
Project 2: Threads

Due: April 2, 2022

Contents

1 Introduction 3
1.1 Setup . 3

2 Tasks 4
2.1 Efficient Alarm Clock . 4
2.2 Strict Priority Scheduler . 4
2.3 User Threads . 4
2.4 Concept Check . 5
2.5 Testing . 6

3 Deliverables 7
3.1 Design . 7

3.1.1 Document . 7
3.1.2 Review . 8
3.1.3 Grading . 8

3.2 Code . 8
3.2.1 Checkpoints . 8
3.2.2 Testing . 8
3.2.3 Quality . 8

3.3 Report . 9
3.4 Evaluations . 9
3.5 Submission . 10
3.6 Grading . 10

4 Plan 11
4.1 Checkpoint 1 . 11
4.2 Checkpoint 2 . 11
4.3 Final . 11

5 FAQ 12
5.1 Efficient Alarm Clock . 13
5.2 Strict Priority Scheduler . 13

A Threads 14
A.1 Understanding Threads . 14
A.2 The Thread Struct . 14
A.3 Thread Functions . 16

B Scheduler 17

C User Threads 18

1

CS 162 Spring 2022 Project 2 Threads

C.1 Implementation Requirements . 18
C.2 Synchronization . 19
C.3 Additional Information . 19

D Pthread Library 21
D.1 Threading . 21
D.2 User-Level Synchronization . 22

E Synchronization 24
E.1 Disabling Interrupts . 24
E.2 Semaphores . 25
E.3 Locks . 25
E.4 Monitors . 26
E.5 Optimization Barriers . 27

F Advice 29
F.1 Group Work . 29

F.1.1 Meetings . 29
F.2 Development . 29

F.2.1 Compiler Warnings . 29
F.2.2 Faster Compilation . 30
F.2.3 Repeated Commands . 30
F.2.4 Hail Mary . 30

2

CS 162 Spring 2022 Project 2 Threads

1 Introduction

Welcome to Project Threads! In this project, you will add features to the threading system of Pintos.

In Project User Programs, each thread that you dealt with (except the init and idle threads) was also a
process, with its own address space, data backed by an executable file, and ability to execute in userspace.
Importantly, each thread that was also a userspace process was the only thread in that process; multithreaded
user programs were not supported. This project, you will be overcoming this limitation by adding support for
multithreaded user programs. Moreover, you will be implementing an efficient alarm clock and strict priority
scheduler. However, for simplicity, you will implement these features only for kernel threads – threads that
only execute in the kernel mode and have no userspace component.

1.1 Setup

First, log into your VM. You should already have your Pintos code from Project User Programs, which you
will be building off of. We recommend that you tag your final Project User Programs code since you will
probably build off of it for Project File Systems.

> cd ~/code/group

> git tag proj-userprog-completed

> git push group master --tags

If you are using the staff solution for Project User Programs (check Piazza for more information), you will
need to reset your repo.

> git fetch staff master

> rm -rf src/

> git checkout staff/master -- src

> git commit -m "Reset to skeleton code before applying diff"

> git pull staff master

> git push group master

Then, you can apply the given patch p1.diff. Make sure p1.diff is in /code/group.

> patch -p4 -i p1.diff

For this project, group0 has been updated to include important functions to implement for multi-threading.
Please merge the starter code before starting Project 2 using git pull staff master. Because of this
update, you will likely get merge conflicts in process.c and process.h. Please resolve the merge conflicts.
[This guide1 may be helpful. It will also be helpful to take a look at what is being updated.]

