if (event == AcctAvail)

ContinueRequest();
else if (event == AcctStored)

FinishRequest();
}

}

– What if we missed a blocking I/O step?

– What if we have to split code into hundreds of pieces which could be blocking?

– This technique is used for graphical programming
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Can Threads Make This Easier?

� Threads yield overlapped I/O and computation without “deconstructing” 
code into non-blocking fragments

– One thread per request

� Requests proceeds to completion, blocking as required:

Deposit(acctId, amount) {
acct = GetAccount(actId); /* May use disk I/O */
acct->balance += amount;
StoreAccount(acct); /* Involves disk I/O */

}

� Unfortunately, shared state can get corrupted:
Thread 1 Thread 2

load r1, acct->balance
load r1, acct->balance
add r1, amount2
store r1, acct->balance

add r1, amount1
store r1, acct->balance
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Problem is at the Lowest Level
� Most of the time, threads are working on separate data, so 

scheduling doesn’t matter:

Thread A Thread B

x = 1; y = 2;

� However, what about (Initially, y = 12):

Thread A Thread B

x = 1; y = 2;

x = y+1; y = y*2;

– What are the possible values of x? 

� Or, what are the possible values of x below?

Thread A Thread B

x = 1; x = 2;

– X could be 1 or 2 (non-deterministic!)

– Could even be 3 for serial processors:
» Thread A writes 0001, B writes 0010 → scheduling order ABABABBA yields 3!
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Atomic Operations

� To understand a concurrent program, we need to know what the underlying 

indivisible operations are!

� Atomic Operation: an operation that always runs to completion or not at all

– It is indivisible: it cannot be stopped in the middle and state cannot be modified 

by someone else in the middle

– Fundamental building block – if no atomic operations, then have no way for 

threads to work together

� On most machines, memory references and assignments (i.e. loads and 

stores) of words are atomic

– Consequently – weird example that produces “3” on previous slide can’t happen

� Many instructions are not atomic

– Double-precision floating point store often not atomic

– VAX and IBM 360 had an instruction to copy a whole array
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Recall: Locks

� Lock: prevents someone from doing something

– Lock before entering critical section and before accessing shared data

– Unlock when leaving, after accessing shared data

– Wait if locked

» Important idea: all synchronization involves waiting

� Locks need to be allocated and initialized:

– structure Lock mylock or pthread_mutex_t mylock;

– lock_init(&mylock)   or  mylock = PTHREAD_MUTEX_INITIALIZER;
� Locks provide two atomic operations:

– acquire(&mylock) – wait until lock is free; then mark it as busy

» After this returns, we say the calling thread holds the lock

– release(&mylock) – mark lock as free

» Should only be called by a thread that currently holds the lock

» After this returns, the calling thread no longer holds the lock
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Thread C

� Identify critical sections (atomic instruction sequences) and add locking:
Deposit(acctId, amount) {
acquire(&mylock)          // Wait if someone else in critical section!
acct = GetAccount(actId);
acct‐>balance += amount;
StoreAccount(acct); 
release(&mylock)          // Release someone into critical section

}

� Must use SAME lock (mylock) with all of the methods (Withdraw, etc…)

– Shared with all threads!

Thread AThread B

Thread A

Fix banking problem with Locks!

Thread A Thread C

Thread B

Thread B

Critical Section

acquire(&mylock)

release(&mylock)

Critical Section

Threads serialized by lock

through critical section.

