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1 Introduction

Our projects in CS 162 will use Pintos, an educational operating system. They're designed to give you
practical experience with the central ideas of operating systems in the context of developing a real,
working kernel, without being excessively complex. The skeleton code for Pintos has several limitations
in its file system, thread scheduler, and support for user programs. In the course of these projects, you
will greatly improve Pintos in each of these areas.

Our project specifications in CS 162 will be organized as follows. For clarity, the details of the
assignment itself will be in the section at the start of the document. We will also provide
additional material in the section that will hopefully be useful as you design and implement
a solution to the project. You may find it useful to begin with the section for an overview of
Pintos before trying to understand all of the details of the assignment in

In this exercise you will learn more about some of the basics of Pintos, such as debugging and will
be given an opportunity to fix a bug in Pintos. Unlike future projects, you will turn in your own
code and report. This project is meant to give you a feel for how Pintos is structured and how to use
some general debugging tools.

1.1 Getting Started

You will be working in the “/code/personal/proj0 directory for this project. Log in to your VM and
grab the Pintos skeleton code from the staff repository:

cd ~/code/personal
git pull staff master

2 Your Task

In order to design good solutions for future Pintos projects, you'll first need a good understanding of the
existing codebase. The goal of this exercise is to help you start develop some familiarity with Pintos’s
code.

2.1 Find the Faulting Instruction

First, run make and make check in the proj0/src/userprog directory, and observe that currently no
tests pass. We will step through the execution of the do-nothing test in GDB, to learn how we can
modify Pintos so that the test passes and understand how Pintos’ existing support for user programs is
implemented.

We are using do-nothing because it is the simplest test of Pintos’ user program support. You should
read projO/src/tests/userprog/do-nothing.c; it is a Pintos user application that does nothing. Its
main() function is merely the statement return 162;, indicating that it returns the exit code 162 to
the operating system. The specific value of the exit code is immaterial to the test; we chose a value other
than 0 so that it’s easier to track how the Pintos kernel handles this value through GDB (note 162 =
0xa2). When you ran make, do-nothing.c was compiled to create an executable program do-nothing,
which you can find at proj0/src/userprog/build/tests/userprog/do-nothing. The do-nothing
test simply runs the do-nothing executable in Pintos using pintos run (see .

View the file projO/src/userprog/build/tests/userprog/do-nothing.result. This file shows
the output of the Pintos testing framework when running the do-nothing test. The testing framework
expected Pintos to output “do-nothing: exit(162)”. This is the standard message that Pintos prints
when a process exits (you’ll encounter this again in the “System Calls” section of the Project 1 spec).
However, as shown in the diff, Pintos did not output this message; instead, the do-nothing program
crashed in userspace due to a memory access violation (a segmentation fault). Based on the contents of
the do-nothing.result file, please answer the following questions on Gradescope:
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1. What virtual address did the program try to access from userspace that caused it to crash?
2. What is the virtual address of the instruction that resulted in the crash?

3. To investigate, disassemble the do-nothing binary using objdump (you used this tool in Homework
0). What is the name of the function the program was in when it crashed? Copy the disassembled
code for that function onto Gradescope, and identify the instruction at which the program crashed.

4. Find the C code for the function you identified above (hint: it was executed in userspace, so it’s
either in do-nothing.c or one of the files in proj0/src/1ib or proj0/src/lib/user), and copy it
onto Gradescope. For each instruction in the disassembled function in #3] explain in a few words
why it’s necessary and/or what it’s trying to do. Hint: see [80x86 Calling Convention|

5. Why did the instruction you identified in try to access memory at the virtual address you
identified in Don’t explain this in terms of the values of registers; we’re looking for a higher
level explanation.

2.2 Step Through the Crash

Now that we understand why the do-nothing program crashes, we will step through the execution of
the do-nothing test in Pintos, starting from when the kernel boots, in GDB. Our goal is to find out
how we can modify the Pintos user program loader so that do-nothing does not crash, while becoming
acquainted with how Pintos supports user programs. To do this, change your working directory to
proj0/src/userprog/ and run

pintos --gdb --filesys-size=2 -p ./build/tests/userprog/do-nothing -a do-nothing --
-q —-f run do-nothing

In another terminal window, change the working directory to proj0/src/userprog/build, start GDB
(pintos-gdb ./kernel.o), and attach it to the Pintos process (debugpintos). If any of these instruc-
tions are not clear, please take another look at |Debugging Pintos| and |[Debugging Pintos Tests|

When you first run debugpintos, the processor’s execution has not yet started. At a high level, the
following must happen before Pintos can start the do-nothing process.

e The BIOS reads the Pintos bootloader (projO/src/threads/loader.S) from the first sector of
the disk into memory at address 0x7c00.

e The bootloader reads the kernel code from disk into memory at address 0x20000 and then jumps
to the kernel entrypoint (projO/src/threads/start.S).

e The code at the kernel entrypoint switches to 32-bit protected modeﬂ and then calls main()
(projo/src/threads/init.c).

e Themain() function boots Pintos by initalizing the scheduler, memory subsystem, interrupt vector,
hardware devices, and file system.

You're welcome to read the code to learn more about this setup, but you don’t need to understand
how this works for the Pintos projects or for this class. Set a breakpoint at run_task and
continue in GDB to skip the setup. As you can see in the code for run_task, Pintos executes the
do-nothing program (specified on the Pintos command line), by invoking

process_wait (process_execute ("do-nothing"));

from run_task(). Both process_wait and process_execute are in proj0/src/userprog/process.c.
Now, answer the following questions.

Thttps://en.wikipedia.org/wiki/Protected_mode
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6.

10.

11.

12.

13.

2.3

Step into the process_execute function. What is the name and address of the thread running
this function? What other threads are present in Pintos at this time? Copy their struct threads.
(Hint: for the last part dumplist &all_list thread allelem may be useful.)

What is the backtrace for the current thread? Copy the backtrace from GDB as your answer and
also copy down the line of C code corresponding to each function call.

. Set a breakpoint at start_process and continue to that point. What is the name and address of

the thread running this function? What other threads are present in Pintos at this time? Copy
their struct threads.

. Where is the thread running start_process created? Copy down this line of code.

Step through the start_process() function until you have stepped over the call to load(). Note
that load() sets the eip and esp fields in the if_ structure. Print out the value of the if_
structure, displaying the values in hex (hint: print/x if_).

The first instruction in the asm volatile statement sets the stack pointer to the bottom of the
if_ structure. The second one jumps to intr_exit. The comments in the code explain what’s
happening here. Step into the asm volatile statement, and then step through the instructions.
As you step through the iret instruction, observe that the function “returns” into userspace. Why
does the processor switch modes when executing this function? Feel free to explain this in terms
of the values in memory and/or registers at the time iret is executed, and the functionality of the
iret instruction.

Once you've executed iret, type info registers to print out the contents of registers. Include
the output of this command on Gradescope. How do these values compare to those when you
printed out if_?

Notice that if you try to get your current location with backtrace you’ll only get a hex address.
This is because because pintos-gdb ./kernel.o only loads in the symbols from the kernel. Now
that we are in userspace, we have to load in the symbols from the Pintos executable we are running,
namely do-nothing. To do this, use loadusersymbols tests/userprog/do-nothing. Now, using
backtrace, you'll see that you're currently in the _start function. Using the disassemble and
stepi commands, step through userspace instruction by instruction until the page fault occurs.
At this point, the processor has immediately entered kernel mode to handle the page fault, so
backtrace will show the current stack in kernel mode, not the user stack at the time of the page
fault. However, you can use btpagefault to find the user stack at the time of the page fault.
Copy down the output of btpagefault.

Debug

The faulting instruction you observed in GDB should match the one you found in #3 Now that you
have determined the faulting instruction, understood the purpose of the instruction, and walked through
how the kernel initializes a user process, you are in a position to modify the kernel so that do-nothing
runs correctly.

14.

Modify the Pintos kernel so that do-nothing no longer crashes. Your change should be in the
Pintos kernel, not the userspace program (do-nothing.c) or libraries in proj0/src/lib. This
should not involve extensive changes to the Pintos source code. Our staff solution solves this
with a single-line change to process.c. Explain the change you made to Pintos and why it was
necessary. After making this change, the do-nothing test should pass but all others will still fail.
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15. It is possible that your fix also works for the stack-align-0 test, but there are solutions for
do-nothing that do not. Take a look at the stack-align-0 test. It behaves similarly to
do-nothing, but it returns the value of esp % 16. Write down what this program should re-
turn (hint: this can be found in stack-align-0.ck) as well as why this is the case. You may wish
to review stack alignment from Section (ﬂ) Then make sure that your previous fix for do-nothing
also passes stack-align-0.

16. Re-run GDB as before. Execute the loadusersymbols command, set a breakpoint at _start,
and continue, to skip directly to the beginning of userspace execution. Using the disassemble
and stepi commands, execute the do-nothing program instruction by instruction until you reach
the int $0x30 instruction in proj0/src/lib/user/syscall.c. At this point, print the top two
words at the top of the stack by examining memory (hint: x/2xw $esp) and copy the output.

17. The int $0x30 instruction switches to kernel mode and pushes an interrupt stack frame onto the
kernel stack for this process. Continue stepping through instruction-by-instruction until you reach
syscall_handler. What are the values of args[0] and args[1], and how do they relate to your
answer to the previous question?

Now, you can continue stepping through Pintos. Having completed running do-nothing, Pintos will
proceed to shut down because we provided the -q option on the kernel command line. You can step
through this in GDB if you’re curious how Pintos shuts down.

Congratulations! You’ve walked through Pintos starting up, running a user program to completion,
and shutting down, in GDB. Hopefully this guided exercise helped you get acquainted with Pintos. Be
sure to push your code, with the small change you made in order to make the do-nothing
and stack-align-0 tests pass, to GitHub. You should now receive full credit for the projo
assignment on the autograder.

3 Deliverables

3.1 Answers

Write your answers to the 17 questions on Gradescope.

3.2 do-nothing

You should receive full credit for the projO assignment on the autograder after making the small fix
necessary. This means passing both the do-nothing and stack-align-0 tests.