1https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/addressing-merge-conflicts/

resolving-a-merge-conflict-using-the-command-line

3

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/addressing-merge-conflicts/resolving-a-merge-conflict-using-the-command-line
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/addressing-merge-conflicts/resolving-a-merge-conflict-using-the-command-line
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/addressing-merge-conflicts/resolving-a-merge-conflict-using-the-command-line

CS 162 Spring 2022 Project 2 Threads

2 Tasks

2.1 Efficient Alarm Clock

In Pintos, threads may call this function to put themselves to sleep:

/**

* This function suspends execution of the calling thread until time has

* advanced by at least x timer ticks. Unless the system is otherwise idle, the

* thread need not wake up after exactly x ticks. Just put it on the ready queue

* after they have waited for the right number of ticks. The argument to

* timer_sleep() is expressed in timer ticks, not in milliseconds or any another

* unit. There are TIMER_FREQ timer ticks per second, where TIMER_FREQ is a

* constant defined in devices/timer.h (spoiler: it's 100 ticks per second).

*/

void timer_sleep (int64_t ticks);

timer sleep is useful for threads that operate in real-time (e.g. for blinking the cursor once per second).
The current implementation of timer sleep is inefficient, because it calls thread yield in a loop until
enough time has passed. This consumes CPU cycles while the thread is waiting. Your task is to reimplement
timer sleep so that it executes efficiently without any busy waiting.

2.2 Strict Priority Scheduler

In Pintos, each thread has a priority value ranging from 0 (PRI MIN) to 63 (PRI MAX). However, the current
scheduler does not respect these priority values. You must modify the scheduler so that higher-priority
threads always run before lower-priority threads (i.e. strict priority scheduling).

You must also modify the 3 Pintos synchronization primitives (lock, semaphore, condition variable), so that
these shared resources prefer higher-priority threads over lower-priority threads.

Additionally, you must implement priority donation for Pintos locks. When a high-priority thread (A)
has to wait to acquire a lock, which is already held by a lower-priority thread (B), we temporarily raise B’s
priority to A’s priority. A scheduler that does not donate priorities is prone to the problem of priority
inversion whereby a medium-priority thread runs while a high-priority thread (A) waits on a resource held
by a low-priority thread (B). A scheduler that supports priority donation would allow B to run first, so that
A, which has the highest priority, can be unblocked. Your implementation of priority donation must handle
1) donations from multiple sources, 2) undoing donations when a lock is released, and 3) nested/recursive
donation.

A thread may set its own priority by calling thread set priority and get its own priority by calling
thread get prioirty.

If a thread no longer has the highest “effective priority” (it called thread set priority with a low value or
it released a lock), it must immediately yield the CPU to the highest-priority thread.

2.3 User Threads

Pintos is a multithreaded kernel (i.e. there can be more than one thread running in the kernel). While
working on Project User Programs, you have no doubt worked with the threading interface in the kernel. In
threads/thread.c, thread create allows us to create a new kernel thread that runs a specific kernel task.
Analogously, the thread exit function allows a thread to kill itself. You should read and understand the
kernel threading model.

On the other hand, as it were in Project User Programs, each user process only had one thread of control. In
other words, it is impossible for a user program to create a new thread to run another user function. There
was no analog of thread create and thread exit for user programs. In a real system, user programs can
indeed create their own threads. We saw this via the POSIX pthread library.

4

CS 162 Spring 2022 Project 2 Threads

For this task, you will need to implement a simplified version of the pthread library in lib/user/pthread.h.
User programs would be allowed to create their own threads using the functions pthread create and
pthread exit. Threads can also wait on other threads with the pthread join function, which is simi-
lar to the wait syscall for processes. Threads should be able to learn their thread IDs (TIDs) through a
new get tid syscall. You must also account for how the syscalls in Project User Programs are affected by
making user programs multithreaded.

In Project User Programs, whenever a user program (which consisted of just a single thread) trapped into
the OS, it ran in its own dedicated kernel thread. In other words, user threads had a 1-1 mapping with
kernel threads. For this task, you will need to maintain this 1-1 mapping. That is, a user process with n user
threads should be paired 1-1 with n kernel threads, and each user thread should run in its dedicated kernel
thread when it traps into the OS. You should not implement green threads2, which have a many-to-one
mapping between user threads and kernel threads. Green threads are not ideal, because as soon as one user
thread blocks, e.g. on IO, all of the user threads are also blocked.