Only one thread at a time
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Recall: Definitions

� Synchronization: using atomic operations to ensure cooperation between threads

– For now, only loads and stores are atomic

– We are going to show that its hard to build anything useful with only reads and writes

� Mutual Exclusion: ensuring that only one thread does a particular thing at a time

– One thread excludes the other while doing its task

� Critical Section: piece of code that only one thread can execute at once. Only one 

thread at a time will get into this section of code

– Critical section is the result of mutual exclusion

– Critical section and mutual exclusion are two ways of describing the same thing
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Another Concurrent Program Example
� Two threads, A and B, compete with each other

– One tries to increment a shared counter

– The other tries to decrement the counter

Thread A Thread B

i = 0; i = 0;
while (i < 10) while (i > ‐10)

i = i + 1; i = i – 1;
printf(“A wins!”); printf(“B wins!”);

� Assume that memory loads and stores are atomic, but incrementing and 
decrementing are not atomic 

– No difference between: “i=i+1” and “i++” 

– Same instruction sequence, the ++ operator is just syntactic sugar 

� Who wins? Could be either

� Is it guaranteed that someone wins? Why or why not?

� What if both threads have their own CPU running at same speed?  Is it 
guaranteed that it goes on forever?
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Hand Simulation Multiprocessor Example
� Inner loop looks like this:

Thread A Thread B
r1=0 load r1, M[i]

r1=0 load r1, M[i]
r1=1 add  r1, r1, 1

r1=‐1 sub r1, r1, 1
M[i]=1 store r1, M[i]

M[i]=‐1 store r1, M[i]

� Hand Simulation:
– And we’re off.  A gets off to an early start
– B says “hmph, better go fast” and tries really hard
– A goes ahead and writes “1”
– B goes and writes “-1”
– A says “HUH??? I could have sworn I put a 1 there”

� Uncontrolled race condition: two threads attempting to access same data 
simultaneously with one of them performing a write

– Here “simultaneous” is defined even with one CPU as “could access at same 
time if only there were two CPUs
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So – does this fix it?

� Put locks around increment/decrement:

Thread A Thread B

i = 0; i = 0;
while (i < 10) while (i > ‐10)

acquire(&mylock) acquire(&mylock)
i = i + 1; i = i – 1;
release(&mylock) release(&mylock)

printf(“A wins!”); printf(“B wins!”);

� What does this do?  Is it better???

� Each increment or decrement operation is now atomic.  Good!

– Technically, no race conditions, since lock prevents simultaneous reads/writes

� Program is likely still broken.  Not so good…

– May or may not be what you intended (probably not)

– Still unclear who wins – it is a nondeterministic result: different on each run

� When might something like this make sense?

– If each thread needed to get a unique integer for some reason
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Recall: Red-Black tree example

� Here, the Lock is associated with the root of the tree

– Restricts parallelism but makes sure that tree always consistent

– No races at the operation level

� Threads are exchange information through a consistent data structure

� Could you make it faster with one lock per node?  Perhaps, but must be careful!

– Need to define invariants that are always true despite many simultaneous threads…

Thread A
Insert(3) {
acquire(&treelock)

Tree.Insert(3)

release(&treelock)

}

Tree-Based Set Data Structure

Thread B
Insert(4) {
acquire(&treelock)

Tree.insert(4)

release(&treelock)

}

Get(6) {
acquire(&treelock)

Tree.search(6)

release(&treelock)

}

treelock
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Concurrency is Hard!

� Even for practicing engineers trying to write mission-critical, bulletproof code!
– Threaded programs must work for all interleavings of thread instruction sequences

– Cooperating threads inherently non-deterministic and non-reproducible

– Really hard to debug unless carefully designed!

� Therac-25: Radiation Therapy Machine with Unintended Overdoses (reading on 
course site)

– Concurrency errrors caused the death of a number
of patients by misconfiguring the radiation production

– Improper synchronization between input from operators
and positioning software

� Mars Pathfinder Priority Inversion (JPL Account)

� Toyota Uncontrolled Acceleration (CMU Talk)

– 256.6K Lines of C Code, ~9-11K global variables

– Inconsistent mutual exclusion on reads/writes
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Producer-Consumer with a Bounded Buffer

� Problem Definition
– Producer(s) put things into a shared buffer

– Consumer(s) take them out

– Need synchronization to coordinate producer/consumer

� Don’t want producer and consumer to have to work in lockstep, so put 
a fixed-size buffer between them

– Need to synchronize access to this buffer

– Producer needs to wait if buffer is full

– Consumer needs to wait if buffer is empty

� Example 1: GCC compiler
– cpp | cc1 | cc2 | as | ld

� Example 2: Coke machine
– Producer can put limited number of Cokes in machine

– Consumer can’t take Cokes out if machine is empty

� Others: Web servers, Routers, ….

