CS162
Operating Systems and
Systems Programming

Lecture 7

Synchronization 2: Semaphores (Con't)
Lock Implementation, Atomic Instructions

September 21st, 2020
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

9/21/20

Recall: Multithreaded Stack Example

» Consider the following

code blocks:

proc A() {
B();

}
proc B() {
while (TRUE) {
yield();

Stack growth

}

» Suppose we have 2

threads:
—Threads Sand T

Thread S Thread T
A A
B(while) B(while)
yield yield

Kubiatowicz CS162 © UCB Fall 2020

Thread S's switch returns to
Thread T's (and vice versa)

Lec7.2

9/21/20

Recall: Use of Timer Interrupt to Return Control

» Solution to our dispatcher problem
— Use the timer interrupt to force scheduling decisions

Interrupt

ymmodb yoeis

« Timer Interrupt routine:

TimerInterrupt() {
DoPeriodicHouseKeeping();
run_new_thread();

}

Kubiatowicz CS162 © UCB Fall 2020

Lec7.3

9/21/20

Hardware context switch support in x86

+ Syscall/Intr (U > K)

- PL3->0;

— TSS €« EFLAGS, CS:EIP;

— SS:ESP < k-thread stack (TSS PL 0);
— push (old) SS:ESP onto (new) k-stack
— push (old) eflags, cs:eip, <err>

— CS:EIP ¢ <k target handler>

* Then

— Handler then saves other regs, etc

— Does all its works, possibly choosing
other threads, changing PTBR (CR3)

— kernel thread has set up user GPRs
iret (K> U)
- PLO>3;

— Eflags, CS:EIP €« popped off k-stack
— SS:ESP € popped off k-stack

Ppg 2,942 of 4,922 of x86 reference manual

Kubiatowicz CS162 © UCB Fall 2020

Figure 7-1. Structure of a Task

Pintos: tss.c, intr-stubs.S

Lec7.4

Pintos: Kernel Crossing on Syscall or Interrupt

user
user stack
code

Pintos: Context Switch — Scheduling

— rr—

user user’
user stack stack
code

L — L —
£ £
kernel o kernel 9
- +*
code £ code £
N 3 N
kernel E S ?,
thread g thread o switch kernel threads
stack @ stack @
Pintos: switch.S
9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec7.5 9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 7.6
Recall: Fix banking problem with Locks! Recall: Red-Black tree example
+ ldentify critical sections (atomic instruction sequences) and add locking: Thread A treelock ~ Thread B
Deposit(acctId, amount) { Insert(3) { Insert(4) {
Lock.acquire() // Wait if someone else in critical section! acquire(&treelock) acquire(&treelock)
acct = GetAccount(actId); Tree. Insert(3) Tree.insert(4)
acct->balance += amount; Critical Section ee.nse €e.1inse
StoreAccount (acct); release(&treelock) release(&treelock)
Lock.release() // Release someone into critical section }
} Get(6) {
Thread B acquire(&treelock)
Thread A Thread C Tree.search(6)
Tree-Based Set Data Structure release(&treelock)
Lock.acquire * Here, the Lock is associated with the root of the tree }
Thread B } Critical Section — Restricts parallelism but makes sure that tree always consistent
Lock.release() — No races at the operation level
» Threads are exchange information through a consistent data structure
Thread B » Could you make it faster with one lock per node? Perhaps, but must be careful!
* Must use SAME lock with all of the methods (Withdraw, etc...) — Need to define invariants that are always true despite many simultaneous threads. .
9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec7.7

9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec7.8

Producer-Consumer with a Bounded Buffer
Problem Definition
— Producer(s) put things into a shared buffer

| Producer -)-) Consumer r
— Consumer(s) take them out

— Need synchronization to coordinate producer/consumer

Don’t want producer and consumer to have to work in lockstep, so put
a fixed-size buffer between them
— Need to synchronize access to this buffer
— Producer needs to wait if buffer is full
— Consumer needs to wait if buffer is empty

Example 1: GCC compiler
-cpp | ccl | cc2 | as | 1d
Example 2: Coke machine
— Producer can put limited number of Cokes in machine
— Consumer can’t take Cokes out if machine is empty
Others: Web servers, Routers,

Circular Buffer Data Structure (sequential case)

typedef struct buf {
int write_ index; {
int read index;
<type> *entries [BUFSIZE];
} buf t;

* Insert: write & bump write ptr (enqueue)

* Remove: read & bump read ptr (dequeue)

* How to tell if Full (on insert) Empty (on remove)?
* And what do you do if it is?

» What needs to be atomic?