In addition, you must also implement user-level synchronization. After all, threads are not all that useful if we
can’t synchronize them properly with locks and semaphores. You will be required to implement lock init,
lock acquire, lock release, sema init, sema down, and sema up for user programs.

2.4 Concept Check

The following are conceptual questions meant to be answered in your design document. You won’t need to
write any code for these questions, but you may need to read and reference some.

1. When a kernel thread in Pintos calls thread exit, when and where is the page containing its stack and
TCB (i.e. struct thread) freed? Why can’t we just free this memory by calling palloc free page

inside the thread exit function?

2. When the thread tick function is called by the timer interrupt handler, in which stack does it execute?

3. Suppose there are two kernel threads in the system, thread A running functionA and thread B running
functionB. Give a scheduler ordering in which the following code can lead to deadlock.

struct lock lockA; // Global lock

struct lock lockB; // Global lock

void functionA() {

lock_acquire(&lockA);

lock_acquire(&lockB);

lock_release(&lockB);

lock_release(&lockA);

}

void functionB() {

lock_acquire(&lockB);

lock_acquire(&lockA);

lock_release(&lockA);

lock_release(&lockB);

}

4. Consider the following scenario: there are two kernel threads in the system, Thread A and Thread
B. Thread A is running in the kernel, which means Thread B must be on the ready queue, waiting
patiently in threads/switch.S. Currently in Pintos, threads cannot forcibly kill each other. However,
suppose that Thread A decides to kill Thread B by taking it off the ready queue and freeing its thread
stack. This will prevent Thread B from running, but what issues could arise later from this action?

2https://en.wikipedia.org/wiki/Green_threads

5

https://en.wikipedia.org/wiki/Green_threads
https://en.wikipedia.org/wiki/Green_threads

CS 162 Spring 2022 Project 2 Threads

5. Consider a fully-functional and correct implementation of this project, except for a single bug, which
exists in the kernel’s sema up function. According to the project requirements, semaphores (and other
synchronization variables) must prefer higher-priority threads over lower-priority threads. However,
the implementation chooses the highest-priority thread based on the base priority rather than the
effective priority. Essentially, priority donations are not taken into account when the semaphore
decides which thread to unblock. Please design a test case that can prove the existence of this
bug. Pintos test cases contain regular kernel-level code (variables, function calls, if statements, etc)
and can print out text. We can compare the expected output with the actual output. If they do not
match, then it proves that the implementation contains a bug. You should provide a description
of how the test works, as well as the expected output and the actual output.

2.5 Testing

Pintos already contains a test suite for Project User Programs, but not all of the parts of this project have
complete test coverage. You must submit one new test case which exercise functionality that is not
covered by existing tests. We will not tell you what features to write tests for, so you will be responsible
for identifying which features of this project would benefit most from additional tests. Make sure your own
project implementation passes the tests that you write. You can pick any appropriate name for your test,
but beware that test names should be no longer than 14 characters.

6

CS 162 Spring 2022 Project 2 Threads

3 Deliverables

3.1 Design

Before you start writing any code for your project, you need to create an design plan for each feature and
convince yourself that your design is correct. You must submit a design document and attend a design
review with your TA. This will help you solidify your understanding of the project and have a solid attack
plan before tackling a large codebase.

3.1.1 Document

Like any techinical writing, your design document needs to be clean and well formatted. We’ve provided
you with a template linked on the website that you must use. The template can be found on the website.
We use Dropbox Paper3 which supports real-time collaboration like Google Docs with the added benefit of
techincal writing support (e.g. code blocks, LaTeX). Not using this template or failure to use code
formatting will result in losing points. The main goal of this is not to punish you for this but rather
make it easy for TAs to read.

To get started, navigate to the template and click the “Create doc” button on the top right hand corner.
You can share this doc with other group members to collaborate on it. Make sure to click the blue
“Share” button in your document, not the template.

