
CS162
Operating Systems and
Systems Programming

Lecture 7

Synchronization 2: Semaphores (Con’t)
Lock Implementation, Atomic Instructions

September 21st, 2020

Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 7.29/21/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Multithreaded Stack Example

� Consider the following
code blocks:

proc A() {

B();

}

proc B() {

while(TRUE) {

yield();

}

}

� Suppose we have 2
threads:

– Threads S and T

Thread S

S
t
a
c
k
 g

ro
w

th

A

B(while)

yield

run_new_thread

switch

Thread T

A

B(while)

yield

run_new_thread

switch

Thread S's switch returns to
Thread T's (and vice versa)

Lec 7.39/21/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Use of Timer Interrupt to Return Control

� Solution to our dispatcher problem

– Use the timer interrupt to force scheduling decisions

� Timer Interrupt routine:

TimerInterrupt() {
DoPeriodicHouseKeeping();
run_new_thread();

}

Some Routine

run_new_thread

TimerInterrupt
Interrupt

switch

S
ta

c
k
 g

ro
w

th

Lec 7.49/21/20 Kubiatowicz CS162 © UCB Fall 2020

Hardware context switch support in x86

� Syscall/Intr (U K)
– PL 3 0;

– TSS EFLAGS, CS:EIP;

– SS:ESP k-thread stack (TSS PL 0);

– push (old) SS:ESP onto (new) k-stack

– push (old) eflags, cs:eip, <err>

– CS:EIP <k target handler>

� Then
– Handler then saves other regs, etc

– Does all its works, possibly choosing
other threads, changing PTBR (CR3)

– kernel thread has set up user GPRs

� iret (K U)
– PL 0 3;

– Eflags, CS:EIP popped off k-stack

– SS:ESP popped off k-stack

pg 2,942 of 4,922 of x86 reference manual Pintos: tss.c, intr-stubs.S

Lec 7.59/21/20 Kubiatowicz CS162 © UCB Fall 2020

Pintos: Kernel Crossing on Syscall or Interrupt

user
code

user
stack

PTBR

TCB

kernel
code

kernel
thread
stack

PTBR

cs:eip
ss:esp

cs:eip
ss:esp

TCB

sy
sc

a
ll

/
in
te

rr
up

t

cs:eip
ss:esp

PTBR

TCB

cs:eip
ss:esp

sa
ve

s

PTBR

TCB

cs:eip
ss:esp

cs:eip
ss:esp

ir
e
t

cs:eip
ss:esp

PTBR

TCBpr
oc

e
ss

in
g

re
a
d
y
 t

o
re

su
m
e

…

cs:eip
ss:esp

Time

Lec 7.69/21/20 Kubiatowicz CS162 © UCB Fall 2020

Pintos: Context Switch – Scheduling

user
code

user
stack

cs:eip
ss:esp

PTBR

TCB

kernel
code

kernel
thread
stack

PTBR

TCB

cs:eip
ss:esp

cs:eip
ss:esp

sy
sc

a
ll

/
in
te

rr
up

t

cs:eip
ss:esp

PTBR

TCB

cs:eip
ss:esp

sa
ve

s

ir
e
t

cs:eip
ss:esp

PTBR’

TCBpr
oc

e
ss

in
g

re
a
d
y
 t

o
re

su
m
e

…

S
ch

e
d
ul
e

switch kernel threads

PTBR’

TCB

cs:eip’
ss:esp’

cs:eip
ss:esp’

user’
stack

Pintos: switch.S

Time

Lec 7.79/21/20 Kubiatowicz CS162 © UCB Fall 2020

Thread C

� Identify critical sections (atomic instruction sequences) and add locking:

Deposit(acctId, amount) {
Lock.acquire() // Wait if someone else in critical section!
acct = GetAccount(actId);
acct‐>balance += amount;
StoreAccount(acct);
Lock.release() // Release someone into critical section

}

� Must use SAME lock with all of the methods (Withdraw, etc…)

Thread AThread B

Thread A

Recall: Fix banking problem with Locks!

Thread A Thread C

Thread B

Thread B

Critical Section

Lock.acquire()

Lock.release()

Critical Section

Lec 7.89/21/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Red-Black tree example

� Here, the Lock is associated with the root of the tree

– Restricts parallelism but makes sure that tree always consistent

– No races at the operation level

� Threads are exchange information through a consistent data structure

� Could you make it faster with one lock per node? Perhaps, but must be careful!