4 Reference

4.1 Pintos

Pintos is an educational operating system for the x86 architecture. It supports multithreading, loading
and running user programs, and a file system, but it implements all of these in a very simple way. In
the Pintos projects, you and your project team will strengthen its support in all three of these areas.
Pintos could, theoretically, run on a regular IBM-compatible PC. Unfortunately, it is impractical
to supply every CS 162 student a dedicated PC for use with Pintos. Therefore, we will run Pintos
projects in a system simulator, that is, a program that simulates an x86 CPU and its peripheral devices
accurately enough that unmodified operating systems and software can run under it. Simulators also

2https://cs162.eecs.berkeley.edu/static/sections/section0.pdf#page=9
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give you the ability to inspect and debug an operating system while it runs. In class we will use the
BochsE| and QEMUE| simulators.

4.1.1 Getting Started

Log in to the Vagrant Virtual Machine that you set up in hw0. You should already have a copy of the
Pintos skeleton code in ~/code/personal/projO on your VM. If you don’t see the projO folder, run
git pull staff master to get the latest copy of the starter code.

Once you have made some progress on your project, you can push your code to the autograder just
by running git push origin master (or just git push for short). For example:

$ git commit -m "Added feature X to Pintos"
$ git push origin master

To compile Pintos and run the Project 1 tests:

$ cd “/code/personal/proj0/src/userprog
$ make
$ make check

The last command should run the Pintos test suite. These are the same tests that run on the
autograder. The skeleton code already passes some of these tests. By the end of the project, your code
should pass all of the tests.

4.1.2 Overview of the Pintos Source Tree

The Pintos source code in ~/code/personal/proj0/src/ is organized into the following subdirectories:

threads/

The base Pintos kernel, including the bootloader, kernel entrypoint, base interrupt handler, page allo-
cator, subpage memory allocator, and CPU scheduler. Most of your code for Project 2 will be in this
directory. You will also have to make some modifications in this directory for Project 1.

userprog/

Pintos user program support, including management of page/segment tables, handlers for system calls,
page faults, and other traps, and the program loader. Most of your code for Project 1 will be in this
directory.

vm/
We will not use this directory.

filesys/
The Pintos file system. You will use this file system in Project 1 and modify it in Project 3.

devices/
Source code for I/O device interfacing: keyboard, timer, disk, etc. You will modify the timer implemen-
tation in Project 2.

lib/
An implementation of a subset of the C standard library. The code in this directory is compiled into

Shttps://en.wikipedia.org/wiki/Bochs
4https://en.wikipedia.org/wiki/ QEMU
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both the Pintos kernel and user programs that run inside it. You can include header files from this
directory using the #include <...> notationﬂ You should not have to modify this code.

lib/kernel/

Library functions that are only included in the Pintos kernel (not the user programs). It contains imple-
mentations of some data types that you can use in your kernel code: bitmaps, doubly linked lists, and
hash tables. In the kernel, headers in this directory can be included using the #include <...> notation.

lib/user/
Library functions that are included only in Pintos user programs (not the kernel). In user programs,
headers in this directory can be included using the #include <...> notation.

tests/
Tests for each project. You can add extra tests, but do not modify the given tests.

examples/
Example user programs that can run on Pintos. Once you complete Project 1, some of these programs
can run on Pintos.

misc/, utils/
These files help you run Pintos. You should not need to interact with them directly.

Makefile.build
Describes how to build the kernel. Modify this file if you would like to add source files. For more
information, see the section on [Adding Source Files|

4.1.3 Building Pintos

For this project, you should build Pintos by running make in the userprog directory. This section
describes the interesting files inside build directory, which appears when you run make as above. In
later projects, where you will run make in the threads and filesys directories, these files will appear
in threads/build and userprog/build, respectively.

build/Makefile

A copy of Makefile.build. Don’t change this file, because your changes will be overwritten if you
make clean and re-compile. Make your changes to Makefile.build instead. For more information, see
[Adding Source Files|

build/kernel.o

Object file for the entire kernel. This is the result of linking object files compiled from each individual
kernel source file into a single object file. It contains debug information, so you can run GDB or back-
trace on it.

build/kernel.bin

Memory image of the kernel, that is, the exact bytes loaded into memory to run the Pintos kernel. This
is just kernel.o with debug information stripped out, which saves a lot of space, which in turn keeps the
kernel from bumping up against a 512 kB size limit imposed by the kernel loader’s design.

5The #include <...> notation causes the compiler to search for the file in the include paths specified with -I at compile
time and system paths. In contrast, the #include "..." notation causes the compiler to search for the file in the current
directory first, before searching in the include paths and system paths.
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build/loader.bin
Memory image for the kernel loader, a small chunk of code written in assembly language that reads the
kernel from disk into memory and starts it up. It is exactly 512 bytes long, a size fixed by the PC BIOS.

Subdirectories of build contain object files (.0) and dependency files (.d), both produced by the compiler.
The dependency files tell make which source files need to be recompiled when other source or header
files are changed.

4.1.4 Running Pintos

We’ve supplied a program for running Pintos in a simulator, called pintos, which should already be in
your PATH. (If not, add $HOME/.bin to your PATH.)

The Pintos kernel takes a list of arguments, which tell the kernel what actions to perform. These
actions are specified in the file threads/init.c on line 309 and look something like this.

static const struct action actions[] =
{
{"run", 2, run_task},
#ifdef FILESYS
{"1s", 1, fsutil_1s},
{"cat", 2, fsutil_cat},
{"rm", 2, fsutil_rm},
{"extract", 1, fsutil_extract},
{"append", 2, fsutil_append},
#endif
{NULL, O, NULL},
};

The number next to each action’s name tells Pintos how many arguments there are, including the
name of the action itself. There are also additional flags that the kernel accepts, which you can see in
the usage function. The preprocessor flags USERPROG and FILESYS, used in the threads directory, are
enabled in Projects 1 and 3. In Project 2 we will disable these flags. We won’t enable the VM macro in
any of our projects in this class.

The run action accepts a program invocation, like echo hello, and executes it. This is imple-
mented in the run_task function in test/init.c. Because run_task uses process_execute, the run
action does initially support program invocations that involve command-line arguments. Only once you
implement argument passing in process_execute (Task 1) will this behavior be supported.

Before you can use the run action to invoke a program, you need to have a file system with the
executable you want to run (e.g., echo). The file-system-related actions (e.g., 1s, cat, etc.) and other
flags can be used to create such a file system, as described below.

4.1.5 Formatting and Using the File System from the Pintos Command Line

During the development process, you may need to be able to create a simulated disk with a file system
partition. The pintos-mkdisk program provides this functionality. From the userprog/build directory,
execute pintos-mkdisk filesys.dsk
—--filesys-size=2. This command creates a simulated disk named filesys.dsk that contains a 2 MB
Pintos file system partition. Then format the file system partition by passing -f -q on the kernel’s
command line: pintos -f -q. The -f option causes the file system to be formatted, and -q causes
Pintos to exit as soon as the format is done.
You'll need a way to copy files in and out of the simulated file system. The Pintos -p (“put”) and -g
(“get”) options do this. To copy file into the Pintos file system, use the command pintos -p file -- -q.
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(The -- is needed because -p is for the Pintos script, not for the simulated kernel.) To copy it to the
Pintos file system under the name newname, add -a newname: pintos -p file -a newname -- -q.
The commands for copying files out of a VM are similar, but substitute -g for -p.

Here’s a summary of how to create a disk with a file system partition, format the file system, copy
the echo program into the new disk, and then run echo, passing argument x. (Argument passing won’t
work until you implemented it.) It assumes that you’ve already built the examples in examples and that
the current directory is userprog/build:

pintos-mkdisk filesys.dsk --filesys-size=2
pintos -f —-q

pintos -p ../../examples/echo -a echo -- -q
pintos -q run ’echo x’

The three final steps can actually be combined into a single command:

pintos-mkdisk filesys.dsk --filesys-size=2
pintos -p ../../examples/echo -a echo -- -f -q run ’echo x’

If you don’t want to keep the file system disk around for later use or inspection, you can even combine
all four steps into a single command. The --filesys-size=n option creates a temporary file system
partition approximately n megabytes in size just for the duration of the Pintos run. The Pintos automatic
test suite makes extensive use of this syntax:

pintos --filesys-size=2 -p ../../examples/echo -a echo -- -f -q run ’echo x’

You can delete a file from the Pintos file system using the rm file kernel action, e.g. pintos -q rm file.
Also, 1s lists the files in the file system and cat file prints a file’s contents to the display.

4.1.6 Using the File System from the Pintos Kernel

You will need to use the Pintos file system for this project, in order to load user programs from disk
and implement file operation syscalls. You will not need to modify the file system in this project.
The provided file system already contains all the functionality needed to support the required syscalls.
(We recommend that you do not change the file system for this project.) However, you will need to
read some of the file system code, especially filesys.h and file.h, to understand how to use the file
system. You should beware of these limitations of the Pintos file system:

e No internal synchronization. Concurrent accesses will interfere with one another. You should use
synchronization to ensure that only one process at a time is executing file system code.

e File size is fixed at creation time. The root directory is represented as a file, so the number of files
that may be created is also limited.

e File data is allocated as a single extent. In other words, data in a single file must occupy a
contiguous range of sectors on disk. External fragmentation can therefore become a serious problem
as a file system is used over time.

e No subdirectories.
e File names are limited to 14 characters.

e A system crash mid-operation may corrupt the disk in a way that cannot be repaired automatically.
There is no file system repair tool anyway.

e When a file is removed (deleted), its blocks are not deallocated until all processes have closed all
file descriptors pointing to it. Therefore, a deleted file may still be accessible by processes that
have it open.

10
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4.1.7 Debugging Pintos

The pintos program, located at ~/.bin/pintos, offers several options for configuring the simulator
or the virtual hardware. If you specify any options, they must precede the commands passed to
the Pintos kernel and be separated from them by --, so that the whole command is of the form
“pintos [option...] -- [argument...].” Invoke pintos without any arguments to see a list of
available options.

One of the most important options is -—gdb which will allow you to use GDB to debug the code you’ve
written. For example, to run the debugger for the do-nothing test we would perform the following steps:

e cd into “/code/personal/proj0/src/userprog

e Run Pintos with the debugger option “pintos --gdb -- run do-nothing”. At this point, Pintos
should say that it is “Waiting for gdb connection on port 1234”.

e Open a new terminal and SSH into the VM
e cd into “/code/personal/proj0/src/userprog/build

e Open cgdb by running “pintos-gdb kernel.o”. The pintos-gdb script loads cgdb with many
useful GDB macros that will help you debug Pintos.

e In GDB, attach to Pintos by running “target remote localhost:1234”.
On your VM, you should be able to use “debugpintos” or “deb” as a shortcut to performing this
step.

e Set a breakpoint at an interesting point in the program. Try “break start_process”.

e Use “continue” or “c” to start Pintos.