For each task except for Concept Check, you must explain the following aspects of your proposed design.
We suggest you create a section for each task which has subsections for each of the following aspects.

Data Structures and Functions

List any struct definitions, global or static variables, typedefs, or enumerations that you will be adding
or modifying (if it already exists). These should be written with C not pseudocode. Include a brief
explanation (i.e. a one line comment) of the purpose of each modification. A more in depth explanation
should be left for the following sections.

Algorithms

Tell us how you plan on writing the necessary code. Your description should be at a level below the high level
description of requirements given in the assignment. Do not repeat anything that is already stated
on the spec.

On the other hand, your description should be at a level above the code itself. Don’t give a line-by-line run-
down of what code you plan to write. You may use small snippets of pseudocode or C in places you deem
appropriate. Instead, you need to convince us that your design satisfies all the requirements, especially
any edge cases. We expect you to have read through the Pintos source code when preparing your design
document, and your design document should refer to the appropriate parts of the Pintos source code when
necessary to clarify your implementation.

Synchronization

List all resources that are shared across threads and processes. For each resource, explain how the it is
accessed (e.g. from an interrupt context) and describe your strategy to ensure it is shared and modified
safely (i.e. no race conditions, deadlocks).

In general, the best synchronization strategies are simple and easily verifiable. If your synchronization
strategy is difficult to explain, this is a good indication that you should simplify your strategy. Discuss the
time and memory costs of your synchronization approach, and whether your strategy will significantly limit
the concurrency of the kernel and/or user processes/threads. When discussing the concurrency allowed by
your approach, explain how frequently threads will contend on the shared resources, and any limits on the
number of threads that can enter independent critical sections at a single time. You should aim to avoid
locking strategies that are overly coarse.

3http://paper.dropbox.com/

7

http://paper.dropbox.com/
http://paper.dropbox.com/

CS 162 Spring 2022 Project 2 Threads

Interrupt handlers cannot acquire locks. If you need to access a synchronized variable from an interrupt
handler, consider disabling interrupts. Locks do not prevent a thread from being preempted. Threads can
be interrupted during a critical section. Locks only guarantee that the critical section is only entered by one
thread at a time.

Do not forget to consider memory deallocation as a synchronization issue. If you want to use pointers to
struct thread, then you need to prove those threads can’t exit and be deallocated while you’re using them.

If you create new functions, you should consider whether the function could be called in 2 threads at the same
time. If your function access any global or static variables, you need to show that there are no synchronization
issues.

Rationale Tell us why your design is better than the alternatives that you considered, or point out any
shortcomings it may have. You should think about whether your design is easy to conceptualize, how much
coding it will require, the time/space complexity of your algorithms, and how easy/difficult it would be to
extend your design to accommodate additional features.

3.1.2 Review

After you submit your design doc, you will schedule a design review with your TA. A calendar signup link
will be posted sometime before the design doc due date. During the design review, your TA will ask you
questions about your design for the project. You should be prepared to defend your design and answer
any clarifying questions your TA may have about your design document. The design review is also a good
opportunity to get to know your TA for participation points.

3.1.3 Grading

The design document and design review will be graded together. Your score will reflect how convincing your
design is, based on your explanation in your design document and your answers during the design review.
If you cannot make a design review, please contact your TA to work out an arrangement. An unexcused
absence from a design review will result in a 0 for the design portion.

3.2 Code

Code will be submitted to GitHub via your groupX repo. Pintos comes with a test suite that you can run
locally on your VM. We will run the same tests on the autograder, meaning there are no hidden tests. As
a result, we recommend you test locally as much as possible since the autograder’s bandwidth is limited.

3.2.1 Checkpoints

On the autograder, we will provide checkpoints for you to stay on pace with the project. Checkpoints will
not be graded and have no effect on your grade. However, we still encourage students to keep up
with the checkpoints See Plan for more details on the specific checkpoints for this project.