– Need to define invariants that are always true despite many simultaneous threads…

Thread A
Insert(3) {
acquire(&treelock)

Tree.Insert(3)

release(&treelock)

}

Tree-Based Set Data Structure

Thread B
Insert(4) {
acquire(&treelock)

Tree.insert(4)

release(&treelock)

}

Get(6) {
acquire(&treelock)

Tree.search(6)

release(&treelock)

}

treelock

Lec 7.99/21/20 Kubiatowicz CS162 © UCB Fall 2020

Producer-Consumer with a Bounded Buffer

� Problem Definition
– Producer(s) put things into a shared buffer

– Consumer(s) take them out

– Need synchronization to coordinate producer/consumer

� Don’t want producer and consumer to have to work in lockstep, so put
a fixed-size buffer between them

– Need to synchronize access to this buffer

– Producer needs to wait if buffer is full

– Consumer needs to wait if buffer is empty

� Example 1: GCC compiler
– cpp | cc1 | cc2 | as | ld

� Example 2: Coke machine
– Producer can put limited number of Cokes in machine

– Consumer can’t take Cokes out if machine is empty

� Others: Web servers, Routers, ….

Consumer
Consumer

Producer ConsumerBuffer
Producer

Lec 7.109/21/20 Kubiatowicz CS162 © UCB Fall 2020

� Insert: write & bump write ptr (enqueue)

� Remove: read & bump read ptr (dequeue)

� How to tell if Full (on insert) Empty (on remove)?

� And what do you do if it is?

� What needs to be atomic?

typedef struct buf {
int write_index;
int read_index;
<type> *entries[BUFSIZE];

} buf_t;

w
r

di di+1di+2

Circular Buffer Data Structure (sequential case)

Lec 7.119/21/20 Kubiatowicz CS162 © UCB Fall 2020

mutex buf_lock = <initially unlocked>

Producer(item) {
acquire(&buf_lock);
while (buffer full) {}; // Wait for a free slot
enqueue(item);
release(&buf_lock);

}

Consumer() {
acquire(&buf_lock);
while (buffer empty) {}; // Wait for arrival
item = dequeue();
release(&buf_lock);
return item

}

Will we ever come out
of the wait loop?

Circular Buffer – first cut

Lec 7.129/21/20 Kubiatowicz CS162 © UCB Fall 2020

mutex buf_lock = <initially unlocked>

Producer(item) {
acquire(&buf_lock);
while (buffer full) {release(&buf_lock); acquire(&buf_lock);}
enqueue(item);
release(&buf_lock);

}

Consumer() {
acquire(&buf_lock);
while (buffer empty) {release(&buf_lock); acquire(&buf_lock);}
item = dequeue();
release(&buf_lock);
return item

}

What happens when one
is waiting for the other?
- Multiple cores ?
- Single core ?

Circular Buffer – 2nd cut

Lec 7.139/21/20 Kubiatowicz CS162 © UCB Fall 2020

Higher-level Primitives than Locks

� What is right abstraction for synchronizing threads that share memory?

– Want as high a level primitive as possible

� Good primitives and practices important!

– Since execution is not entirely sequential, really hard to find bugs, since they
happen rarely

– UNIX is pretty stable now, but up until about mid-80s
(10 years after started), systems running UNIX would crash every week or so –
concurrency bugs

� Synchronization is a way of coordinating multiple concurrent activities that are
using shared state

– This lecture and the next presents a some ways of structuring sharing

Lec 7.149/21/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Semaphores

� Semaphores are a kind of generalized lock

– First defined by Dijkstra in late 60s

– Main synchronization primitive used in original UNIX

� Definition: a Semaphore has a non-negative integer value and supports
the following two operations:

– Down() or P(): an atomic operation that waits for semaphore to become
positive, then decrements it by 1

» Think of this as the wait() operation

– Up() or V(): an atomic operation that increments the semaphore by 1, waking
up a waiting P, if any

» This of this as the signal() operation

– Note that P() stands for “proberen” (to test) and V() stands for “verhogen”
(to increment) in Dutch

Lec 7.159/21/20 Kubiatowicz CS162 © UCB Fall 2020

Value=2Value=1Value=0

Semaphores Like Integers Except…

� Semaphores are like integers, except:

– No negative values

– Only operations allowed are P and V – can’t read or write value, except initially

– Operations must be atomic

» Two P’s together can’t decrement value below zero

» Thread going to sleep in P won’t miss wakeup from V – even if both happen at same time

� POSIX adds ability to read value, but technically not part of proper interface!

� Semaphore from railway analogy

– Here is a semaphore initialized to 2 for resource control:

Value=1Value=0Value=2

Lec 7.169/21/20 Kubiatowicz CS162 © UCB Fall 2020

Two Uses of Semaphores
Mutual Exclusion (initial value = 1)

� Also called “Binary Semaphore” or “mutex”.

