CS162
Operating Systems and
Systems Programming

Lecture 8

Synchronization 3:
Atomic Instructions (Con’t), Monitors, Readers/Writers

September 2314, 2020
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: Too Much Milk Solution #3

» Here is a possible two-note solution:

Thread A Thread B
leave note A; leave note B;
while (note B) {\\X if (noNote A) {\\Y
do nothing; if (noMilk) {
buy milk;

}
if (noMilk) {
buy milk;
remove note B;
remove note A;

* Does this work? Yes. Both can guarantee that:
— It is safe to buy, or
— Other will buy, ok to quit
o« AtX:
— If no note B, safe for A to buy,
— Otherwise wait to find out what will happen
« AtY:
— If no note A, safe for B to buy
— Otherwise, A is either buying or waiting for B to quit
Kubiatowicz CS162 © UCB Fall 2020

9/23/20 Lec8.2

9/23/20

Recall: Too Much Milk: Solution #4

+ Solution #3 really complex and undesirable as a general solution
» Recall our target lock interface:
- acquire(&milklock) — wait until lock is free, then grab
- release(&milklock) — Unlock, waking up anyone waiting
— These must be atomic operations — if two threads are waiting for the lock
and both see it’s free, only one succeeds to grab the lock
* Then, our milk problem is easy:
acquire(&milklock);
if (nomilk)
buy milk;
release(&milklock);

Kubiatowicz CS162 © UCB Fall 2020

Lec8.3

Recall: Implement Locks by Disabling Interrupts

» Key idea: maintain a lock variable and impose mutual exclusion only
during operations on that variable

int mylock = FREE; // acquire(&mylock) - wait until lock is free, then grab
// release(&mylock) - Unlock, waking up anyone waiting

acquire(int *thelock) {
disable interrupts;
if (*thelock == BUSY) {
put thread on wait queue;
Go to sleep() && Enab ints!
// Ints disabled on wakeup

release(int *thelock) {
disable interrupts;
if (anyone on wait queue) {
take thread off wait queue
Place on ready queue;
} else {

} else { *thelock = FREE;
*thelock = BUSY;

} enable interrupts;

enable interrupts; }

}

- Really only works in kernel - why?

9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 8.4

Recall: In-Kernel Lock: Simulation

‘ mylock: O H waiters “owner ‘ | READY |

Running Ready

INIT

quire (int *thelock) {
. disable interrupts;
acquire (&mylock) ; if (*thelock == 1) {

put thread on wait-queue;
go to sleep() //2?

} else {
*thelock = 1;

}

enable interrupts;

acquire (&mylock) ;

critical section; critical section;

release (&mylock) ; release (&mylock) ;

}

Release (int *thelock) {

disable interrupts;

if anyone on wait queue {
take thread off wait-queue
Place on ready queue;

} else {
*thelock = 0;

}

Recall: In-Kernel Lock: Simulation

‘ mylock: 1 Hwai‘rers “owne; ‘ | READY |

Ready

INIT
int mylock = 0;

qulre(lnt *thelock) {
. disable :mterrupts,
if (*thelock == 1) {
put thread on wait-queue;
go to sleep() //2?
} else {
*thelock = 1;

acquire (&mylock) ; acquire (&mylock) ;

crltlcal section; critical section;

release (&mylock) ; release (&mylock) ;

. enable interrupts;

Release (int *thelock) {
disable interrupts;
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;
else {
*thelock = 0;

}
enable interrupts; enable interrupts;
} }
9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 8.5 9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 8.6
Recall: In-Kernel Lock: Simulation Recall: In-Kernel Lock: Simulation
‘ mylock: 1 Hwai'rers “owne; ‘ |READY | ‘ mylock: 1 Hwaifers “owne; ‘ |READY |
R i R
- 9 INIT RB g - 9 INIT
Thread A int mylock = 0; Thread B Thread A int mylock = 0;
-
qu:.re(:mt *thelock) { __—". /)équire(int *thelock
disable interr (0 disable interr -
acquire (&mylock) ; ©) 1; (*thgioek _EBi) (acquire (&mylock) ; acquire (&mylock) ; ~ 1; (*thgioek‘—ggi) acquire (&mylock) ;
- oo thread on wait-queue; - - _-put thread on wait-queue; -
critical secti£ N0 T go to sleep() //?? critical section; critical sectioén; _gg_.tn-il-ee}r(‘)' ?? critical section;
} else { BT else (
release(&mylock), *thelock = 1; release (&mylock) ; release (&mylock) ;) *thelock = 1; release (&mylock) ;
nable interrupts; O enable interrupts;
)
Release (int *thelock) { Release (int *thelock) {
disable interrupts; disable interrupts;
if anyone on wait queue { if anyone on wait queue {
take thread off wait-queue take thread off wait-queue
Place on ready queue; Place on ready queue;
} else { } else {
*thelock = 0; *thelock = 0;
} }
enable interrupts; enable interrupts;
} }
9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec8.7 9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 8.8