When you are working with the Pintos test suite, you should not start Pintos by constructing the
command-line arguments manually. Many of the tests in the test suite require specific arguments to be
passed to the simulator or to Pintos itself. You should read the next section for information about how
to debug Pintos tests.

4.1.8 Debugging Pintos Tests

To debug Pintos test cases, you should first run the “make check” command, then copy the command-
line arguments for the test that you are debugging, and then add --gdb to it. Then, run
pintos-gdb like you did in the previous section.

Try it out yourself. SSH into your VM and cd to “/code/personal/projO/src/userprog. Then,
run:

$ make clean
$ make
$ make check

Pay attention to the output of “make check”. You should see lines like these in the output:

pintos -v -k -T 60 --qemu --filesys-size=2 -p tests/userprog/do-nothing -a do-nothing
-- -q -f run do-nothing < /dev/null 2> tests/userprog/do-nothing.errors >
tests/userprog/do-nothing.output

perl -I../.. ../../tests/userprog/do-nothing.ck tests/userprog/do-nothing
tests/userprog/do-nothing.result

FAIL tests/userprog/do-nothing

11
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Here is an explanation:

e The first line runs the pintos script to start the Pintos kernel in a simulator, like we did before. The
pintos script consumes the -v -k -T 60 --gemu arguments and passes the -q -f run do-nothing
arguments to the Pintos kernel. Then, we use the <, 2>, and > symbols to redirect standard input,
standard error, and standard output to files.

e The second line uses the Perl programming language torun . ./. ./tests/threads/do-nothing.ck
to verify the output of Pintos kernel.

e Using the Perl script from line 2, the build system can tell if this test passed or failed. If the test
passed, we will see “pass”, followed by the test name. Otherwise, we will see “FAIL”, followed by
the test name, and then more details about the test failure.

In order to debug this test, you should copy the command on the first line. Remove the input/output
redirection (everything after the “< /dev/null”), because we want to see the output on the terminal
when we're debugging. Finally, add --gdb to the simulator options. (The --gdb must be before the
double dashes, --, because everything after the double dashes is passed to the kernel, not the simulator.)

Your final command should look like:

$ pintos --gdb -v -k -T 60 --qemu --filesys-size=2 -p tests/userprog/do-nothing -a
do-nothing -- -q -f run do-nothing

Run this command. Then, open a new terminal and cd to “/code/personal/proj0/src/userprog/build
and run “pintos-gdb kernel.o” and type “debugpintos” or “deb” like you did in the previous section.

e You do not need to quit GDB after each run of the Pintos kernel. Just start pintos again and type
debugpintos or deb into GDB to attach to a new instance of Pintos. (If you re-compile your code,
you must quit GDB and start it again, so it can load the new symbols from kernel.o.)

e Take some time to learn all the GDB shortcuts and how to use the CGDB interface. You may
also be interested in looking at the Pintos GDB macros found in “/.bin/gdb-macros and in the
section on [GD D

4.1.9 Debugging Page Faults

Below are some examples for debugging page faults using the Bochs emulator. We recommend using
Bochs, rather than QEMU, to debug kernel crashes because QEMU exits when the kernel crashes,
precluding after-the-fact debugging. In the event that you encounter a bug that only shows up in
QEMU, you can try setting a breakpoint in the page fault handler to allow for debugging before QEMU
exits.

If you encounter a page fault during a test, you should use the method in the previous section to
debug Pintos with GDB. If you use pintos-gdb instead of plain gdb or cgdb, you should get a backtrace
of the page fault when it occurs:

pintos-debug: a page fault occurred in kernel mode

#0 test_alarm_negative () at ../../tests/threads/alarm-negative.c:14
#1 0xc000ef4c in 7?7 ()

#2 0xc0020165 in start () at ../../threads/start.S:180

If you want to inspect the original environment where the page fault occurred, you can use this trick:

12
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(gdb) debugpintos
(gdb) continue

Now, wait until the kernel encounters the page fault. Then run these commands:

(gdb) set $eip = ((void**) $esp) [1]
(gdb) up
(gdb) down

You should now be able to inspect the local variables and the stack trace when the page fault occurred.

4.1.10 Debugging Kernel Panics

The Pintos source code contains a lot of “ASSERT (condition)” statements. When the condition of
an assert statement evaluates to false, the kernel will panic and print out some debugging information.
Usually, you will get a line of output that looks like this:

Call stack: 0xc0106eff 0xc01102fb 0xc010dc22 0xc010cf67 0xc0102319
0xc01032ba 0x804812c 0x8048a96 0x8048ac8.

This is a list of instruction addresses, each of which corresponds to a frame on the kernel stack when
the panic occurred. You can decode this information into a helpful stack trace by using the backtrace
utility that is included in your VM by doing:

$ cd “/code/personal/proj0/src/threads/build/
$ backtrace kernel.o 0xc0106eff 0xc01102fb 0xc010dc22 0xc010cf67 0xc0102319 ...

If you run your tests using “make check”, the testing framework will run backtrace automatically
when it detects a kernel panic.

To debug a kernel panic with GDB, you can usually just set a breakpoint at the inner-most line of
code inside the stack trace. However, if your kernel panic occurs inside a function that is called many
times, you may need to type continue a bunch of times before you reach the point in the test where
the kernel panic occurs.

One trick you can use to improve this technique is to transform the code itself. For example, if you
have an assert statement that looks like:

ASSERT (is_thread (next));
You can transform it into this:

if ('is_thread(next)) {
barrier(); // Set a breakpoint HERE!

}
ASSERT (is_thread (next));

Then, set a breakpoint at the line containing barrier(). You can use any line of code instead of
barrier (), but you must ensure that the compiler cannot reorder or eliminate that line of code. For
example, if you created a dummy variable “int hello = 1;” instead of using barrier (), the compiler
could decide that line of code wasn’t needed and omit instructions for it! If you get a compile error while
using barrier (), make sure you’ve included the synch.h header file.

You can also use GDB’s conditional breakpoints, but if the assertion makes use of C macros, GDB
might not understand what you mean.

13
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4.1.11 Adding Source Files

This project will not require you to add any new source code files. In the event you want to add your
own .c source code, open Makefile.build in your Pintos root directory and add the file to either the
threads_SRC or userprog_SRC variable depending on where the files are located.

If you want to add your own tests, place the test files in tests/userprog/. Then, edit
tests/userprog/Make.tests to incorporate your tests into the build system.

Make sure to re-run make from the userprog directory after adding your files. If your new file doesn’t
get compiled, run make clean and try again. Note that adding new .h files will not require any changes
to makefiles.

4.1.12 Why Pintos?

Why the name “Pintos”? First, like nachos (the operating system previously used in CS 162), pinto
beans are a common Mexican food. Second, Pintos is small and a “pint” is a small amount. Third, like
drivers of the eponymous car, students are likely to have trouble with blow-ups.

4.2 User Programs

User programs are written under the illusion that they have the entire machine, which means that the
operating system must manage/protect machine resources correctly to maintain this illusion for multiple
processes. In Pintos, more than one process can run at a time, but each process is single-threaded
(multithreaded processes are not supported).

4.2.1 Overview of Source Files for Project 1

threads/thread.h Contains the struct thread definition, which is the Pintos thread control block.
The fields in #ifdef USERPROG ... #endif are collectively the process control block. We expect
that you will add fields to the process control block in this project.

userprog/process.c Loads ELF binaries, starts processes, and switches page tables on context switch.

userprog/pagedir.c Manages the page tables. You probably won’t need to modify this code, but you
may want to call some of these functions.

userprog/syscall.c This is a skeleton system call handler. Currently, it only supports the exit syscall.

lib/user/syscall.c Provides library functions for user programs to invoke system calls from a C pro-
gram. Each function uses inline assembly code to prepare the syscall arguments and invoke the
system call. We do expect you to understand the calling conventions used for syscalls (also in
Reference).

lib/syscall-nr.h This file defines the syscall numbers for each syscall.

userprog/exception.c Handle exceptions. Currently all exceptions simply print a message and termi-
nate the process. Some, but not all, solutions to Project 1 involve modifying page_fault() in this
file.

gdt.c 80x86 is a segmented architecture. The Global Descriptor Table (GDT) is a table that describes
the segments in use. These files set up the GDT. You should not need to modify these files for any
of the projects. You can read the code if you're interested in how the GDT works.

tss.c The Task-State Segment (TSS) is used for 80x86 architectural task switching. Pintos uses the
TSS only for switching stacks when a user process enters an interrupt handler, as does Linux. You
should not need to modify these files for any of the projects. You can read the code if you're
interested in how the T'SS works.
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4.2.2 How User Programs Work

Pintos can run normal C programs, as long as they fit into memory and use only the system calls you
implement. Notably, malloc cannot be implemented because none of the system calls required for this
project allow for memory allocation. Pintos also can’t run programs that use floating point operations,
since the kernel doesn’t save and restore the processor’s floating-point unit when switching threads.

The src/examples directory contains a few sample user programs. The Makefile in this directory
compiles the provided examples, and you can edit it to compile your own programs as well. Pintos can
load ELF executables with the loader provided for you in userprog/process.c.

Until you copy a test program to the simulated file system (see [Formatting and Using the File System|
[from the Pintos Command Line)), Pintos will be unable to do useful work. You should create a clean
reference file system disk and copy that over whenever you trash your filesys.dsk beyond a useful state,
which may happen occasionally while debugging.

4.2.3 Virtual Memory Layout

Virtual memory in Pintos is divided into two regions: user virtual memory and kernel virtual memory.
User virtual memory ranges from virtual address 0 up to PHYS_BASE, which is defined in threads/vaddr.h
and defaults to 0xc0000000 (3 GB). Kernel virtual memory occupies the rest of the virtual address space,
from PHYS_BASE up to 4 GB.

User virtual memory is per-process. When the kernel switches from one process to another, it
also switches user virtual address spaces by changing the processor’s page directory base register (see
pagedir_activate() in userprog/pagedir.c). struct thread contains a pointer to a process’s page
table.