9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec7.9 9/21/20 Kubiatowicz C$162 © UCB Fall 2020 Lec7.10
Circular Buffer — first cut Circular Buffer — 2" cut
mutex buf_lock = <initially unlocked> mutex buf_lock = <initially unlocked>
Producer(item) { Producer(item) {
acquire(&buf_lock); acquire(&buf_lock);
while (buffer full) {}; // Wait for a free slot while (buffer full) {release(&buf_lock); acquire(&buf_lock);}
enqueue(item); enqueue(item);
release(&buf_lock); \ release(&buf_lock); What hqppens when one
} Will we ever come out } is waiting for the other?
of the wait loop? - Multiple cores ?
Consumer() { Consumer() { - Single core ?
acquire(&buf_lock); acquire(&buf_lock);
while (buffer empty) {}; // Wait for arrival while (buffer empty) {release(&buf_lock); acquire(&buf_lock);}
item = dequeue(); item = dequeue();
release(&buf_lock); release(&buf_lock);
return item return item
} }
9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec7.11 9/21/20 Kubiatowicz C$162 © UCB Fall 2020 Lec7.12

Higher-level Primitives than Locks

* What is right abstraction for synchronizing threads that share memory?
— Want as high a level primitive as possible
» Good primitives and practices important!

— Since execution is not entirely sequential, really hard to find bugs, since they
happen rarely

— UNIX is pretty stable now, but up until about mid-80s
(10 years after started), systems running UNIX would crash every week or so —
concurrency bugs
» Synchronization is a way of coordinating multiple concurrent activities that are
using shared state

— This lecture and the next presents a some ways of structuring sharing

9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec7.13

9/21/20

Recall: Semaphores

©
+ Semaphores are a kind of generalized lock EI]
— First defined by Dijkstra in late 60s
— Main synchronization primitive used in original UNIX
 Definition: a Semaphore has a non-negative integer value and supports
the following two operations:
- Down () or P(): an atomic operation that waits for semaphore to become
positive, then decrements it by 1
» Think of this as the wait() operation
- Up() or V(): an atomic operation that increments the semaphore by 1, waking
up a waiting P, if any
» This of this as the signal() operation
— Note that P() stands for “proberen” (to test) and V() stands for “verhogen”
(to increment) in Dutch

Kubiatowicz CS162 © UCB Fall 2020 Lec7.14

Semaphores Like Integers Except...

» Semaphores are like integers, except:
— No negative values
— Only operations allowed are P and V — can’t read or write value, except initially
— Operations must be atomic
» Two P’s together can’t decrement value below zero
» Thread going to sleep in P won’t miss wakeup from V — even if both happen at same time
+ POSIX adds ability to read value, but technically not part of proper interface!
» Semaphore from railway analogy
— Here is a semaphore initialized to 2 for resource control:

E—

Value=2

9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec7.15

9/21/20

Two Uses of Semaphores
Mutual Exclusion (initial value = 1)
» Also called “Binary Semaphore” or “mutex”.

« Can be used for mutual exclusion, just like a lock:

semaP (&mysem) ;
// Critical section goes here
semaV(&mysem) ;

Scheduling Constraints (initial value = 0)
* Allow thread 1 to wait for a signal from thread 2
—thread 2 schedules thread 1 when a given event occurs

» Example: suppose you had to implement ThreadJoin which must wait for
thread to terminate:
Initial value of semaphore = ©

ThreadJoin {

semaP (&mysem) ;
Kubiatowicz CS162 © UCB Fall 2020

ThreadFinish {
semaV(&mysem);

Lec7.16

Revisit Bounded Buffer: Correctness constraints for solution

« Correctness Constraints:

— Consumer must wait for producer to fill buffers, if none full (scheduling
constraint)

— Producer must wait for consumer to empty buffers, if all full (scheduling
constraint)

— Only one thread can manipulate buffer queue at a time (mutual exclusion)
* Remember why we need mutual exclusion
— Because computers are stupid

— Imagine if in real life: the delivery person is filling the machine and somebody
comes up and tries to stick their money into the machine

» General rule of thumb: Use a separate semaphore for each constraint
- Semaphore fullBuffers; // consumer’s constraint
- Semaphore emptyBuffers;// producer’s constraint
- Semaphore mutex; // mutual exclusion

9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec7.17

Full Solution to Bounded Buffer (coke machine)

Semaphore fullSlots = 9; // Initially, no coke

Semaphore emptySlots = bufSize;
// Initially, num empty slots

Semaphore mutex = 1; // No one using machine

Producer(item) {

semaP (&emptySlots); // Wait until space
semaP(&mutex); // Wait until machine free
Enqueue(item); H
tex);
semaV(&fullSlots); // Tell consumers there is Critical sections
} . 1;/Slmotr‘e _Cokel) using mutex
u OTs Ssignhals coke P P
Consumer() { g protect integrity
semaP(&fullSlots); // Check if there’s a coke of the queue
semaP (&mutex); /7 Wait until machine free
emptySlots item = Dequeué(); A
; semaV(&mutex) ;
signals space semaV(&emptySlots); // tell producer need more
return item;
}
9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec7.18

Discussion about Solution

Decrease # of
empty slots

Increase # of
occupied slots

* Why asymmetry?
— Producer does: semaP (&emptyBuffer), semaV(&fullBuffer)
— Consumer does: semaP (&fullBuffer), semaV(&emptyBuffer)

Increase # of
empty slots

Decrease # of
occupied slots

Is order of P’s important? Producer(item) {

semaP (&mutex) ;
semaP (&emptySlots);
Enqueue(item);

semaV(&mutex);
semaV(&fullSlots);

Is order of V’s important?