Each checkpoint will have a corresponding autograder. Checkpoint 1 autograder will automatically run
until its deadline, then Checkpoint 2 will automatically run until its deadline. The final autograder will
not automatically run until after the Checkpoint 2 autograder. If you’d like, you can manually trigger the
autograders as they’ll be available throughout the entire project duration.

3.2.2 Testing

Your testing code needs to be included in your repo as well under the appropriate folder.

3.2.3 Quality

The score of your code will be mainly determined by your autograder score. However, you will also be graded
on the quality of your code on some factors including but not limited to

8

CS 162 Spring 2022 Project 2 Threads

• Does your code exhibit any major memory safety problems (especially regarding strings), memory
leaks, poor error handling, or race conditions?

• Is your code simple and easy to understand? Does it follow a consistent naming convention?

• Did you add sufficient comments to explain complex portions of code?

• Did you leave commented-out code in your final submission?

• Did you copy and paste code instead of creating reusable functions?

• Did you re-implement linked list algorithms instead of using the provided list manipulation functions?

• Is your Git commit history full of binary files?

Note that you don’t have to worry about manually enforcing code formatting (e.g. indentation, spacing,
wrapping long lines, consistent placement of braces.) as long as you setup your precommit hook correctly
in Project User Programs. You may also find it helpful to format code every once in a while by running
make format.

3.3 Report

After you complete the code for your project, your group will write a report reflecting on the project. While
you’re not expected to write a massive report, we are asking for the same level of detail as expected for the
design document. Your report should include the following sections.

Changes

Discuss any changes you made since your initial design document. Explain why you made those changes.
Feel free to reiterate what you discussed with your TA during the design review if necessary.

Reflection

Discuss the contribution of each member. Make sure to be specific about the parts of each task each member
worked on. Reflect on the overall working environment and discuss what went well and areas of improvement.

Testing

For each of the 2 test cases you write, provide

• Description of the feature your test case is supposed to test.

• Overview of how the mechanics of your test case work, as well as a qualitative description of the
expected output.

• Output and results of your own Pintos kernel when you run the test case. These files will have the
extensions .output and .result.

• Two non-trivial potential kernel bugs and how they would have affected the output of this test case.
Express these in the form “If my kernel did X instead of Y, then the test case would output Z instead.”.
You should identify two different bugs per test case, but you can use the same bug for both of your
two test cases. These bugs should be related to your test case (e.g. syntax errors don’t

In addition, tell us about your experience writing tests for Pintos. What can be improved about the Pintos
testing system? What did you learn from writing test cases?

3.4 Evaluations

After you finish all the components above, you must submit an evaluation of your group members. You are
will be given 20(n− 1) points to distribute amongst your group members not including yourself, where n is
the number of people in your group. For instance, if you have four team members, you will get 60 points to
distribute amongst the rest of your group members. If you believe all group members contributed equally,
you would give each member 20 points each.

9

CS 162 Spring 2022 Project 2 Threads

You will also fill out the details of what each member worked on. While this is similar to Report portion
of the report, this will serve as a space to truthfully speak about the contributions since the report is a
collaborative document.

To submit evaluations, navigate to your personal repo and pull from the staff repo. You should see a folder
for evaluations (e.g. proj-userprog-eval for Project User Programs) which contains a evals.txt. Fill out
the evals.txt file. Each line should pertain to one group member, so make your comments for each group
member remain in that line. The following is an example of what your csv should look like.

Name|Autograder ID (XXX)|Score|Comment

Jieun Lee|516|23|Worked on all tasks finished the testing report

Taeyeon Kim|309|20|Worked on tasks 2, 3, 4, helped come up with a lot of design ideas.

Sean Kim|327|17|Helped with task 1 and testing but didn't work on design doc.

Your comments should be longer and more descriptive than the ones given above. Ideally, aim to write
between 100 and 200 words for each group member.

This evaluation will remain anonymous from the rest of your group members. If we notice some extreme
weightings of scores, we will reach out and arrange a meeting to discuss any group issues. These evaluations
are important and hold substantial weight, so fill them out honestly and thoroughly. See Grading
for more information on how evaluations will be used.