Recall: In-Kernel Lock: Simulation

‘ mylock: 1 H waiters “ownex ‘

Runpi é
g INIT Ody
Thread A int mylock = 0; Thread B
Acquire (int *thelock -
. (O disable interru
acquire (&mylock) ; acquire (&mylock) ;

if (*thglnek’ 1)1
___—put Thread on w t-queue;
crltlcal secti N7 See=="[___.99-tao-slkeep()”
————— } else {
*thelock = 1;
}
O enable interrupts;

}

critical section;

release(&mylock ; release (&mylock) ;

Release (int *thelock) {
disable interrupts;
if anyone on wait queue {
l take thread off wait-queue
Place on ready queue;
} else {
*thelock = 0;

}
@ enable interrupts;
}

Recall: In-Kernel Lock: Simulation

release (&mylock);

Remning

Thread A

acquire(&mylock),

if (*thgleek™== 71}
- __—1mt Thread on w t-queue;
critical sectlg, b —— _ 99-59-5199?(2"
----- } else {

‘ mylock: 1 Hwaifers “owner; ‘ | READY |
— Randing
IN:[Tint mylock = 0;

qulre(lnt *thelock

C \ disable :mterru 1 . (smylock)
acquire (&mylock) ;

l critical section;
- gt
*thelgeﬁ =1; release (&mylock) ;

C)gﬂable interrupts;@

LT

Release(lnt *thelock) {
D disable interrupts;
if anyone on wait queue {
l take thread off wait-queue
Place on ready queue;
} else {
*thelock = 0;

(O enable interrupts;

9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec8.9 9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec8.10
Recall: Atomic Read-Modify-Write Instructions Examples of Read-Modify-Write
. . : . * test&set (&address) { /* most architectures */
PrObIemS Wlth preVIOUS SOIUtlon' result = M[address]; // return result from “address” and
— Can't give lock implementation to users M[address] = 1; // set value at “address” to 1
B . return result;
— Doesn’t work well on multiprocessor }
» Disabling interrupts on all processors requires messages and would be + swap (%address, register) { /* x86 */
very time consumin temp = M[address]; // swap register’s value to
ry 9 M[address] = register; // value at “address”
. - . register = temp;
Alternative: atomic instruction sequences }
— These instructions read a value and write a new value atomically . °°m”?;ei‘s‘"az (&a:‘["‘::s’ "?ﬁli regf)li /* x86 (:?'ﬂ""s °1d1"al"e>’ 68000 */
X i K X i if (regl == M[address memory still == regl,
— Hardware is responsible for implementing this correctly M[address] = reg2; // then put reg2 => memory
» on both uniprocessors (not too hard)) el::t‘{"'" success; P,
» and multiprocessors (requires help from cache coherence protocol) return failure;
. . Lo . }
— Unlike disabling interrupts, can be used on both uniprocessors and }
multlprocessors + load-linked&store-conditional(&address) { /* R4000, alpha */
loop:
11 r1, M[address];
movi r2, 1; // Can do arbitrary computation
sc r2, M[address];
beqz r2, loop;
}
9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 8.11 9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec8.12

Using of Compare&Swap for queues

« compare&swap (&address, regl, reg2) { /* x86, 680600 */
if (regl == M[address]) {
M[address] = reg2;
return success;
} else {
return failure;

}

Here is an atomic add to linked-list function:

addToQueue(&object) {
do { // repeat until no conflict
1d r1, M[root] // Get ptr to current head
st rl, M[object] // Save link in new object

} until (compare&swap(&root,rl,object));

T e

next

New
Object
Kubiatowicz CS162 © UCB Fall 2020

9/23/20 Lec8.13

9/23/20

Implementing Locks with test&set
» Simple lock that doesn’t require entry into the kernel:

// (Free) Can access this memory location from user space!
int mylock = ©; // Interface: acquire(&mylock);
// release(&mylock);

acquire(int *thelock) {
while (test&set(thelock)); // Atomic operation!
}

release(int *thelock) {
*thelock = 0;
}

» Simple explanation:

— If lock is free, test&set reads 0 and sets lock=1, so lock is now busy.
It returns 0 so while exits.