Kernel virtual memory is global. It is always mapped the same way, regardless of what user process
or kernel thread is running. In Pintos, kernel virtual memory is mapped one-to-one to physical memory,
starting at PHYS_BASE. That is, virtual address PHYS_BASE accesses physical address 0, virtual address
PHYS_BASE + 0x1234 accesses physical address 0x1234, and so on up to the size of the machine’s physical
memory.

A user program can only access its own user virtual memory. An attempt to access kernel virtual
memory causes a page fault, handled by page_fault() in userprog/exception.c, and the process will
be terminated. Kernel threads can access both kernel virtual memory and, if a user process is running,
the user virtual memory of the running process. However, even in the kernel, an attempt to access
memory at an unmapped user virtual address will cause a page fault.

Typical Memory Layout Conceptually, each process is free to lay out its own user virtual memory
however it chooses. In practice, user virtual memory is laid out like this:

PHYS_BASE +--———--—--—-"—""————— +
user stack
|

I
v

grows downward

grows upward
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o +
| code segment |

0X08048000 +-=============m—mm—mmmm—mm oo +
| |

| |

| |

| |

| |
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4.2.4 Accessing User Memory

As part of a system call, the kernel must often access memory through pointers provided by a user
program. The kernel must be very careful about doing so, because the user can pass a null pointer, a
pointer to unmapped virtual memory, or a pointer to kernel virtual address space (above PHYS_BASE).
All of these types of invalid pointers must be rejected without harm to the kernel or other running
processes, by terminating the offending process and freeing its resources.

There are at least two reasonable ways to do this correctly:

e verify the validity of a user-provided pointer, then dereference it. If you choose this route, you’ll
want to look at the functions in userprog/pagedir.c and in threads/vaddr.h. This is the
simplest way to handle user memory access.

e check only that a user pointer points below PHYS_BASE, then dereference it. An invalid user
pointer will cause a “page fault” that you can handle by modifying the code for page_fault()
in userprog/exception.c. This technique is normally faster because it takes advantage of the
processor’'s MMU, so it tends to be used in real kernels (including Linux).

In either case, you need to make sure not to “leak” resources. For example, suppose that your system
call has acquired a lock or allocated memory with malloc(). If you encounter an invalid user pointer
afterward, you must still be sure to release the lock or free the page of memory. If you choose to verify
user pointers before dereferencing them, this should be straightforward. It’s more difficult to handle if
an invalid pointer causes a page fault, because there’s no way to return an error code from a memory
access. Therefore, for those who want to try the latter technique, we’ll provide a little bit of helpful
code:

/* Reads a byte at user virtual address UADDR.
UADDR must be below PHYS_BASE.
Returns the byte value if successful, -1 if a segfault
occurred. */
static int
get_user (const uint8_t *uaddr)
{
int result;
asm ("movl $1f, %0; movzbl %1, %0; 1:"
"=ga" (result) : "m" (*uaddr));
return result;

16
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}

/* Writes BYTE to user address UDST.

UDST must be below PHYS_BASE.

Returns true if successful, false if a segfault occurred. */
static bool
put_user (uint8_t *udst, uint8_t byte)
{

int error_code;

asm ("movl $1f, %0; movb %b2, %1; 1:"

"=ga" (error_code), "=m" (xudst) : "q" (byte));
return error_code != -1;

3

Each of these functions assumes that the user address has already been verified to be below PHYS_BASE.
They also assume that you've modified page_fault () so that a page fault in the kernel merely sets eax
to Oxfffff£f£ff and copies its former value into eip.

If you do choose to use the second option (rely on the processor’s MMU to detect bad user pointers),
do not feel pressured to use the get_user and put_user functions from above. There are other ways to
modify the page fault handler to identify and terminate processes that pass bad pointers as arguments
to system calls, some of which are simpler and faster than using get_user and put_user to handle each
byte.

17
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4.2.5 Switching Processes

It is sometimes useful while debugging to switch between processes. To observe the process switch, do
the following in a fresh (i.e. with no existing breakpoints set) GDB session. Lines below starting with
“#” are comments.

debugpintos

break process.c:process_exit

continue

# Shows you the current thread id

call thread_current()->tid

# Sets a breakpoint immediately after the call to sema_down in process_wait
break 95

continue

# You should see a different thread id than before
call thread_current()->tid

# Shows other threads currently present in Pintos
dumplist &all_list thread allelem

4.2.6 80x86 Calling Convention

This section summarizes important points of the convention used for normal function calls on 32-bit
80x86 implementations of Unix. Some details are omitted for brevity.
The calling convention works like this:

1. The caller pushes each of the function’s arguments on the stack one by one, normally using the
push assembly language instruction. Arguments are pushed in right-to-left order.
The stack grows downward: each push decrements the stack pointer, then stores into the location
it now points to, like the C expression *(--sp) = value.

2. The caller pushes the address of its next instruction (the return address ) on the stack and jumps
to the first instruction of the callee. A single 80x86 instruction, call, does both.

3. The callee executes. When it takes control, the stack pointer points to the return address, the first
argument is just above it, the second argument is just above the first argument, and so on.

4. If the callee has a return value, it stores it into register eax.

5. The callee returns by popping the return address from the stack and jumping to the location it
specifies, using the 80x86 ret instruction.

6. The caller pops the arguments off the stack.

Consider a function £ () that takes three int arguments. This diagram shows a sample stack frame
as seen by the callee at the beginning of step 3 above, supposing that £() is invoked as £(1, 2, 3).
The initial stack address is arbitrary:

o +
Oxbffffe7c | 3 |
Oxbffffe78 | 2 |
Oxbffffe74 | 1
stack pointer --> Oxbffffe70 | return address |
o +
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4.2.7 Program Startup Details

The Pintos C library for user programs designates _start(), in lib/user/entry.c, as the entry point
for user programs. This function is a wrapper around main() that calls exit () if main() returns:

void
_start (int argc, char *argv[])
{
exit (main (argc, argv));
}

The kernel must put the arguments for the initial function on the stack before it allows the user
program to begin executing. The arguments are passed in the same way as the normal calling convention
(see |80x86 Calling Conventionl).

Consider how to handle arguments for the following example command: /bin/ls -1 foo bar. First,
break the command into words: /bin/1s, -1, foo, bar. Place the words at the top of the stack. Order
doesn’t matter, because they will be referenced through pointers.

Then, push the address of each string plus a null pointer sentinel, on the stack, in right-to-left order.
These are the elements of argv. The null pointer sentinel ensures that argv[argc] is a null pointer, as
required by the C standard. The order ensures that argv[0] is at the lowest virtual address. The x86
ABI requires that %esp be aligned to a 16-byte boundary at the time the call instruction is executed
(e.g., at the point where all arguments are pushed to the stack), so make sure to leave enough empty
space on the stack so that this is achieved.

Then, push argv (the address of argv[0]) and argc, in that order. Finally, push a fake “return
address”: although the entry function will never return, its stack frame must have the same structure
as any other.

The table below shows the state of the stack and the relevant registers right before the beginning of
the user program, assuming PHYS_BASE is 0xc0000000:

Address Name Data Type
Oxbffffffc  argv[3][...] bar\0 char [4]
Oxbffffff8  argv[2][...] foo\0 char [4]
Oxbffffffs  argv[1]l[...] -1\0 char[3]
Oxbfffffed argv[0]l[...] /bin/1s\0 char[8]
Oxbfffffec stack-align 0 uint8_t
Oxbfffffe8 argv[4] 0 char *
Oxbfffffe4d argv [3] Oxbffffffc char *
Oxbfffffel argv[2] Oxbffffff8 char *
Oxbfffffdc argv[1] Oxbffffff5 char *
Oxbfffffd8 argv[0] Oxbfffffed char *
Oxbfffffd4 argv Oxbfffffd8 char *x*
Oxbffff£do argc 4 int
Oxbfffffcc return address 0 void (*) O

In this example, the stack pointer would be initialized to Oxbfffffcc.

As shown above, your code should start the stack at the very top of the user virtual address space,

in the page just below virtual address PHYS_BASE (defined in threads/vaddr.h).

You may find the non-standard hex_dump () function, declared in <stdio.h>, useful for debugging

your argument passing code. Here’s what it would show in the above example:

bfffffcO

19

00 00 00 00 |
bfffffd0 04 00 00 00 d8 ff ff bf-ed ff ff bf f5 ff ff bf



CS 162 Fall 2020 Project 0: Introduction to Pintos

bfffffe0 £8 ff ff bf fc ff ff bf-00 00 00 00 00 2f 62 69 |............. /bil
bffffff0 6e 2f 6c 73 00 2d 6¢c 00-66 6f 6f 00 62 61 72 00 |n/ls.-1.foo.bar. |

4.2.8 Adding New Tests to Pintos

Pintos also comes with its own testing framework that allows you to design and run your own tests.
For this project, you will also be required to extend the current suite of tests with a few tests of your
own. All of the file system and userprog tests are “user program” tests, which means that they are only
allowed to interact with the kernel via system calls.

Some things to keep in mind while writing your test cases:

e User programs have access to a limited subset of the C standard library. You can find the user
library in 1ib/.

e User programs cannot directly access variables in the kernel.

e User programs do not have access to malloc, since brk and sbrk are not implemented. User
programs also have a limited stack size. If you need a large buffer, make it a static global variable.

e Pintos starts with 4 MB of memory and the file system block device is 2 MB by default. Don’t
use data structures or files that exceed these sizes.

e Your test should use msg() instead of printf () (they have the same function signature).
You can add new test cases to the userprog suite by modifying these files:

tests/userprog/Make.tests Entry point for the userprog test suite. You need to add the name of
your test to the tests/userprog_TESTS variable, in order for the test suite to find it. Additionally,
you will need to define a variable named tests/userprog/my-test-1_SRC which contains all the
files that need to be compiled into your test (see the other test definitions for examples). You can
add other source files and resources to your tests, if you wish.

tests/userprog/my-test-1.c This is the test code for your test. Your test should define a function
called test_main, which contains a user-level program. This is the main body of your test case,
which should make syscalls and print output. Use the msg() function instead of printf.

tests/userprog/my-test-1.ck Every test needs a . ck file, which is a Perl script that checks the output
of the test program. If you are not familiar with Perl, don’t worry! You can probably get through
this part with some educated guessing. Your check script should use the subroutines that are
defined in tests/tests.pm. At the end, call pass to print out the “PASS” message, which tells
Pintos test driver that your test passed.