3.5 Submission

Design documents and final reports should be submitted to Gradescope to their respective locations. You
can export your document from Dropbox Paper by clicking on the three dots in the top right hand corner
and clicking “Export”.

Make sure you’ve pushed your code and have an autograder build. This build must include the testing
code for you to receive credit on testing.

Make sure to push your evals to your individual repo to trigger the autograder. If you get errors from the
autograder, make sure to check that you’ve done the following.

• Included exactly n− 1 members (i.e. no evals of yourself).

• Autograder IDs are correct and not prefixed with student (i.e. 162 instead of student162).

• The points sum to exactly 20(n− 1).

• No negative points for any member.

• Header row is present.

• Each line contains one evaluation. Your comment section should not consist of multiple lines.

• No extra lines at the end of the file.

Make sure to not change the header row.

3.6 Grading

The components above will be weighed as follows: 15% Design, 70% Code, 15% Report. While evaluations
are not explicitly part of your grade, your project score will be impacted based on them. To keep evaluations
fair and anonymous, we will not be releasing how evaluations are factored in nor the final scores calculated
after factoring in evaluations.

Slip days or extensions cannot be applied on design documents. TAs need enough time to read these design
documents to be able to hold design reviews in a timely manner. Slip days will be applied as a maximum
across all the other parts. Evaluation submission will be factored into slip day usage. For instance,
if code is submitted on time, report is submitted one hour late, three members submit their evaluations on
time, and one member submits their evaluation two days late, the number of slip days used will be 2 days.

10

CS 162 Spring 2022 Project 2 Threads

4 Plan

We provide you a suggested order of implementation as well as the specifications for each checkpoint based
on our ands past students’ experiences. However, this is merely a suggestion and you may elect to approach
the project entirely differently.

Keep in mind that checkpoints are not graded.

4.1 Checkpoint 1

Start the project with implementing the efficient alarm clock. This is the simplest task within the project,
so try not to spend too much time on it.

4.2 Checkpoint 2

Implement your strict priority scheduler.

4.3 Final

Finish the project by implementing user threads. If you get stuck on multi-oom or exit-clean tests, we
advise that you skip those and come back at the end.

11

CS 162 Spring 2022 Project 2 Threads

5 FAQ

How much code will I need to write?
Here’s a summary of our reference solution. The diffs are from The reference solution represents just
one possible solution. Many other solutions are also possible and many of those differ greatly from
the reference solution. Some excellent solutions may not modify all the files modified by the reference
solution, and some may modify files not modified by the reference solution.

devices/timer.c | 35 +++

threads/interrupt.c | 19 +

threads/synch.c | 105 ++++++++++-

threads/synch.h | 9

threads/thread.c | 207 ++++++++++++++++++++-

threads/thread.h | 22 ++

userprog/exception.c | 2

userprog/process.c | 485 ++-----

userprog/process.h | 67 ++++++-

userprog/syscall.c | 476 ++------

userprog/syscall.h | 10 +

11 files changed, 1309 insertions(+), 128 deletions(-)

The kernel always panics when I run a custom test case.
Is your file name too long? The file system limits file names to 14 characters. Is the file system full?
Does the file system already contain 16 files? The base Pintos file system has a 16-file limit.

The kernel always panics with assertion is thread(t) failed.
This happens when you overflow your kernel stack. If you’re allocating large structures or buffers on the
stack, try moving them to static memory or the heap instead. It’s also possible that you’ve made your
struct thread too large. See the comment underneath the kernel stack diagram in threads/thread.h

about the importance of keeping your struct thread small.

All my user programs die with page faults.
This will happen if you haven’t implemented argument passing (or haven’t done so correctly). The
basic C library for user programs tries to read argc and argv off the stack. If the stack isn’t properly
set up, this causes a page fault.