— If lock is busy, test&set reads 1 and sets lock=1 (no change)
It returns 1, so while loop continues.

— When we set thelock = 0, someone else can get lock.
» Busy-Waiting: thread consumes cycles while waiting

— For multiprocessors: every test&set() is a write, which makes value ping-pong around in

cache (using lots of network BW
Kubiatowicz CS162 © UCB Fall 2020

// Atomic operation!

Lec8.14

Problem: Busy-Waiting for Lock

 Positives for this solution
— Machine can receive interrupts
— User code can use this lock
— Works on a multiprocessor
* Negatives
— This is very inefficient as thread will consume cycles waiting
— Waiting thread may take cycles away from thread holding lock (no one wins!)

— Priority Inversion: If busy-waiting thread has higher priority than thread holding lock
= no progress!

* Priority Inversion problem with original Martian rover

» For semaphores and monitors, waiting thread may wait for an arbitrary long
time!
— Thus even if busy-waiting was OK for locks, definitely not ok for other primitives
— Homework/exam solutions should avoid busy-waiting!

9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec8.15

9/23/20

Multiprocessor Spin Locks: test&test&set

* A better solution for multiprocessors:
// (Free) Can access this memory location from user space!
int mylock = ©; // Interface: acquire(&mylock);
// release(&mylock);

acquire(int *thelock) {
do {

while(*thelock); // Wait until might be free (quick check/test!)
} while(test&set(thelock)); // Atomic grab of lock (exit if succeeded)

}
release(int *thelock) {

*thelock = 0; // Atomic release of lock

» Simple explanation:
— Wait until lock might be free (only reading — stays in cache)
— Then, try to grab lock with test&set
— Repeat if fail to actually get lock
* Issues with this solution:
— Busy-Waiting: thread still consumes cycles while waiting
» However, it does not impact other processors!

Kubiatowicz CS162 © UCB Fall 2020 Lec8.16

Better Locks using test&set

» Can we build test&set locks without busy-waiting?
— Mostly. Idea: only busy-wait to atomically check lock value
— int guard = @; // Global Variable!

acquire(int *thelock) {
// Short busy-wait time
while (test&set(guard));
if (*thelock == BUSY) {
put thread on wait queue;
go to sleep() & guard = 0;
// guard == @ on wakup!
} else {
*thelock = BUSY;
guard = 0;
}
}

int mylock = FREE; // Interface: acquire(&mylock);
g // release(&mylock);

release(int *thelock) {

// Short busy-wait time

while (test&set(guard));

if anyone on wait queue {
take thread off wait queue
Place on ready queue;

} else {
*thelock = FREE;

}

guard = 0;

* Note: sleep has to be sure to reset the guard variable
— Why can’t we do it just before or just after the sleep?

Recall: Locks using Interrupts vs. test&set

Compare to “disable interrupt” solution

acquire(int *thelock) {
disable interrupts;
if (*thelock == BUSY) {
put thread on wait queue;
Go to sleep();
// Enable interrupts?
} else {
*thelock = BUSY;

enable interrupts;

}

Basically we replaced:

release(&mylock);

int value = FREE; // Interface: acquire(&mylock);
‘;i'i //

release(int *thelock) {
disable interrupts;
if (anyone on wait queue) {
take thread off wait queue
Place on ready queue;
} else {
*thelock = FREE;

enable interrupts;

- disable interrupts > while (testé&set(guard));
- enable interrupts > guard = 0;

Lec8.18

9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec8.17
Recap: Locks using interrupts
acquire(int *thelock) {
// Short busy-wait time
acquire (int *thelock) { disable interrupts;
i -0 - disable interrupts; if (*thelock == 1) {
int mylock=0; } put thread on wait-queue;
go to sleep() //??
acquire (&mylock) ; } else {
*thelock = 1;
critical section; enable interrupts;
release (&mylock) ; }
release (int *thelock) release (int *thelock) {
{ // Short busy-wait time
enable interrupts; disable interrupts;
} if anyone on wait queue {
. - take thread off wait-queue
If one thread in critical Place on ready queue;
section, no other activity } else {
R n *thelock = 0;
(including OS) can run! y oo
enable interrupts;
Lock argument not used! }
9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 8.19