Consumer
Consumer

Producer ConsumerBuffer
Producer
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� Insert: write & bump write ptr (enqueue)

� Remove: read & bump read ptr (dequeue)

� How to tell if Full (on insert) Empty (on remove)?

� And what do you do if it is?

� What needs to be atomic?

typedef struct buf {
int write_index;
int read_index;
<type> *entries[BUFSIZE];

} buf_t;

w
r

di di+1di+2

Circular Buffer Data Structure (sequential case)
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mutex buf_lock = <initially unlocked>

Producer(item) {
acquire(&buf_lock);
while (buffer full) {}; // Wait for a free slot
enqueue(item);
release(&buf_lock);

}

Consumer() {
acquire(&buf_lock);
while (buffer empty) {}; // Wait for arrival
item = dequeue();
release(&buf_lock);
return item

}

Will we ever come out 
of the wait loop?

Circular Buffer – first cut
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mutex buf_lock = <initially unlocked>

Producer(item) {
acquire(&buf_lock);
while (buffer full) {release(&buf_lock); acquire(&buf_lock);} 
enqueue(item);
release(&buf_lock);

}

Consumer() {
acquire(&buf_lock);
while (buffer empty) {release(&buf_lock); acquire(&buf_lock);} 
item = dequeue();
release(&buf_lock);
return item

}

What happens when one 
is waiting for the other?
- Multiple cores ?
- Single core ?

Circular Buffer – 2nd cut 
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Higher-level Primitives than Locks

� What is right abstraction for synchronizing threads that share memory?

– Want as high a level primitive as possible

� Good primitives and practices important!

– Since execution is not entirely sequential, really hard to find bugs, since they 
happen rarely

– UNIX is pretty stable now, but up until about mid-80s 
(10 years after started), systems running UNIX would crash every week or so –
concurrency bugs

� Synchronization is a way of coordinating multiple concurrent activities that are 
using shared state

– This lecture and the next presents a some ways of structuring sharing
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Recall: Semaphores

� Semaphores are a kind of generalized lock

– First defined by Dijkstra in late 60s

– Main synchronization primitive used in original UNIX

� Definition: a Semaphore has a non-negative integer value and supports 
the following two operations:

– Down() or P(): an atomic operation that waits for semaphore to become 
positive, then decrements it by 1 

» Think of this as the wait() operation

– Up() or V(): an atomic operation that increments the semaphore by 1, waking 
up a waiting P, if any

» This of this as the signal() operation

– Note that P() stands for “proberen” (to test) and V() stands for “verhogen”
(to increment) in Dutch
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Value=2Value=1Value=0

Semaphores Like Integers Except…

� Semaphores are like integers, except:

– No negative values

– Only operations allowed are P and V – can’t read or write value, except initially

– Operations must be atomic

» Two P’s together can’t decrement value below zero

» Thread going to sleep in P won’t miss wakeup from V – even if both happen at same time

� POSIX adds ability to read value, but technically not part of proper interface!

� Semaphore from railway analogy

– Here is a semaphore initialized to 2 for resource control:

Value=1Value=0Value=2
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Two Uses of Semaphores
Mutual Exclusion (initial value = 1)

� Also called “Binary Semaphore” or “mutex”.