All my user programs die upon making a syscall.
You’ll have to implement syscall before you see anything else. Every reasonable program tries to make
at least one syscall (exit) and most programs make more than that. Notably, printf invokes the
write syscall. The default syscall handler just handles exit(). Until you have implemented syscalls
sufficiently, you can use hex dump to check your argument passing implementation (see ??).

How can I disassemble user programs?
The objdump (80x86) or i386-elf-objdump (SPARC) utility can disassemble entire user programs
or object files. Invoke it as objdump -d <file>. You can use GDB’s codedisassemble command to
disassemble individual functions.

Why do many C include files not work in Pintos programs? Can I use libfoo in my Pintos
programs?
The C library we provide is very limited. It does not include many of the features that are expected of
a real operating system’s C library. The C library must be built specifically for the operating system
(and architecture), since it must make syscalls for I/O and memory allocation. Not all functions do,
of course, but usually the library is compiled as a unit.

If the library makes syscalls (e.g, parts of the C standard library), then they almost certainly will not
work with Pintos. Pintos does not support as rich a syscall interfaces as real operating systems (e.g.,
Linux, FreeBSD), and furthermore, uses a different interrupt number (0x30) for syscalls than is used
in Linux (0x80).

12

CS 162 Spring 2022 Project 2 Threads

The chances are good that the library you want uses parts of the C library that Pintos doesn’t imple-
ment. It will probably take at least some porting effort to make it work under Pintos. Notably, the
Pintos user program C library does not have a malloc implementation.

How do I compile new user programs?
Modify examples/Makefile, then run make.

Can I run user programs under a debugger?
Yes, with some limitations. See Project Pregame appendix.

What’s the difference between tid t and pid t?
A tid t identifies a kernel thread, which may have a user process running in it (if created with
process execute) or not (if created with thread create). It is a data type used only in the kernel.

A pid t identifies a user process. It is used by user processes and the kernel in the exec and wait

syscalls.

You can choose whatever suitable types you like for tid t and pid t. By default, they’re both int.
You can make them a one-to-one mapping, so that the same values in both identify the same process,
or you can use a more complex mapping. It’s up to you.

5.1 Efficient Alarm Clock

Are we allowed to manually disable and enable interrupts in timer sleep?
Yes. To be precise, interrupts must be on before and after the method call (“after” being before
timer sleep returns). It is not acceptable to turn off interrupts during codetimer sleep and re-enable
them at a later time after the function completes.

5.2 Strict Priority Scheduler

What does it mean for synchronization primitives to prefer higher priority threads over lower
priority threads?
You should unblock the thread that has the highest priority for any of these synchronization variables.
When choosing the next thread to up the semaphore / acquire the lock, you should choose the thread
with the highest priority. Similar logic applies when choosing which thread to signal. For broadcasting,
you can think about it as signalling until your list of waiters is empty. You should make sure that the
highest priority thread gets to the resource first.

13

CS 162 Spring 2022 Project 2 Threads

A Threads

A.1 Understanding Threads

The first step is to read and understand the code for the thread system. Pintos already implements
thread creation and thread completion, a simple scheduler to switch between threads, and synchronization
primitives (semaphores, locks, condition variables, and optimization barriers).

Some of this code might seem slightly mysterious. You can read through parts of the source code to see
what’s going on. If you like, you can add calls to printf() almost anywhere, then recompile and run to
see what happens and in what order. You can also run the kernel in a debugger and set breakpoints at
interesting spots, step through code and examine data, and so on.

When a thread is created, the creator specifies a function for the thread to run, as one of the arguments to
thread_create(). The first time the thread is scheduled and runs, it starts executing from the beginning
of that function. When the function returns, the thread terminates. Each thread, therefore, acts like a
mini-program running inside Pintos, with the function passed to thread_create() acting like main().

At any given time, exactly one thread runs and the rest become inactive. The scheduler decides which thread
to run next. (If no thread is ready to run, then the special “idle” thread runs.)

The mechanics of a context switch are in threads/switch.S, which is x86 assembly code. It saves the state
of the currently running thread and restores the state of the next thread onto the CPU.