9/23/20 Kubiatowicz CS162 © UCB Fall 2020
Recap: Locks using test & set
int guard = 0; // global!
acquire (int *thelock) {
// Short busy-wait time
int mylock = 0; while (test&set (guard)) ;
int mylock=0: acquire (int *thelock) { if (*thelock == 1) {
Y S while (test&set (thelock)) ; put thread on wait-queue;
} go to sleep()& guard = 0;
acquire (&mylock) ; // guard == 0 on wakeup
- } else {
critical section; *thelock = 1;
guard = 0;
. }
release (&mylock) ; }
elease (int *thelock) { release (int *thelock) {
*thelock = 0; // Short busy-wait time
} while (testé&set(guard));
if anyone on wait queue {
take thread off wait-queue
Place on ready queue;
Threads waiting to enter } else {
- q q *thelock = 0;
critical section busy-wait)
guard = 0;
}
9/23/20

Kubiatowicz CS162 © UCB Fall 2020

Lec 8.20

Linux futex: Fast Userspace Mutex

#tinclude <linux/futex.h>
#include <sys/time.h>

int futex(int *uaddr, int futex_op, int val,
const struct timespec *timeout);

uaddr points to a 32-bit value in user space
futex_op

- FUTEX_WAIT —if val == *uaddr sleep till FUTEX_WAIT

» Atomic check that condition still holds after we disable interrupts (in kernel!)

- FUTEX_WAKE — wake up at most val waiting threads

- FUTEX_FD, FUTEX_WAKE_OP, FUTEX_CMP_REQUEUE: More interesting operations!
timeout

— ptr to a timespec structure that specifies a timeout for the op

o Interface to the kernel sleep() functionality!
- Let thread put themselves to sleep - conditionally!
o futex is not exposed in libc; it is used within the implementation of pthreads
— Can be used to implement locks, semaphores, monitors, etc...
9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 8.21

Example: First try: T&S and futex

int mylock = @; // Interface: acquire(&mylock);
// release(&mylock);

release(int *thelock) {
thelock = @; // unlock
futex(&thelock, FUTEX_WAKE, 1);

acquire(int *thelock) {
while (test&set(thelock)) {
futex(thelock, FUTEX_WAIT, 1);

} ! }

* Properties:
— Sleep interface by using futex — no busywaiting

* No overhead to acquire lock
— Good!

» Every unlock has to call kernel to potentially wake someone up — even if none
— Doesn’t quite give us no-kernel crossings when uncontended...!

9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 8.22

Example: Try #2: T&S and futex

bool maybe_waiters = false;
int mylock = @; // Interface: acquire(&mylock,&maybe_waiters);
// release(&mylock,&maybe_waiters);

release(int*thelock, bool *maybe) {
value = 0;
if (*maybe) {
*maybe = false;
// Try to wake up someone
futex(&value, FUTEX_WAKE, 1);

acquire(int *thelock, bool *maybe) {
while (test&set(thelock)) {
// Sleep, since lock busy!
*maybe = true;
futex(thelock, FUTEX_WAIT, 1);

// Make sure other sleepers not stuck }
*maybe = true; ¥
¥
}

» This is syscall-free in the uncontended case

— Temporarily falls back to syscalls if multiple waiters, or concurrent acquire/release
» But it can be considerably optimized!

— See “Futexes are Tricky” by Ulrich Drepper

9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 8.23

Try #3: Better, using more atomics

* Much better: Three (3) states:
— UNLOCKED: No one has lock
— LOCKED: One thread has lock

— CONTESTED: Possibly more
than one (with someone sleeping)

« Clean interface!

« Lock grabbed cleanly by either
- compare_and_swap()
— First swap()

* No overhead if uncontested!