� Can be used for mutual exclusion, just like a lock:
semaP(&mysem);
// Critical section goes here

semaV(&mysem);

Scheduling Constraints (initial value = 0)

� Allow thread 1 to wait for a signal from thread 2

– thread 2 schedules thread 1 when a given event occurs

� Example: suppose you had to implement ThreadJoin which must wait for
thread to terminate:

Initial value of semaphore = 0
ThreadJoin {

semaP(&mysem);
}

ThreadFinish {
semaV(&mysem);

}

Lec 7.179/21/20 Kubiatowicz CS162 © UCB Fall 2020

Revisit Bounded Buffer: Correctness constraints for solution

� Correctness Constraints:

– Consumer must wait for producer to fill buffers, if none full (scheduling
constraint)

– Producer must wait for consumer to empty buffers, if all full (scheduling
constraint)

– Only one thread can manipulate buffer queue at a time (mutual exclusion)

� Remember why we need mutual exclusion

– Because computers are stupid

– Imagine if in real life: the delivery person is filling the machine and somebody
comes up and tries to stick their money into the machine

� General rule of thumb: Use a separate semaphore for each constraint

– Semaphore fullBuffers; // consumer’s constraint
– Semaphore emptyBuffers;// producer’s constraint
– Semaphore mutex; // mutual exclusion

Lec 7.189/21/20 Kubiatowicz CS162 © UCB Fall 2020

Semaphore fullSlots = 0; // Initially, no coke
Semaphore emptySlots = bufSize;

// Initially, num empty slots
Semaphore mutex = 1; // No one using machine

Producer(item) {
semaP(&emptySlots); // Wait until space
semaP(&mutex); // Wait until machine free
Enqueue(item);
semaV(&mutex);
semaV(&fullSlots); // Tell consumers there is

// more coke
}

Consumer() {
semaP(&fullSlots); // Check if there’s a coke
semaP(&mutex); // Wait until machine free
item = Dequeue();
semaV(&mutex);
semaV(&emptySlots); // tell producer need more
return item;

}

fullSlots signals coke

emptySlots
signals space

Full Solution to Bounded Buffer (coke machine)

Critical sections

using mutex

protect integrity

of the queue

Lec 7.199/21/20 Kubiatowicz CS162 © UCB Fall 2020

Discussion about Solution

� Why asymmetry?

– Producer does: semaP(&emptyBuffer), semaV(&fullBuffer)
– Consumer does: semaP(&fullBuffer), semaV(&emptyBuffer)

� Is order of P’s important?

– Yes! Can cause deadlock

� Is order of V’s important?

– No, except that it might
affect scheduling efficiency

� What if we have 2 producers
or 2 consumers?

– Do we need to change anything?

Decrease # of

empty slots

Increase # of

occupied slots

Increase # of

empty slots

Decrease # of

occupied slots

Producer(item) {
semaP(&mutex);
semaP(&emptySlots);
Enqueue(item);
semaV(&mutex);
semaV(&fullSlots);

}
Consumer() {
semaP(&fullSlots);
semaP(&mutex);
item = Dequeue();
semaV(&mutex);
semaV(&emptySlots);
return item;

}
Lec 7.209/21/20 Kubiatowicz CS162 © UCB Fall 2020

Administrivia
� Midterm 1: October 1st, 5-7PM (Three weeks from tomorrow!)

– We understand that this partially conflicts with CS170, but those of you in CS170
can start that exam after 7PM (according to CS170 staff)

– Video Proctored, No curve, Use of computer to answer questions

– More details as we get closer to exam

� Midterm Review: Tuesday September 29th, 7-9pm

– Details TBA

Lec 7.219/21/20 Kubiatowicz CS162 © UCB Fall 2020

Hardware

Higher-
level
API

Programs

Where are we going with synchronization?

� We are going to implement various higher-level synchronization
primitives using atomic operations

– Everything is pretty painful if only atomic primitives are load and
store

– Need to provide primitives useful at user-level

Load/Store Disable Ints Test&Set
Compare&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

Lec 7.229/21/20 Kubiatowicz CS162 © UCB Fall 2020

Motivating Example: “Too Much Milk”

� Great thing about OS’s – analogy between
problems in OS and problems in real life

– Help you understand real life problems better

– But, computers are much stupider than people

� Example: People need to coordinate:

Arrive home, put milk away3:30

Buy milk3:25

Arrive at storeArrive home, put milk away3:20

Leave for storeBuy milk3:15

Leave for store3:05

Look in Fridge. Out of milk3:00

Look in Fridge. Out of milkArrive at store3:10

Person BPerson ATime

Lec 7.239/21/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: What is a lock?
� Lock: prevents someone from doing something

– Lock before entering critical section and before accessing shared data

– Unlock when leaving, after accessing shared data

– Wait if locked

» Important idea: all synchronization involves waiting

� For example: fix the milk problem by putting a key on the refrigerator

– Lock it and take key if you are going to go buy milk

– Fixes too much: roommate angry if only wants OJ

� Of Course – We don’t know how to make a lock yet

– Let’s see if we can answer this question!
Lec 7.249/21/20 Kubiatowicz CS162 © UCB Fall 2020

Too Much Milk: Correctness Properties

� Need to be careful about correctness of concurrent programs, since
non-deterministic

– Impulse is to start coding first, then when it doesn’t work, pull hair out

– Instead, think first, then code

– Always write down behavior first

� What are the correctness properties for the “Too much milk”
problem???