4.3 Threads
4.3.1 Understanding Threads

The first step is to read and understand the code for the thread system. Pintos already
implements thread creation and thread completion, a simple scheduler to switch between threads, and
synchronization primitives (semaphores, locks, condition variables, and optimization barriers).

Some of this code might seem slightly mysterious. You can read through parts of the source code to
see what’s going on. If you like, you can add calls to printf () almost anywhere, then recompile and run
to see what happens and in what order. You can also run the kernel in a debugger and set breakpoints
at interesting spots, step through code and examine data, and so on.
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When a thread is created, the creator specifies a function for the thread to run, as one of the
arguments to thread_create(). The first time the thread is scheduled and runs, it starts executing
from the beginning of that function. When the function returns, the thread terminates. Each thread,
therefore, acts like a mini-program running inside Pintos, with the function passed to thread_create()
acting like main ().

At any given time, exactly one thread runs and the rest become inactive. The scheduler decides
which thread to run next. (If no thread is ready to run, then the special “idle” thread runs.)

The mechanics of a context switch are in threads/switch.S, which is x86 assembly code. It saves
the state of the currently running thread and restores the state of the next thread onto the CPU.

Using GDB, try tracing through a context switch to see what happens. You can set a breakpoint
on schedule() to start out, and then single-step from there (use “step” instead of “next”). Be sure
to keep track of each thread’s address and state, and what procedures are on the call stack for each
thread (try “backtrace”). You will notice that when one thread calls switch_threads(), another
thread starts running, and the first thing the new thread does is to return from switch_threads(). You
will understand the thread system once you understand why and how the switch_threads() that gets
called is different from the switch_threads() that returns.

4.3.2 The Thread Struct

Each thread struct represents either a kernel thread or a user process. In each of the 3 projects, you
will have to add your own members to the thread struct. You may also need to change or delete the
definitions of existing members.

Every thread struct occupies the beginning of its own 4KiB page of memory. The rest of the page is
used for the thread’s stack, which grows downward from the end of the page. It looks like this:

kernel stack
|
|
v
grows downward

sizeof (struct thread) +------------————————————————————— +
| magic |

I : I

I : I

| status |

| tid I

0 kB +-——————————————————— +

This layout has two consequences. First, struct thread must not be allowed to grow too big. If it
does, then there will not be enough room for the kernel stack. The base struct thread is only a few bytes
in size. It probably should stay well under 1 kB.

Second, kernel stacks must not be allowed to grow too large. If a stack overflows, it will corrupt
the thread state. Thus, kernel functions should not allocate large structures or arrays as non-static
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local variables. Use dynamic allocation with malloc() or palloc_get_page() instead. See the
[ATlocationl section for more details.

e Member of struct thread: tid_t tid
The thread’s thread identifier or tid. Every thread must have a tid that is unique over the entire
lifetime of the kernel. By default, tid_t is a typedef for int and each new thread receives the
numerically next higher tid, starting from 1 for the initial process.

e Member of struct thread: enum thread_status status
The thread’s state, one of the following:

— Thread State: THREAD_RUNNING
The thread is running. Exactly one thread is running at a given time. thread_current()
returns the running thread.

— Thread State: THREAD_READY
The thread is ready to run, but it’s not running right now. The thread could be selected to
run the next time the scheduler is invoked. Ready threads are kept in a doubly linked list
called ready_list.

— Thread State: THREAD_BLOCKED
The thread is waiting for something, e.g. a lock to become available, an interrupt to be
invoked. The thread won’t be scheduled again until it transitions to the THREAD_READY state
with a call to thread_unblock(). This is most conveniently done indirectly, using one of the
Pintos synchronization primitives that block and unblock threads automatically.

— Thread State: THREAD_DYING
The thread has exited and will be destroyed by the scheduler after switching to the next
thread.

e Member of struct thread: char name[16]
The thread’s name as a string, or at least the first few characters of it.

e Member of struct thread: uint8_t #*stack
Every thread has its own stack to keep track of its state. When the thread is running, the CPU’s
stack pointer register tracks the top of the stack and this member is unused. But when the CPU
switches to another thread, this member saves the thread’s stack pointer. No other members are
needed to save the thread’s registers, because the other registers that must be saved are saved on
the stack.

When an interrupt occurs, whether in the kernel or a user program, an “struct intr_frame” is
pushed onto the stack. When the interrupt occurs in a user program, the “struct intr_frame”
is always at the very top of the page.

e Member of struct thread: int priority
A thread priority, ranging from PRI_MIN (0) to PRI_MAX (63). Lower numbers correspond to lower
priorities, so that priority 0 is the lowest priority and priority 63 is the highest. Pintos currently
ignores these priorities, but you will implement priority scheduling in this project.

e Member of struct thread: struct list_elem allelem
This “list element” is used to link the thread into the list of all threads. Each thread is inserted
into this list when it is created and removed when it exits. The thread_foreach() function should
be used to iterate over all threads.

e Member of struct thread: struct list_elem elem
A “list element” used to put the thread into doubly linked lists, either ready_list (the list of
threads ready to run) or a list of threads waiting on a semaphore in sema_down (). It can do double
duty because a thread waiting on a semaphore is not ready, and vice versa.
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e Member of struct thread: uint32_t *pagedir
(Used in Projects 1 and 3.) The page table for the process, if this is a user process.

e Member of struct thread: unsigned magic
Always set to THREAD_MAGIC, which is just an arbitrary number defined in threads/thread.c,
and used to detect stack overflow. thread_current() checks that the magic member of the
running thread’s struct thread is set to THREAD_MAGIC. Stack overflow tends to change this
value, triggering the assertion. For greatest benefit, as you add members to struct thread, leave
magic at the end.

4.3.3 Thread Functions

threads/thread.c implements several public functions for thread support. Let’s take a look at the
most useful ones for this project:

e Function: void thread_init (void)
Called by main() to initialize the thread system. Its main purpose is to create a struct thread
for Pintos’s initial thread. This is possible because the Pintos loader puts the initial thread’s stack
at the top of a page, in the same position as any other Pintos thread.

Before thread_init() runs, thread_current() will fail because the running thread’s magic
value is incorrect. Lots of functions call thread_current() directly or indirectly, including
lock_acquire() for locking a lock, so thread_init () is called early in Pintos initialization.

e Function: struct thread *thread_current (void)
Returns the running thread.

e Function: void thread_exit (void) NO_RETURN
Causes the current thread to exit. Never returns, hence NO_RETURN.

4.4 Synchronization

If sharing of resources between threads is not handled in a careful, controlled fashion, the result is usually
a big mess. This is especially the case in operating system kernels, where faulty sharing can crash the
entire machine. Pintos provides several synchronization primitives to help out.

4.4.1 Disabling Interrupts

The crudest way to do synchronization is to disable interrupts, that is, to temporarily prevent the CPU
from responding to interrupts. If interrupts are off, no other thread will preempt the running thread,
because thread preemption is driven by the timer interrupt. If interrupts are on, as they normally are,
then the running thread may be preempted by another at any time, whether between two C statements
or even within the execution of one.

Incidentally, this means that Pintos is a “preemptible kernel,” that is, kernel threads can be pre-
empted at any time. Traditional Unix systems are “nonpreemptible,” that is, kernel threads can only
be preempted at points where they explicitly call into the scheduler. (User programs can be preempted
at any time in both models.) As you might imagine, preemptible kernels require more explicit synchro-
nization.

You should have little need to set the interrupt state directly. Most of the time you should use
the other synchronization primitives described in the following sections. The main reason to disable
interrupts is to synchronize kernel threads with external interrupt handlers, which cannot sleep and thus
cannot use most other forms of synchronization.
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Some external interrupts cannot be postponed, even by disabling interrupts. These interrupts, called
non-maskable interrupts (NMIs), are supposed to be used only in emergencies, e.g. when the com-
puter is on fire. Pintos does not handle non-maskable interrupts.

Types and functions for disabling and enabling interrupts are in threads/interrupt.h.

e Type: enum intr_level
One of INTR_OFF or INTR_ON, denoting that interrupts are disabled or enabled, respectively.

e Function: enum intr_level intr_get_level (void)
Returns the current interrupt state.

e Function: enum intr_level intr_set_level (enum intr_level level)
Turns interrupts on or off according to level. Returns the previous interrupt state.

e Function: enum intr_level intr_enable (void)
Turns interrupts on. Returns the previous interrupt state.

e Function: enum intr_level intr_disable (void)
Turns interrupts off. Returns the previous interrupt state.

This project only requires accessing a little bit of thread state from interrupt handlers. For the
alarm clock, the timer interrupt needs to wake up sleeping threads. In the advanced scheduler, the timer
interrupt needs to access a few global and per-thread variables. When you access these variables from
kernel threads, you will need to disable interrupts to prevent the timer interrupt from interfering.

When you do turn off interrupts, take care to do so for the least amount of code possible, or you can
end up losing important things such as timer ticks or input events. Turning off interrupts also increases
the interrupt handling latency, which can make a machine feel sluggish if taken too far.

The synchronization primitives themselves in synch.c are implemented by disabling interrupts. You
may need to increase the amount of code that runs with interrupts disabled here, but you should still
try to keep it to a minimum.

Disabling interrupts can be useful for debugging, if you want to make sure that a section of code is
not interrupted. You should remove debugging code before turning in your project. (Don’t just comment
it out, because that can make the code difficult to read.)

There should be no busy waiting in your submission. A tight loop that calls thread_yield() is one
form of busy waiting.

4.4.2 Semaphores

A semaphore is a nonnegative integer together with two operators that manipulate it atomically, which
are:

e “Down” or “P”: wait for the value to become positive, then decrement it.
e “Up” or “V”: increment the value (and wake up one waiting thread, if any).

A semaphore initialized to 0 may be used to wait for an event that will happen exactly once. For
example, suppose thread A starts another thread B and wants to wait for B to signal that some activity
is complete. A can create a semaphore initialized to 0, pass it to B as it starts it, and then “down” the
semaphore. When B finishes its activity, it “ups” the semaphore. This works regardless of whether A
“downs” the semaphore or B “ups” it first.

A semaphore initialized to 1 is typically used for controlling access to a resource. Before a block of
code starts using the resource, it “downs” the semaphore, then after it is done with the resource it “ups”
the resource. In such a case a lock, described below, may be more appropriate.