Consumer() {
semaP(&fullSlots);
semaP (&mutex) ;
item = Dequeue();
semaV(&mutex);

What if we have 2 producers
or 2 consumers?

semaV(&emptySlots);
return item;

9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec7.19

Administrivia
* Midterm 1: October 15t, 5-7PM (Three weeks from tomorrow!)

— We understand that this partially conflicts with CS170, but those of you in CS170
can start that exam after 7PM (according to CS170 staff)

— Video Proctored, No curve, Use of computer to answer questions
— More details as we get closer to exam

 Midterm Review: Tuesday September 29, 7-9pm
— Details TBA

9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec7.20

Where are we going with synchronization?

Shared Programs

Load/Store Disable Ints Test&Set

Compare&Swap

» We are going to implement various higher-level synchronization
primitives using atomic operations

— Everything is pretty painful if only atomic primitives are load and
store

— Need to provide primitives useful at user-level

9/21/20 Kubiatowicz CS162 © UCB Fall 2020

Lec7.21

9/21/20

Motivating Example: “Too Much Milk”

» Great thing about OS’s — analogy between ——j
problems in OS and problems in real life

— Help you understand real life problems better NI"(

— But, computers are much stupider than people

» Example: People need to coordinate:

Time Person A Person B

3:00 Look in Fridge. Out of milk

3:05 Leave for store

3:10 Arrive at store Look in Fridge. Out of milk
3:15 Buy milk Leave for store

3:20 Arrive home, put milk away Arrive at store

3:25 Buy milk

3:30 Arrive home, put milk away

Kubiatowicz CS162 © UCB Fall 2020

Lec7.22

Recall: What is a lock?

* Lock: prevents someone from doing something
— Lock before entering critical section and before accessing shared data
— Unlock when leaving, after accessing shared data
— Wait if locked
» Important idea: all synchronization involves waiting
» For example: fix the milk problem by putting a key on the refrigerator
— Lock it and take key if you are going to go buy milk
— Fixes too much: roommate angry if only wants OJ

» Of Course — We don’t know how to make a lock yet

— Let’s see if we can answer this question!

9/21/20 Kubiatowicz CS162 © UCB Fall 2020

e

Lec7.23

9/21/20

Too Much Milk: Correctness Properties

* Need to be careful about correctness of concurrent programs, since
non-deterministic

— Impulse is to start coding first, then when it doesn’t work, pull hair out
— Instead, think first, then code
— Always write down behavior first

* What are the correctness properties for the “Too much milk”
problem???

— Never more than one person buys
— Someone buys if needed

« First attempt: Restrict ourselves to use only atomic load and store
operations as building blocks

Kubiatowicz CS162 © UCB Fall 2020

Lec7.24

Too Much Milk: Solution #1

* Use a note to avoid buying too much milk:
— Leave a note before buying (kind of “lock”)
— Remove note after buying (kind of “unlock”)
— Don’t buy if note (wait)
* Suppose a computer tries this (remember, only memory read/write are

atomic): e
!!!!! SN

if (noMilk) {
if (noNote) {
leave Note;
buy milk;
remove note;

9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec7.25

9/21/20

Too Much Milk: Solution #1

» Use a note to avoid buying too much milk:
— Leave a note before buying (kind of “lock”)
— Remove note after buying (kind of “unlock”)
— Don’t buy if note (wait)
» Suppose a computer tries this (remember, only memory read/write are
atomic):
Thread A
if (noMilk) {

Thread B

if (noMilk) {
if (noNote) {

if (noNote) {
leave Note;

buy Milk;
remove Note;
}
}

leave Note;
buy Milk;
remove Note;

Kubiatowicz CS162 © UCB Fall 2020 Lec7.26

Too Much Milk: Solution #1

» Use a note to avoid buying too much milk:
— Leave a note before buying (kind of “lock”)
— Remove note after buying (kind of “unlock”)
— Don’t buy if note (wait)
* Suppose a computer tries this (remember, only memory read/write are

atomic):
if (noMilk) { A
if (noNote) { §5>
leave Note;
buy milk;
remove note;
* Result?

— Still too much milk but only occasionally!
- Thlrl'(e|ad can get context switched after checking milk and note but before buying
milk!

Solution makes problem worse since fails intermittently
— Makes it really hard to debug...

— Must work despite what the dispatcher does!

9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec7.27

9/21/20

Too Much Milk: Solution #1'%

» Clearly the Note is not quite blocking enough
— Let’s try to fix this by placing note first
* Another try at previous solution:

leave Note;
if (noMilk) {
if (noNote& {
buy milk;

}

remove Note;

* What happens here?
— Well, with human, probably nothing bad
— With computer: no one ever buys milk

Kubiatowicz CS162 © UCB Fall 2020 Lec7.28

9/21/20

Too Much Milk Solution #2

How about labeled notes?