– Never more than one person buys

– Someone buys if needed

� First attempt: Restrict ourselves to use only atomic load and store
operations as building blocks

Lec 7.259/21/20 Kubiatowicz CS162 © UCB Fall 2020

� Use a note to avoid buying too much milk:
– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

� Suppose a computer tries this (remember, only memory read/write are
atomic):

if (noMilk) {
if (noNote) {

leave Note;
buy milk;
remove note;

}
}

Too Much Milk: Solution #1

Lec 7.269/21/20 Kubiatowicz CS162 © UCB Fall 2020

Too Much Milk: Solution #1
� Use a note to avoid buying too much milk:

– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

� Suppose a computer tries this (remember, only memory read/write are
atomic):

Thread A Thread B

if (noMilk) {
if (noMilk) {

if (noNote) {
if (noNote) {
leave Note;
buy Milk;
remove Note;

}
}

leave Note;
buy Milk;
remove Note;

}
}

Lec 7.279/21/20 Kubiatowicz CS162 © UCB Fall 2020

Too Much Milk: Solution #1

� Use a note to avoid buying too much milk:
– Leave a note before buying (kind of “lock”)
– Remove note after buying (kind of “unlock”)
– Don’t buy if note (wait)

� Suppose a computer tries this (remember, only memory read/write are
atomic):

if (noMilk) {
if (noNote) {

leave Note;
buy milk;
remove note;

}
}

� Result?
– Still too much milk but only occasionally!
– Thread can get context switched after checking milk and note but before buying

milk!

� Solution makes problem worse since fails intermittently
– Makes it really hard to debug…
– Must work despite what the dispatcher does!

Lec 7.289/21/20 Kubiatowicz CS162 © UCB Fall 2020

Too Much Milk: Solution #1½
� Clearly the Note is not quite blocking enough

– Let’s try to fix this by placing note first

� Another try at previous solution:

leave Note;
if (noMilk) {

if (noNote) {
buy milk;

}
}
remove Note;

� What happens here?
– Well, with human, probably nothing bad
– With computer: no one ever buys milk

Lec 7.299/21/20 Kubiatowicz CS162 © UCB Fall 2020

Too Much Milk Solution #2

� How about labeled notes?
– Now we can leave note before checking

� Algorithm looks like this:

Thread A Thread B

leave note A; leave note B;
if (noNote B) { if (noNoteA) {

if (noMilk) { if (noMilk) {
buy Milk; buy Milk;

} }
} }
remove note A; remove note B;

� Does this work?

� Possible for neither thread to buy milk
– Context switches at exactly the wrong times can lead each to think that

the other is going to buy

� Really insidious:
– Extremely unlikely this would happen, but will at worse possible time

– Probably something like this in UNIX

Lec 7.309/21/20 Kubiatowicz CS162 © UCB Fall 2020

Too Much Milk Solution #2: problem!

� I’m not getting milk, You’re getting milk

� This kind of lockup is called “starvation!”

Lec 7.319/21/20 Kubiatowicz CS162 © UCB Fall 2020

Too Much Milk Solution #3
� Here is a possible two-note solution:

Thread A Thread B

leave note A; leave note B;
while (note B) {\\X if (noNote A) {\\Y

do nothing; if (noMilk) {
} buy milk;
if (noMilk) { }

buy milk; }
} remove note B;
remove note A;

� Does this work? Yes. Both can guarantee that:
– It is safe to buy, or

– Other will buy, ok to quit

� At X:
– If no note B, safe for A to buy,

– Otherwise wait to find out what will happen

� At Y:
– If no note A, safe for B to buy

– Otherwise, A is either buying or waiting for B to quit

Lec 7.329/21/20 Kubiatowicz CS162 © UCB Fall 2020

Case 1

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

� “leave note A” happens before “if (noNote A)”

Lec 7.339/21/20 Kubiatowicz CS162 © UCB Fall 2020

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

Case 1

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

� “leave note A” happens before “if (noNote A)”

Lec 7.349/21/20 Kubiatowicz CS162 © UCB Fall 2020

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

Case 1

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

Wait for
note B to
be removed

� “leave note A” happens before “if (noNote A)”

Lec 7.359/21/20 Kubiatowicz CS162 © UCB Fall 2020

Case 2

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

� “if (noNote A)” happens before “leave note A”

Lec 7.369/21/20 Kubiatowicz CS162 © UCB Fall 2020

Case 2

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

� “if (noNote A)” happens before “leave note A”

Lec 7.379/21/20 Kubiatowicz CS162 © UCB Fall 2020

Case 2

leave note B;
if (noNote A) {\\Y

if (noMilk) {
buy milk;

}
}
remove note B;

leave note A;
while (note B) {\\X

do nothing;
};

if (noMilk) {
buy milk;}

}
remove note A;

� “if (noNote A)” happens before “leave note A”

Wait for
note B to
be removed

Lec 7.389/21/20 Kubiatowicz CS162 © UCB Fall 2020

This Generalizes to Threads…

� Leslie Lamport’s “Bakery
Algorithm” (1974)

Lec 7.399/21/20 Kubiatowicz CS162 © UCB Fall 2020

Solution #3 discussion
� Our solution protects a single “Critical-Section” piece of code for each

thread:
if (noMilk) {

buy milk;
}

� Solution #3 works, but it’s really unsatisfactory

– Really complex – even for this simple an example

» Hard to convince yourself that this really works

– A’s code is different from B’s – what if lots of threads?