Semaphores can also be initialized to 0 or values larger than 1.

Pintos’ semaphore type and operations are declared in threads/synch.h.
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e Type: struct semaphore
Represents a semaphore.

e Function: void sema_init (struct semaphore *sema, unsigned value)
Initializes sema as a new semaphore with the given initial value.

e Function: void sema_down (struct semaphore *sema)
Executes the “down” or “P” operation on sema, waiting for its value to become positive and then
decrementing it by one.

e Function: bool sema_try_down (struct semaphore *sema)
Tries to execute the “down” or “P” operation on sema, without waiting. Returns true if sema
was successfully decremented, or false if it was already zero and thus could not be decremented
without waiting. Calling this function in a tight loop wastes CPU time, so use sema_down or find
a different approach instead.

e Function: void sema_up (struct semaphore *sema)
Executes the “up” or “V” operation on sema, incrementing its value. If any threads are waiting
on sema, wakes one of them up.

Unlike most synchronization primitives, sema_up may be called inside an external interrupt han-

dler.

Semaphores are internally built out of disabling interrupt and thread blocking and unblocking
(thread_block and thread_unblock). Each semaphore maintains a list of waiting threads, using the
linked list implementation in 1ib/kernel/list.c.

4.4.3 Locks

7 is called “release”, and

A lock is like a semaphore with an initial value of 1. A lock’s equivalent of “up
the “down” operation is called “acquire”.

Compared to a semaphore, a lock has one added restriction: only the thread that acquires a lock,
called the lock’s “owner”, is allowed to release it. If this restriction is a problem, it’s a good sign that a
semaphore should be used, instead of a lock.

Locks in Pintos are not “recursive,” that is, it is an error for the thread currently holding a lock to
try to acquire that lock.

Lock types and functions are declared in threads/synch.h.

e Type: struct lock
Represents a lock.

e Function: void lock_init (struct lock *lock)
Initializes 1ock as a new lock. The lock is not initially owned by any thread.

e Function: void lock_acquire (struct lock *lock)
Acquires lock for the current thread, first waiting for any current owner to release it if necessary.

e Function: bool lock_try_acquire (struct lock *lock)
Tries to acquire lock for use by the current thread, without waiting. Returns true if successful,
false if the lock is already owned. Calling this function in a tight loop is a bad idea because it
wastes CPU time, so use lock_acquire instead.

e Function: void lock_release (struct lock *lock)
Releases lock, which the current thread must own.

e Function: bool lock_held_by_current_thread (const struct lock *lock)
Returns true if the running thread owns lock, false otherwise. There is no function to test whether
an arbitrary thread owns a lock, because the answer could change before the caller could act on it.
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4.4.4 Monitors

A monitor is a higher-level form of synchronization than a semaphore or a lock. A monitor consists of
data being synchronized, plus a lock, called the monitor lock, and one or more condition variables.
Before it accesses the protected data, a thread first acquires the monitor lock. It is then said to be “in
the monitor”. While in the monitor, the thread has control over all the protected data, which it may
freely examine or modify. When access to the protected data is complete, it releases the monitor lock.

Condition variables allow code in the monitor to wait for a condition to become true. Each condition
variable is associated with an abstract condition, e.g. “some data has arrived for processing” or “over
10 seconds has passed since the user’s last keystroke”. When code in the monitor needs to wait for a
condition to become true, it “waits” on the associated condition variable, which releases the lock and
waits for the condition to be signaled. If, on the other hand, it has caused one of these conditions to
become true, it “signals” the condition to wake up one waiter, or “broadcasts” the condition to wake all
of them.

The theoretical framework for monitors was laid out by C. A. R. Hoare. Their practical usage was
later elaborated in a paper on the Mesa operating system.

Condition variable types and functions are declared in threads/synch.h.

e Type: struct condition
Represents a condition variable.

e Function: void cond_init (struct condition *cond)
Initializes cond as a new condition variable.

e Function: void cond_wait (struct condition *cond, struct lock *lock)
Atomically releases lock (the monitor lock) and waits for cond to be signaled by some other piece
of code. After cond is signaled, reacquires lock before returning. lock must be held before calling
this function.

Sending a signal and waking up from a wait are not an atomic operation. Thus, typically
cond_wait’s caller must recheck the condition after the wait completes and, if necessary, wait
again.

e Function: void cond_signal (struct condition *cond, struct lock *lock)
If any threads are waiting on cond (protected by monitor lock lock), then this function wakes up
one of them. If no threads are waiting, returns without performing any action. lock must be held
before calling this function.

e Function: void cond_broadcast (struct condition *cond, struct lock *lock)
Wakes up all threads, if any, waiting on cond (protected by monitor lock lock). lock must be
held before calling this function.

4.4.5 Optimization Barriers

An optimization barrier is a special statement that prevents the compiler from making assumptions
about the state of memory across the barrier. The compiler will not reorder reads or writes of variables
across the barrier or assume that a variable’s value is unmodified across the barrier, except for local
variables whose address is never taken. In Pintos, threads/synch.h defines the barrier () macro as an
optimization barrier.

One reason to use an optimization barrier is when data can change asynchronously, without the
compiler’s knowledge, e.g. by another thread or an interrupt handler. The too_many_loops function in
devices/timer.c is an example. This function starts out by busy-waiting in a loop until a timer tick
occurs:
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/* Wait for a timer tick. x/

int64_t start = ticks;

while (ticks == start)
barrier ();

Without an optimization barrier in the loop, the compiler could conclude that the loop would never
terminate, because start and ticks start out equal and the loop itself never changes them. It could
then “optimize” the function into an infinite loop, which would definitely be undesirable.

Optimization barriers can be used to avoid other compiler optimizations. The busy_wait function,
also in devices/timer.c, is an example. It contains this loop:

while (loops-- > 0)
barrier ();

The goal of this loop is to busy-wait by counting loops down from its original value to 0. Without the
barrier, the compiler could delete the loop entirely, because it produces no useful output and has no side
effects. The barrier forces the compiler to pretend that the loop body has an important effect.

Finally, optimization barriers can be used to force the ordering of memory reads or writes. For
example, suppose we add a “feature” that, whenever a timer interrupt occurs, the character in global
variable timer_put_char is printed on the console, but only if global Boolean variable timer_do_put is
true. The best way to set up x to be printed is then to use an optimization barrier, like this:

timer_put_char = ’x’;
barrier ();
timer_do_put = true;

Without the barrier, the code is buggy because the compiler is free to reorder operations when it
doesn’t see a reason to keep them in the same order. In this case, the compiler doesn’t know that the
order of assignments is important, so its optimizer is permitted to exchange their order. There’s no
telling whether it will actually do this, and it is possible that passing the compiler different optimization
flags or using a different version of the compiler will produce different behavior.

Another solution is to disable interrupts around the assignments. This does not prevent reordering,
but it prevents the interrupt handler from intervening between the assignments. It also has the extra
runtime cost of disabling and re-enabling interrupts:

enum intr_level old_level = intr_disable ();
timer_put_char = ’x’;

timer_do_put = true;

intr_set_level (old_level);

A second solution is to mark the declarations of timer_put_char and timer_do_put as volatile.
This keyword tells the compiler that the variables are externally observable and restricts its latitude
for optimization. However, the semantics of volatile are not well-defined, so it is not a good general
solution. The base Pintos code does not use volatile at all.

The following is not a solution, because locks neither prevent interrupts nor prevent the compiler
from reordering the code within the region where the lock is held:

lock_acquire (&timer_lock); /* INCORRECT CODE */
timer_put_char = ’x’;

timer_do_put = true;

lock_release (&timer_lock);
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The compiler treats invocation of any function defined externally, that is, in another source file, as
a limited form of optimization barrier. Specifically, the compiler assumes that any externally defined
function may access any statically or dynamically allocated data and any local variable whose address
is taken. This often means that explicit barriers can be omitted. It is one reason that Pintos contains
few explicit barriers.

A function defined in the same source file, or in a header included by the source file, cannot be relied
upon as an optimization barrier. This applies even to invocation of a function before its definition,
because the compiler may read and parse the entire source file before performing optimization.

4.5 Memory Allocation

Pintos contains two memory allocators, one that allocates memory in units of a page, and one that can
allocate blocks of any size.

4.5.1 Page Allocator

The page allocator declared in threads/palloc.h allocates memory in units of a page. It is most often
used to allocate memory one page at a time, but it can also allocate multiple contiguous pages at once.

The page allocator divides the memory it allocates into two pools, called the kernel and user pools.
By default, each pool gets half of system memory above 1 MiB, but the division can be changed with
the —ul kernel command line option. An allocation request draws from one pool or the other. If one
pool becomes empty, the other may still have free pages. The user pool should be used for allocating
memory for user processes and the kernel pool for all other allocations. This distinction is not very
relevant in this project, since all threads you will be dealing with are kernel threads (unlike in Project
1). For Project 2, all allocations should be made from the kernel pool.

Each pool’s usage is tracked with a bitmap, one bit per page in the pool. A request to allocate n
pages scans the bitmap for n consecutive bits set to false, indicating that those pages are free, and then
sets those bits to true to mark them as used. This is a “first fit” allocation strategy.

The page allocator is subject to fragmentation. That is, it may not be possible to allocate n contiguous
pages even though n or more pages are free, because the free pages are separated by used pages. In fact,
in pathological cases it may be impossible to allocate 2 contiguous pages even though half of the pool’s
pages are free. Single-page requests can’t fail due to fragmentation, so requests for multiple contiguous
pages should be limited as much as possible.

Pages may not be allocated from interrupt context, but they may be freed.

When a page is freed, all of its bytes are cleared to Oxcc, as a debugging aid.

Page allocator types and functions are described below.

e Function: void * palloc_get_page (enum palloc_flags flags)
Function: void * palloc_get_multiple (enum palloc_flags flags, size_t page_cnt)
Obtains and returns one page, or page_cnt contiguous pages, respectively. Returns a null pointer
if the pages cannot be allocated.

The flags argument may be any combination of the following flags:

— Page Allocator Flag: PAL_ASSERT
If the pages cannot be allocated, panic the kernel. This is only appropriate during kernel
initialization. User processes should never be permitted to panic the kernel.

— Page Allocator Flag: PAL_ZERO
Zero all the bytes in the allocated pages before returning them. If not set, the contents of
newly allocated pages are unpredictable.