« Could build semaphores in a similar }

typedef enum { UNLOCKED,LOCKED,CONTESTED } Lock;
Lock mylock = UNLOCKED; // Interface: acquire(&mylock);
// release(&mylock);

acquire(Lock *thelock) {
// If unlocked, grab lock!
if (compare&swap(thelock,UNLOCKED,LOCKED))
return;

// Keep trying to grab lock, sleep in futex
while (swap(mylock,CONTESTED) != UNLOCKED))
// Sleep unless someone releases hear!
futex(thelock, FUTEX_WAIT, CONTESTED);

way!
release(Lock *thelock) {
// If someone sleeping,
if (swap(thelock,UNLOCKED) == CONTESTED)
futex(thelock, FUTEX_WAKE,1);
9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 8.24

Recall: Where are we going with synchronization?

Shared Programs

Load/Store Disable Ints Test&Set
Compare&Swap

» We are going to implement various higher-level synchronization
primitives using atomic operations

— Everything is pretty painful if only atomic primitives are load and store
— Need to provide primitives useful at user-level

9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 8.25

Recall: Semaphores m

» Semaphores are a kind of generalized lock
— First defined by Dijkstra in late 60s
— Main synchronization primitive used in original UNIX
» Definition: a Semaphore has a non-negative integer value and supports
the following operations:
— Set value when you initialize
- Down () or P(): an atomic operation that waits for semaphore to become
positive, then decrements it by 1
» Think of this as the wait() operation
- Up() or V(): an atomic operation that increments the semaphore by 1, waking
up a waiting P, if any
» This of this as the signal() operation
» Technically examining value after initialization is not allowed.

9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 8.26

Recall Bounded Buffer: Correctness constraints for solution

» Correctness Constraints:
— Consumer must wait for producer to fill buffers,
if none full (scheduling constraint)

— Producer must wait for consumer to empty buffers,
if all full (scheduling constraint)

— Only one thread can manipulate buffer queue at a time (mutual exclusion)
* Remember why we need mutual exclusion
— To ensure correctness of the queue/buffer implementation!
* General rule of thumb: Use a separate semaphore for each constraint
- Semaphore fullBuffers; // consumer’s constraint
- Semaphore emptyBuffers;// producer’s constraint
- Semaphore mutex; // mutual exclusion

9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 8.27

Recall: Full Solution to Bounded Buffer (coke machine)

Semaphore fullSlots = 9; // Initially, no coke

Semaphore emptySlots = bufSize;
// Initially, num empty slots

Semaphore mutex = 1; // No one using machine

Producer(item) {
semaP (&emptySlots); // Wait until space

semaP (&mutex); // Wait until machine free
Enqueue(item); H
x)
semaV(&fullSlots); // Tell consumers there is (Critical sections
} . 1iglmore _C°ke|) using mutex
Consumer() { U ots signals coke protect integrity
semaP(&fullSlots); // Check if there’s a coke of the queue
semaP (&mutex); // Wait until machine free
emptySlots item = Dequeue();
i semaV(&mutex);
signals space semaV(&emptySlots); // tell producer need more
return item;
}
9/23/20 Kubiatowicz C$162 © UCB Fall 2020 Lec8.28

Semaphores are good but...Monitors are better!
« Semaphores are a huge step up; just think of trying to do the bounded
buffer with only loads and stores or even with locks!
* Problem is that semaphores are dual purpose:
— They are used for both mutex and scheduling constraints

— Example: the fact that flipping of P’s in bounded buffer gives deadlock is not
immediately obvious. How do you prove correctness to someone?

» Cleaner idea: Use locks for mutual exclusion and condition variables for
scheduling constraints

« Definition: Monitor: a lock and zero or more condition variables for
managing concurrent access to shared data

— Some languages like Java provide this natively
— Most others use actual locks and condition variables

A “Monitor” is a paradigm for concurrent programming!
— Some languages support monitors explicitly

Condition Variables
How do we change the consumer() routine to wait until something is on
the queue?

— Could do this by keeping a count of the number of things on the queue (with
semaphores), but error prone

Condition Variable: a queue of threads waiting for something inside a
critical section

— Key idea: allow sleeping inside critical section by atomically releasing lock at
time we go to sleep

— Contrast to semaphores: Can’t wait inside critical section
Operations:

- Wait(&Llock): Atomically release lock and go to sleep.
Re-acquire lock later, before returning.

- Signal(): Wake up one waiter, if any
- Broadcast(): Wake up all waiters
Rule: Must hold lock when doing condition variable ops!