» Code would have to be slightly different for each thread

– While A is waiting, it is consuming CPU time

» This is called “busy-waiting”

� There’s got to be a better way!

– Have hardware provide higher-level primitives than atomic load & store

– Build even higher-level programming abstractions on this hardware support

Lec 7.409/21/20 Kubiatowicz CS162 © UCB Fall 2020

Too Much Milk: Solution #4?

� Recall our target lock interface:

– acquire(&milklock) – wait until lock is free, then grab

– release(&milklock) – Unlock, waking up anyone waiting

– These must be atomic operations – if two threads are waiting for the lock
and both see it’s free, only one succeeds to grab the lock

� Then, our milk problem is easy:

acquire(&milklock);

if (nomilk)
buy milk;

release(&milklock);

Lec 7.419/21/20 Kubiatowicz CS162 © UCB Fall 2020

Back to: How to Implement Locks?
� Lock: prevents someone from doing something

– Lock before entering critical section and
before accessing shared data

– Unlock when leaving, after accessing shared data

– Wait if locked
» Important idea: all synchronization involves waiting

» Should sleep if waiting for a long time

� Atomic Load/Store: get solution like Milk #3
– Pretty complex and error prone

� Hardware Lock instruction
– Is this a good idea?

– What about putting a task to sleep?
» What is the interface between the hardware and scheduler?

– Complexity?
» Done in the Intel 432

» Each feature makes HW more complex and slow
Lec 7.429/21/20 Kubiatowicz CS162 © UCB Fall 2020

� How can we build multi-instruction atomic operations?
– Recall: dispatcher gets control in two ways.

» Internal: Thread does something to relinquish the CPU

» External: Interrupts cause dispatcher to take CPU

– On a uniprocessor, can avoid context-switching by:
» Avoiding internal events (although virtual memory tricky)

» Preventing external events by disabling interrupts

� Consequently, naïve Implementation of locks:
LockAcquire { disable Ints; }
LockRelease { enable Ints; }

� Problems with this approach:
– Can’t let user do this! Consider following:

LockAcquire();
While(TRUE) {;}

– Real-Time system—no guarantees on timing!
» Critical Sections might be arbitrarily long

– What happens with I/O or other important events?
» “Reactor about to meltdown. Help?”

Naïve use of Interrupt Enable/Disable

Lec 7.439/21/20 Kubiatowicz CS162 © UCB Fall 2020

Better Implementation of Locks by Disabling Interrupts

int value = FREE;

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Release() {
disable interrupts;
if (anyone on wait queue) {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
enable interrupts;

}

� Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable

Lec 7.449/21/20 Kubiatowicz CS162 © UCB Fall 2020

New Lock Implementation: Discussion
� Why do we need to disable interrupts at all?

– Avoid interruption between checking and setting lock value

– Otherwise two threads could think that they both have lock

� Note: unlike previous solution, the critical section (inside
Acquire()) is very short

– User of lock can take as long as they like in their own critical
section: doesn’t impact global machine behavior

– Critical interrupts taken in time!

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Critical

Section

Lec 7.459/21/20 Kubiatowicz CS162 © UCB Fall 2020

Interrupt Re-enable in Going to Sleep

� What about re-enabling ints when going to sleep?
Acquire() {

disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Lec 7.469/21/20 Kubiatowicz CS162 © UCB Fall 2020

Interrupt Re-enable in Going to Sleep

� What about re-enabling ints when going to sleep?

� Before Putting thread on the wait queue?

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position

Lec 7.479/21/20 Kubiatowicz CS162 © UCB Fall 2020

Interrupt Re-enable in Going to Sleep

� What about re-enabling ints when going to sleep?

� Before Putting thread on the wait queue?

– Release can check the queue and not wake up thread

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position

Lec 7.489/21/20 Kubiatowicz CS162 © UCB Fall 2020

Interrupt Re-enable in Going to Sleep

� What about re-enabling ints when going to sleep?

� Before Putting thread on the wait queue?

– Release can check the queue and not wake up thread

� After putting the thread on the wait queue

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position

Lec 7.499/21/20 Kubiatowicz CS162 © UCB Fall 2020

Interrupt Re-enable in Going to Sleep

� What about re-enabling ints when going to sleep?

� Before Putting thread on the wait queue?

– Release can check the queue and not wake up thread

� After putting the thread on the wait queue

– Release puts the thread on the ready queue, but the thread
still thinks it needs to go to sleep

– Misses wakeup and still holds lock (deadlock!)