— Now we can leave note before checking

Algorithm looks like this:
Thread A

leave note A;
if (noNote B) {
if (noMilk) {
buy Milk;

Thread B

leave note B;
if (noNoteA) {
if (noMilk) {
buy Milk;

remove note A;
Does this work?
Possible for neither thread to buy milk

— Context switches at exactly the wrong times can lead each to think that
the other is going to buy

Really insidious:
— Extremely unlikely this would happen, but will at worse possible time
— Probably something like this in UNIX

Kubiatowicz CS162 © UCB Fall 2020

remove note B;

Lec7.29

Too Much Milk Solution #2: problem!

* I’'m not getting milk, You're getting milk
 This kind of lockup is called “starvation!”

9/21/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 7.30

9/21/20

Too Much Milk Solution #3

* Here is a possible two-note solution:

Thread A Thread B

leave note A; leave note B;
while (note B) {\\X if (noNote A) {\\Y
do nothing; if (noMilk) {

} buy milk;
if (noMilk) {
buy milk;
remove note B;
remove note A;

* Does this work? Yes. Both can guarantee that:
— ltis safe to buy, or
— Other will buy, ok to quit
o AtX:
— If no note B, safe for A to buy,
— Otherwise wait to find out what will happen
o AtY:
— If no note A, safe for B to buy
— Otherwise, A is either buying or waiting for B to quit
Kubiatowicz CS162 © UCB Fall 2020

Lec 7.31

Case 1

“leave note A” happens before “if (noNote A)”

| leave note A; ha eneq leave note B;
while (note B) {\\X beforg if (noNote A) {\\Y|

do nothing; if (noMilk) {
1 buy milk;

¥
}

remove note B;

if (noMilk) {
buy milk;}

remove note A;

9/21/20 Kubiatowicz CS162 © UCB Fall 2020

Lec7.32

Case 1

* “leave note A” happens before “if (noNote A)”

| Leave note A; ha eneq leave note B;
while (note B) {\\X beforg if (noNote A) {\\Y|

do nothing; if (noMilk) {
1 buy milk;

¥
}

remove note B;

if (noMilk) {
buy milk;}

remove note A;

Case 1

* “leave note A” happens before “if (noNote A)”

| Leave note A; ha eneq leave note B;
while (note B) {\\X beforg if (noNote A) {\\Y|

do nothing; if (noMilk) {

1 buy milk;
| Wait for } }
1 note B to
1 be removed __.--remove note B;
v -

if (noMilk) {
buy milk;}
}

remove note A;

9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec7.33 9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 7.34
Case 2 Case 2
* “if (noNote A)” happens before “leave note A” * “if (noNote A)” happens before “leave note A”
leave note B; leave note B;
d if (noNote A) {\\Y d if (noNote A) {\\Y
nappe (. .) (\VY] nappe (. .) (VY]
[Leave note A; pefor® if (noMilk) { [Teave note A; pefor® if (noMilk) {
while (note B) {\\X buy milk; while (note B) {\\X buy milk;
do nothing; } } do nothing; } }
3 remove note B; 3 remove note B;
if (noMilk) { if (noMilk) {
buy milk;} buy milk;}
remove note A; remove note A;
9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec7.35 9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 7.36

Case 2

* “if (noNote A)” happens before “leave note A”

leave note B;
ened if (noNote A) {\\Y|

napP . :
[1eave note A; pefor® if (noMilk) {
while (note B) {\\X buy milk;
do nothing; ; }
e 1 \Wait for _- remove note B;

'note B to _--
¥ be removed, . -
if (noMilk) {

buy milk;}

remove note A;

This Generalizes to n Threads...

Computer G. Bell, D. Siewiorek,
Systems and S.H. Fuller, Editors

A New Solution of
Dijkstra’s Concurrent
Programming Problem

Leslie Lamport i
Massachusetts Computer Associates, Inc.

* Leslie Lamport’s “Bakery
Algorithm” (1974)

A simple solution to the mutual exclusion problem is
presented which allows the system to continue to operate

9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 7.37 9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 7.38
Solution #3 discussion Too Much Milk: Solution #47?
» Our solution protects a single “Critical-Section” piece of code for each * Recall our target lock interface:
thread: ~ acquire(&milklock) — wait until lock is free, then grab
if (noMilk) { . . "
buy milk; - release(&milklock) —Unlock, waking up anyone waiting
} — These must be atomic operations — if two threads are waiting for the lock
+ Solution #3 works, but it's really unsatisfactory and both see it's free, only one succeeds to grab the lock
— Really complex — even for this simple an example + Then, our milk problem is easy:
» Hard to convince yourself that this really works acquire(8&milklock);
— A’s code is different from B’s — what if lots of threads? if (nomilk)
» Code would have to be slightly different for each thread buy milk;
— While A is waiting, it is consuming CPU time release(&milklock);
» This is called “busy-waiting”
* There’s got to be a better way!
— Have hardware provide higher-level primitives than atomic load & store
— Build even higher-level programming abstractions on this hardware support
9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 7.39 9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 7.40

Back to: How to Implement Locks?