9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 8.29 9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 8.30
Monitor with Condition Variables Synchronized Buffer (with condition variable)
» Here is an (infinite) synchronized queue:
lock buf_lock; // Initially unlocked
condition buf_CV; // Initially empty
queue queue;
Producer(item)
acquire(&buf_lock); // Get Lock
enqueue(&queue,item); // Add item
N cond_signal(&buf_CV); // Signal any waiters
. — release(&buf lock); // Release Lock
 Lock: the lock provides mutual exclusion to shared data ¢ -)
— Always acquire before accessing shared data structure
—_ inishi i Consumer() {
Alwa)./s.r.elease after finishing with shared data acquire(8buf lock); /7 Get Lock
— Lock initially free while (isEmpty(&queue)) {
+ Condition Variable: a queue of threads waiting for something inside a critical cond_wait(&uf_CV, &buf_lock); // If empty, sleep
SeCtlon.)) o . . . item = dequeue(&queue); // Get next item
— Key idea: make it possible to go to sleep inside critical section by atomically release(&buf_lock); // Release Lock
releasing lock at time we go to sleep return(item);
— Contrast to semaphores: Can’t wait inside critical section }
9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 8.31 9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 8.32

Mesa vs. Hoare monitors

* Need to be careful about precise definition of signal and wait.
Consider a piece of our dequeue code:
while (isEmpty(&queue)) {
cond_wait(&buf_CV,&buf_lock); // If nothing, sleep
¥
item = dequeue(&queue);
— Why didn’t we do this?
if (isEmpty(&queue)) {
cond_wait(&buf_CV,&buf_lock); // If nothing, sleep

// Get next item

}

item = dequeue(&queue); // Get next item
+ Answer: depends on the type of scheduling
— Mesa-style: Named after Xerox-Park Mesa Operating System
» Most OSes use Mesa Scheduling!
— Hoare-style: Named after British logician Tony Hoare

9/23/20 Kubiatowicz CS162 © UCB Fall 2020

Hoare monitors

 Signaler gives up lock, CPU to waiter; waiter runs immediately

» Then, Waiter gives up lock, processor back to signaler when it exits
critical section or if it waits again

acquire (&buf_lock) ;

acquire (&buf_lock) ;

if (isEmpty (&queue)) {

cond wait (&buf CV,&buf lock);

Lock, CPU

cond_signal (&buf_ CV) ;

Zooy)
:_Cpy

release (&buf_ lock) ; .
release (&buf_lock) ;

+ On first glance, this seems like good semantics

— Waiter gets to run immediately, condition is still correct!
* Most textbooks talk about Hoare scheduling

— However, hard to do, not really necessary!

— Forces a lot of context switching (inefficient!)

Lec 8.33 9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 8.34
Mesa monitors Circular Buffer — 3™ cut (Monitors, pthread-like)
. Signaler keeps lock and processor lock buf_lock = <initially unlocked>
- Waiter placed on ready queue with no special priority condition producer_CV = <initially empty>
condition consumer_CV = <initially empty>
I?;:::ﬂt(i)r:‘g) Producer(item) {
- acquire (&buf_lock) ; acquire(&buf_lock);
acquire (&buf_lock) while (buffer full) { cond_wait(&producer_CV, &buf_lock); }
while (isEmpty (&queue)) { enqueue(item);
cond_signal (&buf_ CV) ; cond wait (&buf CV, sbuf lock) ; cond_signal(&consumer_CV);
Nead } release(&uf_lock); Whatldo.es ﬂ:"'_ead do
release (&buf_lock)) ; ‘(\ed“\e\e\ \e(\) } when it is WGlflng?
o o™ lock.Release(); - Sleep, not busywait!
Consumer() {
» Practically, need to check condition again after wait acquire(buf_lock);)
— By the time the waiter gets scheduled, condition may be false again — so, while (buffer empty) { cond_wait(&consumer_CV, &buf_lock); }
just check again with the “while” loop item = dequeue();
* Most real operating systems do this! co;d_s1ggai(§(prﬁd9cer_cw;
— More efficient, easier to implement release(buf_lock);
. s . return item
— Signaler’s cache state, etc still good }
9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 8.35 9/23/20 Kubiatowicz CS162 © UCB Fall 2020 Lec 8.36

Again: Why the while Loop?

* MESA semantics

» For most operating systems, when a thread is woken
up by signal(), it is simply put on the ready queue
It may or may not reacquire the lock immediately!