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position

Lec 7.509/21/20 Kubiatowicz CS162 © UCB Fall 2020

Interrupt Re-enable in Going to Sleep

� What about re-enabling ints when going to sleep?

� Before Putting thread on the wait queue?

– Release can check the queue and not wake up thread

� After putting the thread on the wait queue

– Release puts the thread on the ready queue, but the thread
still thinks it needs to go to sleep

– Misses wakeup and still holds lock (deadlock!)

� Want to put it after sleep(). But – how?

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}
enable interrupts;

}

Enable Position

Lec 7.519/21/20 Kubiatowicz CS162 © UCB Fall 2020

How to Re-enable After Sleep()?
� In scheduler, since interrupts are disabled when you call

sleep:
– Responsibility of the next thread to re-enable ints

– When the sleeping thread wakes up, returns to acquire and
re-enables interrupts

Thread A Thread B
.
.

disable ints
sleep

sleep return
enable ints

.

.

.
disable int

sleep
sleep return
enable ints

.

.
Lec 7.529/21/20 Kubiatowicz CS162 © UCB Fall 2020

INIT
int value = 0;

Acquire() {
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() //??

} else {
value = 1;

}
enable interrupts;

}

In-Kernel Lock: Simulation

Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();

…

critical section;

…

lock.Release();

lock.Acquire();

…

critical section;

…

lock.Release();

Value: 0 waiters owner

Thread A Thread B

Running

READY

Ready

Lec 7.539/21/20 Kubiatowicz CS162 © UCB Fall 2020

INIT
int value = 0;

Acquire() {
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() //??

} else {
value = 1;

}
enable interrupts;

}

In-Kernel Lock: Simulation

Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();

…

critical section;

…

lock.Release();

lock.Acquire();

…

critical section;

…

lock.Release();

Thread A Thread B

READY

Running

Value: 1 waiters owner

Ready

Lec 7.549/21/20 Kubiatowicz CS162 © UCB Fall 2020

INIT
int value = 0;

Acquire() {
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() //??

} else {
value = 1;

}
enable interrupts;

}

Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();

…

critical section;

…

lock.Release();

lock.Acquire();

…

critical section;

…

lock.Release();

Thread A Thread B

In-Kernel Lock: Simulation

READY

Running Running

Value: 1 waiters owner

ReadyReady

Lec 7.559/21/20 Kubiatowicz CS162 © UCB Fall 2020

INIT
int value = 0;

Acquire() {
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() //??

} else {
value = 1;

}
enable interrupts;

}

lock.Acquire();

…

critical section;

…

lock.Release();

Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();

…

critical section;

…

lock.Release();

Thread A Thread B

In-Kernel Lock: Simulation

READY

RunningRunning

Value: 1 waiters owner

WaitingReady

Lec 7.569/21/20 Kubiatowicz CS162 © UCB Fall 2020

INIT
int value = 0;

Acquire() {
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() //??

} else {
value = 1;

}
enable interrupts;

}

lock.Acquire();

…

critical section;

…

lock.Release();

Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();

…

critical section;

…

lock.Release();

Thread A Thread B

In-Kernel Lock: Simulation

READY

Running

Value: 1 waiters owner

WaitingReady

Lec 7.579/21/20 Kubiatowicz CS162 © UCB Fall 2020

INIT
int value = 0;

Acquire() {
disable interrupts;
if (value == 1) {
put thread on wait-queue;
go to sleep() //??

} else {
value = 1;

}
enable interrupts;

}

Running

Release() {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();

…

critical section;

…

lock.Release();

lock.Acquire();

…

critical section;

…

lock.Release();

Thread A Thread B

In-Kernel Lock: Simulation

READY

Running

Value: 1 waiters owner

Ready Ready

Lec 7.589/21/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Multithreaded Server

� Bounded pool of worker threads

– Allocated in advance: no thread creation overhead

– Queue of pending requests

Master
Thread

Queue
Thread Pool

Client
Request

Response

Lec 7.599/21/20 Kubiatowicz CS162 © UCB Fall 2020

� Given that the overhead of a critical section is X

– User->Kernel Context Switch

– Acquire Lock

– Kernel->User Context Switch

– <perform exclusive work>

– User->Kernel Context Switch

– Release Lock

– Kernel->User Context Switch

� Even if everything else is infinitely fast, with any
number of threads and cores

� What is the maximum rate of operations that involve
this overhead?

Simple Performance Model

Lec 7.609/21/20 Kubiatowicz CS162 © UCB Fall 2020

º º
º

º º
º

Time = p*X sec
Rate = 1/X
ops/sec, regardless
of # cores

P

X

All try to grab lock

Highly Contended Case – in a picture

Lec 7.619/21/20 Kubiatowicz CS162 © UCB Fall 2020

� X = 1ms => 1,000 ops/sec

More Practical Motivation
Back to Jeff Dean's "Numbers
everyone should know"

Handle I/O in
separate thread,
avoid blocking
other progress

Back to system performance

Lec 7.629/21/20 Kubiatowicz CS162 © UCB Fall 2020

º º
º

º º
º

What if sys overhead
is Y, even when the
lock is free?