—Lock before entering critical section and
before accessing shared data
—Unlock when leaving, after accessing shared data
—Wait if locked
» Important idea: all synchronization involves waiting
» Should sleep if waiting for a long time
» Atomic Load/Store: get solution like Milk #3
— Pretty complex and error prone
» Hardware Lock instruction
—Is this a good idea?
—What about putting a task to sleep?
» What is the interface between the hardware and scheduler?
— Complexity?
» Done in the Intel 432
» Each feature makes HW more complex and slow

 Lock: prevents someone from doing something

Naive use of Interrupt Enable/Disable

* How can we build multi-instruction atomic operations?
— Recall: dispatcher gets control in two ways.
» Internal: Thread does something to relinquish the CPU
» External: Interrupts cause dispatcher to take CPU
— On a uniprocessor, can avoid context-switching by:
» Avoiding internal events (although virtual memory tricky)
» Preventing external events by disabling interrupts
» Consequently, naive Implementation of locks:
LockAcquire { disable Ints; }
LockRelease { enable Ints; }
* Problems with this approach:
— Can’t let user do this! Consider following:
LockAcquire();
While(TRUE) {;}
— Real-Time system—no guarantees on timing!
» Critical Sections might be arbitrarily long
— What happens with 1/0 or other important events?
» “Reactor about to meltdown. Help?”

9/21/20 Kubiatowicz C$162 © UCB Fall 2020 Lec 7.41 9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec7.42
Better Implementation of Locks by Disabling Interrupts New Lock Implementation: Discussion
] o]] + Why do we need to disable interrupts at all?
* Key idea: maintain a lock variable and impose mutual — Avoid interruption between checking and setting lock value
exclusion only during operations on that variable — Otherwise two threads could think that they both have lock
Acquire() {
int value = FREE; Q disable interrupts;
if (value == BUSY) {
Acquire() { Release() { put thread on wait queue;
disable interrupts; disable interrupts; Go to sleep(); Critical
if (value == BUSY) { if (anyone on wait queue) { // Enable interrupts?
put thread on wait queue; take thread off wait queue } else { Section
Go to sleep(); Place on ready queue; value = BUSY;
// Enable interrupts? } else { }
} else { value = FREE; enable interrupts;
value = BUSY; enable interrupts; }
} } » Note: unlike previous solution, the critical section (inside
enable interrupts; Acquire()) is very short
} — User of lock can take as long as they like in their own critical
section: doesn’t impact global machine behavior
— Critical interrupts taken in time!
9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 7.43 9/21/20

Kubiatowicz CS162 © UCB Fall 2020 Lec 7.44

Interrupt Re-enable in Going to Sleep

* What about re-enabling ints when going to sleep?
Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait queue;
Go to sleep();

Interrupt Re-enable in Going to Sleep

* What about re-enabling ints when going to sleep?
Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait queue;
Go to sleep();

Enable Position

} else { } else {
value = BUSY; value = BUSY;
} }
enable interrupts; enable interrupts;
} }
+ Before Putting thread on the wait queue?
9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 7.45 9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 7.46
Interrupt Re-enable in Going to Sleep Interrupt Re-enable in Going to Sleep
» What about re-enabling ints when going to sleep? * What about re-enabling ints when going to sleep?
Acquire() { Acquire() {
disable interrupts; disable interrupts;
Enable Positi if (value == BUSY) { if (value == BUSY) {
nable Position puf thread on wait queue; i ut thread on wait queue;
G . Enable Position .
o to sleep(); Go to sleep();
} else { } else {
value = BUSY; value = BUSY;
enable interrupts; enable interrupts;
} }
+ Before Putting thread on the wait queue? + Before Putting thread on the wait queue?
— Release can check the queue and not wake up thread — Release can check the queue and not wake up thread
« After putting the thread on the wait queue
9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 7.47 9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 7.48

Interrupt Re-enable in Going to Sleep

* What about re-enabling ints when going to sleep?
Acquire() {
disable interrupts;
if (value == BUSY) {
Enable Position put thread on‘wait queue;

Go to sleep();

} else {
value = BUSY;

}

enable interrupts;

}
+ Before Putting thread on the wait queue?
— Release can check the queue and not wake up thread
+ After putting the thread on the wait queue

— Release puts the thread on the ready queue, but the thread
still thinks it needs to go to sleep

— Misses wakeup and still holds lock (deadlock!)

9/21/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 7.49

9/21/20

Interrupt Re-enable in Going to Sleep

* What about re-enabling ints when going to sleep?
Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait queue;
Go_to sleep();
} else {
value = BUSY;

Enable Position

}

enable interrupts;

}
+ Before Putting thread on the wait queue?
— Release can check the queue and not wake up thread
« After putting the thread on the wait queue

— Release puts the thread on the ready queue, but the thread
still thinks it needs to go to sleep

— Misses wakeup and still holds lock (deadlock!)
* Want to put it after sleep(). But — how?

Kubiatowicz CS162 © UCB Fall 2020

Lec 7.50

How to Re-enable After Sleep()?