� Can be used for mutual exclusion, just like a lock:
semaP(&mysem);
// Critical section goes here

semaV(&mysem);

Scheduling Constraints (initial value = 0)

� Allow thread 1 to wait for a signal from thread 2

– thread 2 schedules thread 1 when a given event occurs

� Example: suppose you had to implement ThreadJoin which must wait for 
thread to terminate:

Initial value of semaphore = 0
ThreadJoin {

semaP(&mysem);
}

ThreadFinish {
semaV(&mysem);

}
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Revisit Bounded Buffer: Correctness constraints for solution

� Correctness Constraints:

– Consumer must wait for producer to fill buffers, if none full (scheduling 
constraint)

– Producer must wait for consumer to empty buffers, if all full (scheduling 
constraint)

– Only one thread can manipulate buffer queue at a time (mutual exclusion)

� Remember why we need mutual exclusion

– Because computers are stupid

– Imagine if in real life: the delivery person is filling the machine and somebody 
comes up and tries to stick their money into the machine

� General rule of thumb:  Use a separate semaphore for each constraint

– Semaphore fullBuffers; // consumer’s constraint
– Semaphore emptyBuffers;// producer’s constraint
– Semaphore mutex;       // mutual exclusion
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Semaphore fullSlots = 0;  // Initially, no coke
Semaphore emptySlots = bufSize;

// Initially, num empty slots
Semaphore mutex = 1; // No one using machine

Producer(item) {
semaP(&emptySlots); // Wait until space
semaP(&mutex); // Wait until machine free
Enqueue(item);
semaV(&mutex);
semaV(&fullSlots); // Tell consumers there is

// more coke
}

Consumer() {
semaP(&fullSlots); // Check if there’s a coke
semaP(&mutex); // Wait until machine free
item = Dequeue();
semaV(&mutex);
semaV(&emptySlots); // tell producer need more
return item;

}

fullSlots signals coke

emptySlots
signals space

Full Solution to Bounded Buffer (coke machine)

Critical sections 

using mutex

protect integrity 

of the queue
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Discussion about Solution

� Why asymmetry?

– Producer does: semaP(&emptyBuffer), semaV(&fullBuffer)
– Consumer does: semaP(&fullBuffer), semaV(&emptyBuffer)

� Is order of P’s important?

– Yes!  Can cause deadlock

� Is order of V’s important?

– No, except that it might 
affect scheduling efficiency

� What if we have 2 producers 
or 2 consumers?

– Do we need to change anything?

Decrease # of 

empty slots

Increase # of 

occupied slots

Increase # of 

empty slots

Decrease # of 

occupied slots

Producer(item) {
semaP(&mutex); 
semaP(&emptySlots);
Enqueue(item);
semaV(&mutex);
semaV(&fullSlots);

}
Consumer() {
semaP(&fullSlots);
semaP(&mutex);
item = Dequeue();
semaV(&mutex);
semaV(&emptySlots);
return item;

}
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Hardware

Higher-
level 
API

Programs

Where are we going with synchronization?

� We are going to implement various higher-level synchronization 
primitives using atomic operations

– Everything is pretty painful if only atomic primitives are load and store

– Need to provide primitives useful at user-level

� Talk about how to structure programs so that they are correct

– Under any scheduling and number of processors

Load/Store    Disable Ints Test&Set
Compare&Swap

Locks   Semaphores   Monitors   Send/Receive

Shared Programs
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Conclusion
� Concurrency accomplished by multiplexing CPU time:

– Unloading current thread (PC, registers)

– Loading new thread (PC, registers)

– Such context switching may be voluntary (yield(), I/O) or involuntary (interrupts)

� TCB + Stacks hold complete state of thread for restarting

� Atomic Operation: an operation that always runs to completion or not at all

� Synchronization: using atomic operations to ensure cooperation between threads

� Mutual Exclusion: ensuring that only one thread does a particular thing at a time

– One thread excludes the other while doing its task

� Critical Section: piece of code that only one thread can execute at once. Only one 
thread at a time will get into this section of code

� Locks: synchronization mechanism for enforcing mutual exclusion on critical 
sections to construct atomic operations

� Semaphores: synchronization mechanism for enforcing resource constraints 