What if the OS can
only handle one lock
operation at a time?

Uncontended Many-Lock Case

Lec 7.639/21/20 Kubiatowicz CS162 © UCB Fall 2020

� Min System call ~ 25x cost of function call

� Scheduling could be many times more

� Streamline system processing as much as possible

� Other optimizations seek to process as much of the
call in user space as possible (eg, Linux vDSO)

Recall: Basic cost of a system call

Lec 7.649/21/20 Kubiatowicz CS162 © UCB Fall 2020

Atomic Read-Modify-Write Instructions

� Problems with previous solution:

– Can’t give lock implementation to users

– Doesn’t work well on multiprocessor

» Disabling interrupts on all processors requires messages and
would be very time consuming

� Alternative: atomic instruction sequences

– These instructions read a value and write a new value atomically

– Hardware is responsible for implementing this correctly

» on both uniprocessors (not too hard)

» and multiprocessors (requires help from cache coherence
protocol)

– Unlike disabling interrupts, can be used on both uniprocessors and
multiprocessors

Lec 7.659/21/20 Kubiatowicz CS162 © UCB Fall 2020

Examples of Read-Modify-Write
� test&set (&address) { /* most architectures */

result = M[address]; // return result from “address” and
M[address] = 1; // set value at “address” to 1
return result;

}

� swap (&address, register) { /* x86 */
temp = M[address]; // swap register’s value to
M[address] = register; // value at “address”
register = temp;

}

� compare&swap (&address, reg1, reg2) { /* 68000 */
if (reg1 == M[address]) { // If memory still == reg1,

M[address] = reg2; // then put reg2 => memory
return success;

} else { // Otherwise do not change memory
return failure;

}

}

� load‐linked&store‐conditional(&address) { /* R4000, alpha */
loop:

ll r1, M[address];
movi r2, 1; // Can do arbitrary computation
sc r2, M[address];
beqz r2, loop;

}
Lec 7.669/21/20 Kubiatowicz CS162 © UCB Fall 2020

� compare&swap (&address, reg1, reg2) { /* 68000 */
if (reg1 == M[address]) {

M[address] = reg2;
return success;

} else {
return failure;

}
}

Here is an atomic add to linked-list function:
addToQueue(&object) {

do { // repeat until no conflict
ld r1, M[root] // Get ptr to current head
st r1, M[object] // Save link in new object

} until (compare&swap(&root,r1,object));
}

Using of Compare&Swap for queues

root next next

next

New
Object

Lec 7.679/21/20 Kubiatowicz CS162 © UCB Fall 2020

Implementing Locks with test&set
� Another flawed, but simple solution:

int value = 0; // Free
Acquire() {

while (test&set(value)); // while busy
}

Release() {
value = 0;

}

� Simple explanation:

– If lock is free, test&set reads 0 and sets value=1, so lock is now busy.
It returns 0 so while exits.

– If lock is busy, test&set reads 1 and sets value=1 (no change)
It returns 1, so while loop continues.

– When we set value = 0, someone else can get lock.

� Busy-Waiting: thread consumes cycles while waiting

– For multiprocessors: every test&set() is a write, which makes value
ping-pong around in cache (using lots of network BW)

Lec 7.689/21/20 Kubiatowicz CS162 © UCB Fall 2020

Problem: Busy-Waiting for Lock
� Positives for this solution

– Machine can receive interrupts

– User code can use this lock

– Works on a multiprocessor

� Negatives

– This is very inefficient as thread will consume cycles waiting

– Waiting thread may take cycles away from thread holding lock (no one wins!)

– Priority Inversion: If busy-waiting thread has higher priority than thread holding
lock no progress!

� Priority Inversion problem with original Martian rover

� For semaphores and monitors, waiting thread may wait for an arbitrary long
time!

– Thus even if busy-waiting was OK for locks, definitely not ok for other primitives

– Homework/exam solutions should avoid busy-waiting!

Lec 7.699/21/20 Kubiatowicz CS162 © UCB Fall 2020

Multiprocessor Spin Locks: test&test&set
� A better solution for multiprocessors:

int mylock = 0; // Free
Acquire() {

do {
while(mylock); // Wait until might be free

} while(test&set(&mylock)); // exit if get lock
}

Release() {
mylock = 0;

}

� Simple explanation:

– Wait until lock might be free (only reading – stays in cache)

– Then, try to grab lock with test&set

– Repeat if fail to actually get lock

� Issues with this solution:

– Busy-Waiting: thread still consumes cycles while waiting

» However, it does not impact other processors!

Lec 7.709/21/20 Kubiatowicz CS162 © UCB Fall 2020

Better Locks using test&set
� Can we build test&set locks without busy-waiting?

– Can’t entirely, but can minimize!