* In scheduler, since interrupts are disabled when you call
sleep:

— Responsibility of the next thread to re-enable ints

— When the sleeping thread wakes up, returns to acquire and
re-enables interrupts

Thread A Thread B

disabfe ints
sleep Context

\

Swij sleep return
tch enable ints

text disable int
con sleep
sleep return‘ggﬁﬁﬂx__—

enable ints

9/21/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 7.51

9/21/20

In-Kernel Lock: Simulation

Value: O Hwaﬁas“owner| ‘READY‘

Ready

lock.Acquire() ;

Running

INIT
Thread A int value = 0;
)////////KRCqUire() {
. @ disable interrupts;
lock.Acquire ()7 if (value == 1) {

put thread on wait-queue;

critical section; go to sleep() //?? critical section;

- } else { -

lock.Release() ;) value = 1; lock.Release() ;
enable interrupts;

}

Release() {

disable interrupts;

if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}

enable interrupts;

}

Kubiatowicz CS162 © UCB Fall 2020

Lec 7.52

In-Kernel Lock: Simulation

’Vahe:l ‘|waﬁers"owney| |READY‘

Ready

INIT
int value = 0;

qulre()
. disable 1nterrupts,
if (value == 1) {
put thread on wait-queue;
go to sleep() //??
} else {
value = 1;

lock.Acquire ()7 lock.Acquire() ;

critical sectign; critical section;

lock Release() ; lock.Release() ;

. enable interrupts;

Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

In-Kernel Lock: Simulation

|Vahe:1 ‘|waﬁers"owney| |READY‘
Ra g INIT Ran’i"g
Thread A [int value = 0; ———.——?

qulre() -
O disable 1nterrggt5-""
if (valgs_-"f) {
Pt thread on wait-queue;
crltxcal sé-ct n..@- 7" go to sleep() //??
} else {
value = 1; lock.Release() ;

lock.Acquire ()7 lock.Acquire() ;

critical section;

lock Release() ;

}
O enable interrupts;
}

Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;
} else {

} else {
value = 0; value = 0;
} }
enable interrupts; enable interrupts;
} }
9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 7.53 9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 7.54
In-Kernel Lock: Simulation In-Kernel Lock: Simulation
’Vahe:l ‘|waﬁers"owney| |READY‘ |Vahe:1 ‘|wahers"owneg| |READY‘
Ranging Rarting Rung
INIT = INIT
Thread A [int value = 0; Thread B int value = 0;
/}: quire () { < 1 Hequire () < 1
. disable interru - . .) disable interru; - .
lock.Acquire ()7 ®) if (valge—-‘ f)_g{ lock.Acquire() ; lock.Acquire ()7 O if (valgs_-‘ f)_&{ lock.Acquire() ;
___-pdt Thread on walit- queue; ___-pﬂt Thread on walit- queue;
critical sect. _go_to-skeep)=772? critical section; critical se¢ctigni--- - _go_to-skeep)=772? critical section;
" === 1777 else { . " Ze==mmm1T TV else .
lock.Release () ;) value = 1; lock.Release() ; lock.Release() ;) value = 1; lock.Release() ;
O enable interrupts; O enable interrupts;
} }
Release() { Release() {
disable interrupts; disable interrupts;
if anyone on wait queue { if anyone on wait queue {
take thread off wait-queue l take thread off wait-queue
Place on ready queue; Place on ready queue;
} else { } else {
value = 0; value = 0;
} }
enable interrupts; @ enable interrupts;
} }
Lec 7.55 9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 7.56

9/21/20 Kubiatowicz CS162 © UCB Fall 2020

In-Kernel Lock: Simulation

’Value: 1 || waiters "owner; |

Rewin,
g INIT
Thread A € int value = 0;
Bequire() { e
Tock . Acqui (O disable interrupts. /=~ . .
.Acquire ()7 if (valge_-z’f) 1 lock.Acquire() ;
__—-pdt’?:hread on walit-queue;
critical sectloni--= . go-to-skeep ()27 22 l critical section;
e S A } else { ’,a'
Val‘jg—"lf lock.Release() ;
o Yo
Jeflable interrupts;@y

>
P!

Release() {
(O disable interrupts;
if anyone on wait queue {
l take thread off wait-queue
Place on ready queue;
} else {
value = 0;

}
() enable interrupts;
}

9/21/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 7.57

Recall: Multithreaded Server

* Bounded pool of worker threads
— Allocated in advance: no thread creation overhead
— Queue of pending requests

. Request Master
Client Thread

Response

9/21/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 7.58

Simple Performance Model

» Given that the overhead of a critical section is X

— User->Kernel Context Switch

— Acquire Lock

— Kernel->User Context Switch

— <perform exclusive work>

— User->Kernel Context Switch

— Release Lock

— Kernel->User Context Switch

» Even if everything else is infinitely fast, with any
number of threads and cores

* What is the maximum rate of operations that involve
this overhead?