— Page Allocator Flag PAL_USER
Obtain the pages from the user pool. If not set, pages are allocated from the kernel pool.
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e Function: void palloc_free_page (void *page)
Function: void palloc_free_multiple (void *pages, size_t page_cnt)
Frees one page, or page_cnt contiguous pages, respectively, starting at pages. All of the pages
must have been obtained using palloc_get_page or palloc_get_multiple.

4.5.2 Block Allocator

The block allocator, declared in threads/malloc.h, can allocate blocks of any size. It is layered on
top of the page allocator described in the previous section. Blocks returned by the block allocator are
obtained from the kernel pool.

The block allocator uses two different strategies for allocating memory. The first strategy applies to
blocks that are 1 KiB or smaller (one-fourth of the page size). These allocations are rounded up to the
nearest power of 2, or 16 bytes, whichever is larger. Then they are grouped into a page used only for
allocations of that size.

The second strategy applies to blocks larger than 1 KiB. These allocations (plus a small amount of
overhead) are rounded up to the nearest page in size, and then the block allocator requests that number
of contiguous pages from the page allocator.

In either case, the difference between the allocation requested size and the actual block size is wasted.
A real operating system would carefully tune its allocator to minimize this waste, but this is unimportant
in an instructional system like Pintos.

As long as a page can be obtained from the page allocator, small allocations always succeed. Most
small allocations do not require a new page from the page allocator at all, because they are satisfied
using part of a page already allocated. However, large allocations always require calling into the page
allocator, and any allocation that needs more than one contiguous page can fail due to fragmentation,
as already discussed in the previous section. Thus, you should minimize the number of large allocations
in your code, especially those over approximately 4 KiB each.

When a block is freed, all of its bytes are cleared to Oxcc, as a debugging aid.

The block allocator may not be called from interrupt context.

The block allocator functions are described below. Their interfaces are the same as the standard C
library functions of the same names.

e Function: void * malloc (size_t size)
Obtains and returns a new block, from the kernel pool, at least size bytes long. Returns a null
pointer if size is zero or if memory is not available.

e Function: void * calloc (size_t a, size_t b)
Obtains a returns a new block, from the kernel pool, at least a * b bytes long. The block’s
contents will be cleared to zeros. Returns a null pointer if a or b is zero or if insufficient memory
is available.

e Function: void * realloc (void *block, size_t new_size)
Attempts to resize block to new_size bytes, possibly moving it in the process. If successful,
returns the new block, in which case the old block must no longer be accessed. On failure, returns
a null pointer, and the old block remains valid.

A call with block null is equivalent to malloc. A call with new_size zero is equivalent to free.

e Function: void free (void *block)
Frees block, which must have been previously returned by malloc, calloc, or realloc (and not
yet freed).
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4.6 Linked Lists

Pintos contains a linked list data structure in 1ib/kernel/list.h that is used for many different pur-
poses. This linked list implementation is different from most other linked list implementations you may
have encountered, because it does not use any dynamic memory allocation.

/* List element. */
struct list_elem

{
struct list_elem *prev; /* Previous list element. */
struct list_elem *next; /* Next list element. */
}s
/* List. */
struct list
{
struct list_elem head; /* List head. */
struct list_elem tail; /* List tail. */
};

In a Pintos linked list, each list element contains a “struct list_elem”, which contains the pointers
to the next and previous element. Because the list elements themselves have enough space to hold the
prev and next pointers, we don’t need to allocate any extra space to support our linked list. Here is an
example of a linked list element which can hold an integer:

/* Integer linked list */
struct int_list_elem
{
int value;
struct list_elem elem;

};
Next, you must create a “struct list” to represent the whole list. Initialize it with list_init().

/* Declare and initialize a list */
struct list my_list;
list_init (&my_list);

Now, you can declare a list element and add it to the end of the list. Notice that the second argument
of 1ist_push_back() is the address of a “struct list_elem”, not the “struct int_list_elem” itself.

/* Declare a list element. */
struct int_list_elem three = {3, {NULL, NULL}};

/* Add it to the list x/
list_push_back (&my_list, &three.elem);

We can use the list_entry() macro to convert a generic “struct list_elem” into our custom
“struct int_list_elem” type. Then, we can grab the “value” attribute and print it out:

/* Fetch elements from the list */

struct list_elem *first_list_element = list_begin (&my_list);

struct int_list_elem *first_integer = list_entry (first_list_element,
struct int_list_elen,
elem);

printf("The first element is: %d\n", first_integer->value);
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By storing the prev and next pointers inside the structs themselves, we can avoid creating new “linked
list element” containers. However, this also means that a 1ist_elem can only be part of one list a time.
Additionally, our list should be homogeneous (it should only contain one type of element).

The 1list_entry () macro works by computing the offset of the elem field inside of “struct int_list_elem”.
In our example, this offset is 4 bytes. To convert a pointer to a generic “struct list_elem” to a pointer
to our custom “struct int_list_elem”, the list_entry () just needs to subtract 4 bytes! (It also casts
the pointer, in order to satisfy the C type system.)

Linked lists have 2 sentinel elements: the head and tail elements of the “struct 1list”. These
sentinel elements can be distinguished by their NULL pointer values. Make sure to distinguish between
functions that return the first actual element of a list and functions that return the sentinel head element
of the list.

There are also functions that sort a link list (using quicksort) and functions that insert an ele-
ment into a sorted list. These functions require you to provide a list element comparison function (see
lib/kernel/list.h for more details).

4.7 Debugging Tips

Many tools lie at your disposal for debugging Pintos. This section introduces you to a few of them.

4.7.1 printf

Don’t underestimate the value of printf. The way printf is implemented in Pintos, you can call it
from practically anywhere in the kernel, whether it’s in a kernel thread or an interrupt handler, almost
regardless of what locks are held.

printf is useful for more than just examining data. It can also help figure out when and where
something goes wrong, even when the kernel crashes or panics without a useful error message. The
strategy is to sprinkle calls to printf with different strings (e.g.: "<1>", "<2>" ...) throughout the
pieces of code you suspect are failing. If you don’t even see <1> printed, then something bad happened
before that point, if you see <1> but not <2>, then something bad happened between those two points,
and so on. Based on what you learn, you can then insert more printf calls in the new, smaller region
of code you suspect. Eventually you can narrow the problem down to a single statement. See section

for a related technique.

4.7.2 ASSERT

Assertions are useful because they can catch problems early, before they’d otherwise be noticed. Ideally,
each function should begin with a set of assertions that check its arguments for validity. (Initializers for
functions’ local variables are evaluated before assertions are checked, so be careful not to assume that
an argument is valid in an initializer.) You can also sprinkle assertions throughout the body of functions
in places where you suspect things are likely to go wrong. They are especially useful for checking loop
invariants.

Pintos provides the ASSERT macro, defined in <debug.h>, for checking assertions.

ASSERT (expression) Tests the value of expression. If it evaluates to zero (false), the kernel
panics. The panic message includes the expression that failed, its file and line number, and a
backtrace, which should help you to find the problem. See for more information.

4.7.3 Function and Parameter Attributes

These macros defined in <debug.h> tell the compiler special attributes of a function or function param-
eter. Their expansions are GCC-specific.
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UNUSED Appended to a function parameter to tell the compiler that the parameter might not be
used within the function. It suppresses the warning that would otherwise appear.

NO_RETURN Appended to a function prototype to tell the compiler that the function never returns.
It allows the compiler to fine-tune its warnings and its code generation.

NO_INLINE Appended to a function prototype to tell the compiler to never emit the function in-line.
Occasionally useful to improve the quality of backtraces (see below).

PRINTF_FORMAT (format, first) Appended to a function prototype to tell the compiler that
the function takes a printf-like format string as the argument numbered format (starting from
1) and that the corresponding value arguments start at the argument numbered first. This lets
the compiler tell you if you pass the wrong argument types.

4.7.4 Backtraces

When the kernel panics, it prints a “backtrace,” that is, a summary of how your program got where it
is, as a list of addresses inside the functions that were running at the time of the panic. You can also
insert a call to debug_backtrace, prototyped in <debug.h>, to print a backtrace at any point in your
code. debug_backtrace_all, also declared in <debug.h>, prints backtraces of all threads.

The addresses in a backtrace are listed as raw hexadecimal numbers, which are difficult to interpret.
We provide a tool called backtrace to translate these into function names and source file line numbers.
Give it the name of your kernel.o as the first argument and the hexadecimal numbers composing the
backtrace (including the 0x prefixes) as the remaining arguments. It outputs the function name and
source file line numbers that correspond to each address.

If the translated form of a backtrace is garbled, or doesn’t make sense (e.g.: function A is listed
above function B, but B doesn’t call A), then it’s a good sign that you're corrupting a kernel thread’s
stack, because the backtrace is extracted from the stack. Alternatively, it could be that the kernel.o
you passed to backtrace is not the same kernel that produced the backtrace.

Sometimes backtraces can be confusing without any corruption. Compiler optimizations can cause
surprising behavior. When a function has called another function as its final action (a tail call), the
calling function may not appear in a backtrace at all. Similarly, when function A calls another function
B that never returns, the compiler may optimize such that an unrelated function C appears in the
backtrace instead of A. Function C is simply the function that happens to be in memory just after A.

Here’s an example. Suppose that Pintos printed out this following call stack:

Call stack: 0xc0106eff 0xc01102fb 0xc010dc22 0xc010cf67 0xc0102319
0xc010325a 0x804812c 0x8048a96 0x8048ac8.

You would then invoke the backtrace utility like shown below, cutting and pasting the backtrace
information into the command line. This assumes that kernel.o is in the current directory. You would
of course enter all of the following on a single shell command line, even though that would overflow our
margins here:

backtrace kernel.o 0xc0106eff 0xc01102fb 0xc010dc22 0xc010cf67 0xc0102319 0xc010325a
0x804812c 0x8048a96 0x8048ac8

The backtrace output would then look something like this:

0xc0106eff: debug_panic (lib/debug.c:86)

0xc01102fb: file_seek (filesys/file.c:405)
0xc010dc22: seek (userprog/syscall.c:744)
0xc010cf67: syscall_handler (userprog/syscall.c:444)
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0xc0102319: intr_handler (threads/interrupt.c:334)
0xc010325a: intr_entry (threads/intr-stubs.s:38)
0x0804812c: (unknown)

0x08048a96: (unknown)

0x08048ac8: (unknown)

The first line in the backtrace refers to debug_panic, the function that implements kernel panics.
Because backtraces commonly result from kernel panics, debug_panic will often be the first function
shown in a backtrace.