– Idea: only busy-wait to atomically check lock value

� Note: sleep has to be sure to reset the guard variable

– Why can’t we do it just before or just after the sleep?

Release() {
// Short busy‐wait time
while (test&set(guard));
if anyone on wait queue {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
guard = 0;

int guard = 0;
int value = FREE;

Acquire() {
// Short busy‐wait time
while (test&set(guard));
if (value == BUSY) {

put thread on wait queue;
go to sleep() & guard = 0;

} else {
value = BUSY;
guard = 0;

}
}

Lec 7.719/21/20 Kubiatowicz CS162 © UCB Fall 2020

Recall: Locks using Interrupts vs. test&set

Compare to “disable interrupt” solution

Basically we replaced:
– disable interrupts while (test&set(guard));

– enable interrupts guard = 0;

int value = FREE;

Acquire() {

disable interrupts;

if (value == BUSY) {

put thread on wait queue;

Go to sleep();

// Enable interrupts?

} else {

value = BUSY;

}

enable interrupts;

}

Release() {
disable interrupts;
if (anyone on wait queue) {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
enable interrupts;

}

Lec 7.729/21/20 Kubiatowicz CS162 © UCB Fall 2020

Recap: Locks using interrupts

int value = 0;
Acquire() {

// Short busy-wait time
disable interrupts;
if (value == 1) {

put thread on wait-queue;
go to sleep() //??

} else {
value = 1;
enable interrupts;

}
}

Release() {
// Short busy-wait time
disable interrupts;
if anyone on wait queue {

take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();

…

critical section;

…

lock.Release();

Acquire() {
disable interrupts;

}

Release() {
enable interrupts;

}

If one thread in critical

section, no other

activity (including OS)

can run!

Lec 7.739/21/20 Kubiatowicz CS162 © UCB Fall 2020

Recap: Locks using test & set
int guard = 0;
int value = 0;
Acquire() {

// Short busy-wait time
while(test&set(guard));
if (value == 1) {

put thread on wait-queue;
go to sleep()& guard = 0;

} else {
value = 1;
guard = 0;

}
}

Release() {
// Short busy-wait time
while (test&set(guard));
if anyone on wait queue {

take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
guard = 0;

}

lock.Acquire();

…

critical section;

…

lock.Release();

int value = 0;
Acquire() {
while(test&set(value));

}

Release() {
value = 0;

}

Threads waiting to

enter critical section

busy-wait

Lec 7.749/21/20 Kubiatowicz CS162 © UCB Fall 2020

Linux futex: Fast Userspace Mutex

� uaddr points to a 32-bit value in user space

� futex_op
– FUTEX_WAIT – if val == *uaddr sleep till FUTEX_WAIT

» Atomic check that condition still holds

– FUTEX_WAKE – wake up at most val waiting threads

– FUTEX_FD, FUTEX_WAKE_OP, FUTEX_CMP_REQUEUE

� timeout
– ptr to a timespec structure that specifies a timeout for the op

#include <linux/futex.h>
#include <sys/time.h>

int futex(int *uaddr, int futex_op, int val,
const struct timespec *timeout);

Lec 7.759/21/20 Kubiatowicz CS162 © UCB Fall 2020

Linux futex: Fast Userspace Mutex

� Idea: Userspace lock is syscall-free in the uncontended case

� Lock has three states

– Free (no syscall when acquiring lock)

– Busy, no waiters (no syscall when releasing lock)

– Busy, possibly with some waiters

� futex is not exposed in libc; it is used within the implementation of
pthreads

Lec 7.769/21/20 Kubiatowicz CS162 © UCB Fall 2020

Example: Userspace Locks with futex

� This is syscall-free in the uncontended case

– Temporarily falls back to syscalls if multiple waiters, or concurrent acquire/release

� But it can be considerably optimized!

– See “Futexes are Tricky” by Ulrich Drepper

Release() {
value = 0;
if (maybe_waiters) {

maybe_waiters = false;
futex(&value, FUTEX_WAKE, 1);
// futex: wake up a sleeping thread

}
}

int value = 0; // free
bool maybe_waiters = false;

Acquire() {
while (test&set(value)) {

maybe_waiters = true;
futex(&value, FUTEX_WAIT, 1);
// futex: sleep if lock is acquired
maybe_waiters = true;

}
}

Lec 7.779/21/20 Kubiatowicz CS162 © UCB Fall 2020

Conclusion

� Important concept: Atomic Operations

– An operation that runs to completion or not at all

– These are the primitives on which to construct various synchronization
primitives

� Talked about hardware atomicity primitives:

– Disabling of Interrupts, test&set, swap, compare&swap,
load-locked & store-conditional

� Showed several constructions of Locks

– Must be very careful not to waste/tie up machine resources

» Shouldn’t disable interrupts for long

» Shouldn’t spin wait for long

– Key idea: Separate lock variable, use hardware mechanisms to protect
modifications of that variable