— Another thread could be scheduled first and "sneak in"
to empty the queue

— Need a loop to re-check condition on wakeup

Readers/Writers Problem

¥ lills, ¢

» Motivation: Consider a shared database
— Two classes of users:
» Readers — never modify database
» Writers — read and modify database
— Is using a single lock on the whole database sufficient?
» Like to have many readers at the same time
» Only one writer at a time

9/23/20 Kubiatowicz C$162 © UCB Fall 2020 Lec 8.37 9/23/20 Kubiatowicz C$162 © UCB Fall 2020 Lec 8.38
Basic Readers/Writers Solution Code for a Reader
» Correctness Constraints: Reader () {
— Readers can access database when no writers // First check self into system
— Writers can access database when no readers or writers acquire (&lock) ;
— Only one thread manipulates state variables at a time while ((AW + WW) > 0) { // Is it safe to read?
 Basic structure of a solution: WR+H+; // No. Writers exist
- Reader () cond_wait (&okToRead, &lock) ;// Sleep Ofl f:ond var
Wait until no writers WR--; // No longer waiting
Access data base o . }
Wr.Cthee:ic) out - wake up a waiting writer AR++; /] Now we are active!
CWri .
Wait until no active readers or writers release (&lock) ;
Access database // Perform actual read-only access
Check out - wake up waiting readers or writer AccessDatabase (ReadOnly) ;
— State variables (Protected by a lock called “lock”): // Now, check out of system
» int AR: Number of active readers; initially = 0 acquire (&lock) ;
» int WR: Number of waiting readers; initially = 0 AR--; // No longer active
» int AW: Number of active writers; initially = 0 if (AR == 0 && WW > 0) // No other active readers
» int WW: Number of waiting writers; initially = 0 cond_signal (&okToWrite) ;// Wake up one writer
» Condition okToRead = NIL release (&lock) ;
» Condition okToWrite = NIL }
9/23/20 Kubiatowicz CS$162 © UCB Fall 2020 Lec 8.39 9/23/20 Kubiatowicz C$162 © UCB Fall 2020

Lec 8.40

9/23/20

Code for a Writer
Writer () {

// First check self into system
acquire (&lock) ;

while ((AW + AR) > 0) { // Is it safe to write?

WW++; // No. Active users exist
cond wait (&okToWrite,&lock); // Sleep on cond var
WW--; // No longer waiting

}

AW++; // Now we are active!

release (&lock) ;

// Perform actual read/write access
AccessDatabase (ReadWrite) ;

// Now, check out of system

acquire (&lock) ;

AW--; // No longer active

if (WW > 0){ // Give priority to writers
cond signal (&okToWrite) ;// Wake up one writer

} else if (WR > 0) { // Otherwise, wake reader
cond_broadcast (&okToRead); // Wake all readers

release (&lock) ;

Kubiatowicz CS162 © UCB Fall 2020

Lec 8.41

9/23/20

Summary (1/2)

 Important concept: Atomic Operations
— An operation that runs to completion or not at all
— These are the primitives on which to construct various synchronization
primitives
» Talked about hardware atomicity primitives:

— Disabling of Interrupts, test&set, swap, compare&swap,
load-locked & store-conditional

» Showed several constructions of Locks

— Must be very careful not to waste/tie up machine resources
» Shouldn’t disable interrupts for long
» Shouldn’t spin wait for long

— Key idea: Separate lock variable, use hardware mechanisms to protect
modifications of that variable

» Showed \primitive for constructing user-level locks
— Packages up functionality of sleeping

Kubiatowicz CS162 © UCB Fall 2020

Lec 8.42

9/23/20

Summary (2/2)

« Semaphores: Like integers with restricted interface
— Two operations:
» P(): Wait if zero; decrement when becomes non-zero
» V(): Increment and wake a sleeping task (if exists)
» Can initialize value to any non-negative value
— Use separate semaphore for each constraint
* Monitors: A lock plus one or more condition variables
— Always acquire lock before accessing shared data
— Use condition variables to wait inside critical section
» Three Operations: Wait(), Signal(), and Broadcast()
» Monitors represent the logic of the program
— Wait if necessary
— Signal when change something so any waiting threads can proceed
» Next time: Continue on Readers/Writers example

Kubiatowicz CS162 © UCB Fall 2020

Lec 8.43