9/21/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 7.59

Highly Contended Case — in a picture

[

e % ¢mm==m All try to grab lock

}X Time = p*X sec
Rate = 1/X
ops/sec, regardless
of # cores

9/21/20 Kubiatowicz CS162 © UCB Fall 2020

Lec 7.60

Back to system performance

More Practical Motivation

Back to Jeff Dean's "Numbers
everyone should know"

Uncontended Many-Lock Case

What if sys overhead

e v is ¥, even when the
L2 cache reference 7 ns lock is free?
Handle I/O in :ut‘:ex lcck/unl;ck 13; ns
separate thread, | [2SO L S e iomy 3,000 ne What if the OS can
a";'d blocking Send 2K bytes over 1 Gbps network 20,000 n r oo only handle one lock
other progress e sequentially from memo 1000 ns - :
Sl 1o it sooe cascunas — oio.g00 oy ° operation at a fime?
Disk seek 10,000,000 ns
Read 1 MB sequentially from disk 20,000,000 ns
Send packet CA->Netherlands->CA 150,000,000 ns
e X=1ms =>1,000 ops/sec
9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 7.61 9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 7.62
Recall: Basic cost of a system call Atomic Read-Modify-Write Instructions
* Problems with previous solution:
[= — Can't give lock implementation to users
— Doesn’t work well on multiprocessor
» Disabling interrupts on all processors requires messages and
would be very time consuming
o optam v Alternative: atomic instruction sequences
— These instructions read a value and write a new value atomically
— Hardware is responsible for implementing this correctly
* Min System call ~ 25x cost of function call » on both uniprocessors (not too hard)
. : and multiprocessors (requires help from cache coherence
» Scheduling could be many times more ? P (req P
protocol)
+ Streamline system processing as much as possible — Unlike disabling interrupts, can be used on both uniprocessors and
« Other optimizations seek to process as much of the multiprocessors
call in user space as possible (eg, Linux vDSO)
9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 7.63 9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 7.64

Examples of Read-Modify-Write

« test&set (&address) { /* most architectures */
result = M[address]; // return result from “address” and
M[address] = 1; // set value at “address” to 1
return result;
}
« swap (&address, register) { /* x86 */
temp = M[address]; // swap register’s value to
M[address] = register; // value at “address”
register = temp;
}

« compare&swap (&address, regl, reg2) { /* 68000 */
if (regl == M[address]) { // If memory still == regil,
M[address] = reg2; // then put reg2 => memory
return success;

} else {
return failure;

// Otherwise do not change memory

Using of Compare&Swap for queues

« compare&swap (&address, regl, reg2) { /* 68000 */
if (regl == M[address]) {
M[address] = reg2;
return success;
} else {
return failure;

}

Here is an atomic add to linked-list function:
addToQueue(&object) {
do // repeat until no conflict
// Get ptr to current head
// Save link in new object
} until (compare&swap(&root,ri,object));

1d r1, M[root]
st rl, M[object]

}
) next next
« load-linked&store-conditional(&address) { /* R4000, alpha */ B /
1 :
°® 11 r1, M[address];
movi r2, 1; // Can do arbitrary computation next
sc r2, M[address]; New
) beqz r2, loop; Object
9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 7.65 9/21/20 Rubiatowicz CS162 © UCB Fall 2020 Lec 7.66
Implementing Locks with test&set Problem: Busy-Waiting for Lock
» Another flawed, but simple solution: « Positives for this solution
int value = @; // Free — Machine can receive interrupts
Acquire() { — User code can use this lock
while (test&set(value)); // while busy — Works on a multiprocessor
} .
Release() { - Negatives |)
value = 0; — This is very inefficient as thread will consume cycles waiting
} — Waiting thread may take cycles away from thread holding lock (no one wins!)
* Simple explanation: — Priority Inversion: If busy-waiting thread has higher priority than thread holding
— If lock is free, test&set reads 0 and sets value=1, so lock is now busy. lock = no progress! o .
It returns 0 so while exits. * Priority Inversion problem with original Martian rover
— If lock is busy, test&set reads 1 and sets value=1 (no change) * For semaphores and monitors, waiting thread may wait for an arbitrary long
It returns 1, so while loop continues. time!
— When we set value = 0, someone else can get lock. — Thus even if busy-waiting was OK for locks, definitely not ok for other primitives
« Busy-Waiting: thread consumes cycles while waiting — Homework/exam solutions should avoid busy-waiting!
— For multiprocessors: every test&set() is a write, which makes value
ping-pong around in cache (using lots of network BW)
9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 7.67 9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 7.68

Multiprocessor Spin Locks: test&test&set

A better solution for multiprocessors:
int mylock = @; // Free
Acquire() {

do {
while(mylock); // Wait until might be free
} while(test&set(&mylock)); // exit if get lock
}
Release() {
mylock = ©;

» Simple explanation:
— Wait until lock might be free (only reading — stays in cache)
— Then, try to grab lock with test&set
— Repeat if fail to actually get lock
* Issues with this solution:
— Busy-Waiting: thread still consumes cycles while waiting
» However, it does not impact other processors!