The second line shows file_seek as the function that panicked, in this case as the result of an
assertion failure. In the source code tree used for this example, line 405 of filesys/file.c is the
assertion

assert (file_ofs >= 0);

(This line was also cited in the assertion failure message.) Thus, file_seek panicked because it
passed a negative file offset argument.

The third line indicates that seek called file_seek, presumably without validating the offset argu-
ment. In this submission, seek implements the seek system call.

The fourth line shows that syscall_handler, the system call handler, invoked seek.

The fifth and sixth lines are the interrupt handler entry path.

The remaining lines are for addresses below phys_base. This means that they refer to addresses
in the user program, not in the kernel. If you know what user program was running when the kernel
panicked, you can re-run backtrace on the user program, like so: (typing the command on a single line,
of course):

backtrace tests/filesys/extended/grow-too-big 0xc0106eff 0xc01102fb 0xc010dc22
0xc010cf67 0xc0102319 0xc010325a 0x804812c 0x8048a96 0x8048ac8

The results look like this:

0xc0106eff: (unknown)
0xc01102fb: (unknown)
0xc010dc22: (unknown)
0xc010cf67: (unknown)
0xc0102319: (unknown)
0xc010325a: (unknown)

0x0804812c: test_main (...xtended/grow-too-big.c:20)
0x08048a96: main (tests/main.c:10)
0x08048ac8: _start (lib/user/entry.c:9)

You can even specify both the kernel and the user program names on the command line, like so:

backtrace kernel.o tests/filesys/extended/grow-too-big 0xc0106eff 0xc01102fb 0xc010dc22
0xc010cf67 0xc0102319 0xc010325a 0x804812c 0x8048a96 0x8048ac8

The result is a combined backtrace:
in kernel.o:

0xc0106eff: debug_panic (lib/debug.c:86) |

0xc01102fb: file_seek (filesys/file.c:405) |
0xc010dc22: seek (userprog/syscall.c:744) |
0xc010cf67: syscall_handler (userprog/syscall.c:444) |
0xc0102319: intr_handler (threads/interrupt.c:334) |
0xc010325a: intr_entry (threads/intr-stubs.s:38) |
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in tests/filesys/extended/grow-too-big:

0x0804812c: test_main (...xtended/grow-too-big.c:20) |
0x08048a96: main (tests/main.c:10) |
0x08048ac8: _start (lib/user/entry.c:9) |

Here’s an extra tip: backtrace is smart enough to strip the Call stack: header and . trailer from
the command line if you include them. This can save you a little bit of trouble in cutting and pasting.
Thus, the following command prints the same output as the first one we used:

backtrace kernel.o Call stack: 0xc0106eff 0xc01102fb 0xc010dc22 0xc010cf67 0xc0102319
0xc01032ba 0x804812c 0x8048a96 0x8048ac8.

4.7.5 GDB

You can run Pintos under the supervision of the GDB debugger. First, start Pintos with the --gdb
option, e.g.: pintos --gdb -- run mytest. Second, open a second terminal on the same machine and
use pintos-gdb to invoke gdb on kernel.o

pintos-gdb kernel.o
and issue the following GDB command:
target remote localhost:1234

Now GDB is connected to the simulator over a local network connection. You can now issue any
normal GDB commands. If you issue the ¢ command, the simulated bios will take control, load Pintos,
and then Pintos will run in the usual way. You can pause the process at any point with ctrl+c.

Using GDB

You can read the GDB manual by typing info gdb at a terminal command prompt. Here’s a few
commonly useful GDB commands:

¢ Continues execution until ctrl+c or the next breakpoint.

break function
break file:line

break *address Sets a breakpoint at function, at 1ine within file, or address. (use a Ox prefix to
specify an address in hex.)

Use break main to make GDB stop when Pintos starts running.

p expression Evaluates the given expression and prints its value. If the expression contains a function
call, that function will actually be executed.

1 *address Lists a few lines of code around address. (use a 0x prefix to specify an address in hex.)
bt Prints a stack backtrace similar to that output by the backtrace program described above.

p/a address Prints the name of the function or variable that occupies address. (use a 0x prefix to
specify an address in hex.)

diassemble function disassembles function.
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We also provide a set of macros specialized for debugging Pintos, written by Godmar Back (gback@cs.vt.edu).
You can type help user-defined for basic help with the macros. Here is an overview of their function-
ality, based on Godmar’s documentation:

debugpintos Attach debugger to a waiting Pintos process on the same machine. Shorthand for
target remote localhost:1234.

dumplist &list type element Prints the elements of 1ist, which should be a struct list that contains
elements of the given type (without the word struct) in which element is the struct list_elem
member that links the elements.

Example: dumplist &all_list thread allelem prints all elements of struct thread that are
linked in struct list all_list usingthe struct list_elem allelem which is part of struct thread.

btthread thread Shows the backtrace of thread, which is a pointer to the struct thread of the thread
whose backtrace it should show. For the current thread, this is identical to the bt (backtrace)
command. It also works for any thread suspended in schedule, provided you know where its
kernel stack page is located.

btthreadlist list element shows the backtraces of all threads in 1ist, the struct list in which the
threads are kept. Specify element as the struct list_elem field used inside struct_thread to
link the threads together.

Example: btthreadlist all_list allelem shows the backtraces of all threads contained in
struct list all_list, linked together by allelem. This command is useful to determine where
your threads are stuck when a deadlock occurs. Please see the example scenario below.

btthreadall short-hand for btthreadlist all_list allelem.

btpagefault Print a backtrace of the current thread after a page fault exception. Normally, when a
page fault exception occurs, GDB will stop with a message that might say:

program received signal O, signal O.
0xc0102320 in intrOe_stub ()

In that case, the bt command might not give a useful backtrace. Use btpagefault instead.

You may also use btpagefault for page faults that occur in a user process. In this case, you may
wish to also load the user program’s symbol table using the loadusersymbols macro, as described
above.

hook-stop GDB invokes this macro every time the simulation stops, which Bochs will do for every
processor exception, among other reasons. If the simulation stops due to a page fault, hook-stop
will print a message that says and explains further whether the page fault occurred in the kernel
or in user code.

If the exception occurred from user code, hook-stop will say:

pintos-debug: a page fault exception occurred in user mode
pintos-debug: hit ’c’ to continue, or ’s’ to step to intr_handler
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In Project 1, a page fault in a user process leads to the termination of the process. You should
expect those page faults to occur in the robustness tests where we test that your kernel properly
terminates processes that try to access invalid addresses. To debug those, set a breakpoint in
page_fault in exception.c, which you will need to modify accordingly.

If the page fault did not occur in user mode while executing a user process, then it occurred in
kernel mode while executing kernel code. In this case, hook-stop will print this message:

pintos-debug: a page fault occurred in kernel mode

Followed by the output of the btpagefault command.

loadusersymbols You can also use GDB to debug a user program running under Pintos. To do that,
use the loadusersymbols macro to load the program’s symbol table:

loadusersymbol program

Where program is the name of the program’s executable (in the host file system, not in the Pintos
file system). For example, you may issue:

(gdb) loadusersymbols tests/userprog/exec-multiple
add symbol table from file "tests/userprog/exec-multiple" at
.text_addr = 0x80480a0

After this, you should be able to debug the user program the same way you would the kernel,
by placing breakpoints, inspecting data, etc. Your actions apply to every user program running
in Pintos, not just to the one you want to debug, so be careful in interpreting the results: GDb
does not know which process is currently active (because that is an abstraction the Pintos kernel
creates). Also, a name that appears in both the kernel and the user program will actually refer to
the kernel name. (The latter problem can be avoided by giving the user executable name on the
GDB command line, instead of kernel.o, and then using loadusersymbols to load kernel.o.)
loadusersymbols is implemented via GDB’s add-symbol-file command.

4.7.6 Triple Faults

When a CPU exception handler, such as a page fault handler, cannot be invoked because it is missing
or defective, the CPU will try to invoke the “double fault” handler. If the double fault handler is itself
missing or defective, that’s called a “triple fault.” A triple fault causes an immediate CPU reset.

Thus, if you get yourself into a situation where the machine reboots in a loop, that’s probably a
“triple fault.” In a triple fault situation, you might not be able to use printf for debugging, because
the reboots might be happening even before everything needed for printf is initialized.

There are at least two ways to debug triple faults. First, you can run Pintos in Bochs under GDB.
If Bochs has been built properly for Pintos, a triple fault under GDB will cause it to print the message
“triple fault: stopping for gdb” on the console and break into the debugger. (If Bochs is not running
under GDB, a triple fault will still cause it to reboot.) You can then inspect where Pintos stopped,
which is where the triple fault occurred.

Another option is “debugging by infinite loop.” Pick a place in the Pintos code, insert the infinite
loop for (;;); there, and recompile and run. There are two likely possibilities:

The machine hangs without rebooting. If this happens, you know that the infinite loop is running.
That means that whatever caused the reboot must be after the place you inserted the infinite loop. Now
move the infinite loop later in the code sequence.

The machine reboots in a loop. If this happens, you know that the machine didn’t make it to the
infinite loop. Thus, whatever caused the reboot must be before the place you inserted the infinite loop.
Now move the infinite loop earlier in the code sequence.

)
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If you move around the infinite loop in a “binary search” fashion, you can use this technique to pin
down the exact spot that everything goes wrong. It should only take a few minutes at most.

4.7.7 General Tips

The page allocator in threads/palloc.c and the block allocator in threads/malloc.c clear all the
bytes in memory to Oxcc at time of free. Thus, if you see an attempt to dereference a pointer like
Oxccccccecc, or some other reference to Oxcc, there’s a good chance you're trying to reuse a page that’s
already been freed. Also, byte Oxcc is the cpu opcode for “invoke interrupt 3,” so if you see an error
like interrupt 0x03 (#bp breakpoint exception), then Pintos tried to execute code in a freed page
or block.

An assertion failure on the expression sec_no < d->capacity indicates that Pintos tried to access a
file through an inode that has been closed and freed. Freeing an inode clears its starting sector number
to Oxccccccce, which is not a valid sector number for disks smaller than about 1.6 TB.
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