Better Locks using test&set

+ Can we build test&set locks without busy-waiting?
— Can’t entirely, but can minimize!
— |dea: only busy-wait to atomically check lock value

int guard = 0;
int value = FREE; g

Acquire() {
// Short busy-wait time
while (test&set(guard));
if (value == BUSY) {
put thread on wait queue;
go to sleep() & guard = 0;

Release() {
// Short busy-wait time
while (test&set(guard));
if anyone on wait queue {
take thread off wait queue
Place on ready queue;
} else {

} else { value = FREE;
value = BUSY; }
guard = 0; guard = 0;

}

* Note: sleep has to be sure to reset the guard variable
— Why can’t we do it just before or just after the sleep?

9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 7.69 9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 7.70
Recall: Locks using Interrupts vs. test&set Recap: Locks using interrupts
Compare to “disable interrupt” solution int value = 0;
Acquire() {
int value = FREE; // Short busy-wait time
Acquire() { c_i';sa(bli interxl':;xpt{:s;
: disable interrupts; 1 vaiue ==
Acquire() { Release() { } E put thread on wait-queue;
disable interrupts; disable interrupts; go to sleep() //??
if (value == BUSY) { if (anyone on wait queue) { lock.Acquire() ; } elie { .
. : value = ;
put thread on wait queue; take thread off wait queue o . . enable interrupts;
Go to sleep(); Place on ready queue; critical section; }
i ? } else { N
// Enable interrupts? value = FREE: lock.Release () ;
} else { } !
value = BUSY; . . Release() { Release() ({
} enable interrupts; enable interrupts; // Short busy-wait time
enable interrupts: } } disable interrupts;
pts; if anyone on wait queue {
} X . take thread off wait-queue
If one thread in critical Place on ready queue;
. i } else {
Basically we replaced: SR, [GR value = 0;
- disable interrupts > while (testé&set(guard)); activity (including OS) } X
) can run! enable interrupts;
- enable interrupts = guard = 0; }
9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec7.71 9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec7.72

Recap: Locks using test & se

int guard = 0;
int value = 0;
Acquire() {
// Short busy-wait time
while (test&set (guard)) ;

int value = 0; “
Acquire() { if (value == 1) {

while (testé&set (value)) ; put thread on wait-queue;

} go to sleep()& guard = 0;
lock.Acquire() ; } else {

value = 1;

critical section; guard = 0;

}
. }
lock.Release() ;

WRelease O {
value = 0; // Short busy-wait time
} while (testé&set(guard));
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;
} else {
value = 0;
}
guard = 0;
}

Kubiatowicz CS162 © UCB Fall 2020

Threads waiting to
enter critical section
busy-wait

9/21/20 Lec7.73

9/21/20

Linux futex: Fast Userspace Mutex

#tinclude <linux/futex.h>
#include <sys/time.h>

int futex(int *uaddr, int futex_op, int val,
const struct timespec *timeout);
» uaddr points to a 32-bit value in user space
o futex_op
- FUTEX_WAIT —if val == *uaddr sleep till FUTEX_WAIT
» Atomic check that condition still holds
- FUTEX_WAKE — wake up at most val waiting threads
- FUTEX_FD, FUTEX_WAKE_OP, FUTEX_CMP_REQUEUE
e timeout
— ptr to a timespec structure that specifies a timeout for the op

Kubiatowicz CS162 © UCB Fall 2020

Lec7.74
Linux futex: Fast Userspace Mutex Example: Userspace Locks with futex
« Idea: Userspace lock is syscall-free in the uncontended case int value = @; // free
bool maybe_waiters = false;
« Lock has three states Acquire() { Release() {
. while (test&set(value)) { Yalue =0
— Free (no syscall when acquiring lock) maybe waiters = true; if (maybe_waiters) {
— Busy, no waiters (no syscall when releasing lock) futex(&value, FUTEX_WAIT, 1); ga{be?‘galie"s :Ui;)l(siiiKE b
i i i // futex: sleep if lock is acquired utex(avalue, _ s H
— Busy, possibly with some waiters maybe_waiters = true; // futex: wake up a sleeping thread
} }
« futex is not exposed in libc; it is used within the implementation of oo . ’
pthreads * This is syscall-free in the uncontended case
— Temporarily falls back to syscalls if multiple waiters, or concurrent acquire/release
» But it can be considerably optimized!
— See “Futexes are Tricky” by Ulrich Drepper
9/21/20 Kubiatowicz CS162 © UCB Fall 2020 Lec7.75 9/21/20

Kubiatowicz CS162 © UCB Fall 2020 Lec7.76

9/21/20

Conclusion

» Important concept: Atomic Operations
— An operation that runs to completion or not at all
— These are the primitives on which to construct various synchronization
primitives
» Talked about hardware atomicity primitives:

— Disabling of Interrupts, test&set, swap, compare&swap,
load-locked & store-conditional

+ Showed several constructions of Locks
— Must be very careful not to waste/tie up machine resources
» Shouldn’t disable interrupts for long
» Shouldn’t spin wait for long

— Key idea: Separate lock variable, use hardware mechanisms to protect
modifications of that variable

Kubiatowicz CS162 © UCB Fall 2020

Lec7.77