Using GDB, try tracing through a context switch to see what happens. You can set a breakpoint on
schedule() to start out, and then single-step from there (use “step” instead of “next”). Be sure to
keep track of each thread’s address and state, and what procedures are on the call stack for each thread
(try “backtrace”). You will notice that when one thread calls switch_threads(), another thread starts
running, and the first thing the new thread does is to return from switch_threads(). You will understand
the thread system once you understand why and how the switch_threads() that gets called is different
from the switch_threads() that returns.

A.2 The Thread Struct

Each thread struct represents either a kernel thread or a user process. In each of the 3 projects, you will
have to add your own members to the thread struct. You may also need to change or delete the definitions
of existing members.

Every thread struct occupies the beginning of its own 4KiB page of memory. The rest of the page is used
for the thread’s stack, which grows downward from the end of the page. It looks like this:

4 kB +---------------------------------+

| kernel stack |

| | |

| | |

| V |

| grows downward |

| |

| |

| |

| |

| |

| |

sizeof (struct thread) +---------------------------------+

| magic |

| : |

| : |

| status |

14

CS 162 Spring 2022 Project 2 Threads

| tid |

0 kB +---------------------------------+

This layout has two consequences. First, struct thread must not be allowed to grow too big. If it does, then
there will not be enough room for the kernel stack. The base struct thread is only a few bytes in size. It
probably should stay well under 1 kB.

Second, kernel stacks must not be allowed to grow too large. If a stack overflows, it will corrupt the thread
state. Thus, kernel functions should not allocate large structures or arrays as non-static local variables. Use
dynamic allocation with malloc() or palloc_get_page() instead. See the ?? section for more details.

• Member of struct thread: tid_t tid

The thread’s thread identifier or tid. Every thread must have a tid that is unique over the entire lifetime
of the kernel. By default, tid_t is a typedef for int and each new thread receives the numerically
next higher tid, starting from 1 for the initial process.

• Member of struct thread: enum thread_status status

The thread’s state, one of the following:

– Thread State: THREAD_RUNNING

The thread is running. Exactly one thread is running at a given time. thread_current() returns
the running thread.

– Thread State: THREAD_READY

The thread is ready to run, but it’s not running right now. The thread could be selected to run
the next time the scheduler is invoked. Ready threads are kept in a doubly linked list called
ready_list.

– Thread State: THREAD_BLOCKED

The thread is waiting for something, e.g. a lock to become available, an interrupt to be in-
voked. The thread won’t be scheduled again until it transitions to the THREAD_READY state with
a call to thread_unblock(). This is most conveniently done indirectly, using one of the Pintos
synchronization primitives that block and unblock threads automatically.

– Thread State: THREAD_DYING

The thread has exited and will be destroyed by the scheduler after switching to the next thread.

• Member of struct thread: char name[16]

The thread’s name as a string, or at least the first few characters of it.

• Member of struct thread: uint8_t *stack

Every thread has its own stack to keep track of its state. When the thread is running, the CPU’s stack
pointer register tracks the top of the stack and this member is unused. But when the CPU switches to
another thread, this member saves the thread’s stack pointer. No other members are needed to save
the thread’s registers, because the other registers that must be saved are saved on the stack.

When an interrupt occurs, whether in the kernel or a user program, an “struct intr_frame” is pushed
onto the stack. When the interrupt occurs in a user program, the “struct intr_frame” is always at
the very top of the page.

• Member of struct thread: int priority

A thread priority, ranging from PRI_MIN (0) to PRI_MAX (63). Lower numbers correspond to lower
priorities, so that priority 0 is the lowest priority and priority 63 is the highest. Pintos currently
ignores these priorities, but you will implement priority scheduling in this project.

• Member of struct thread: struct list_elem allelem

This “list element” is used to link the thread into the list of all threads. Each thread is inserted into
this list when it is created and removed when it exits. The thread_foreach() function should be used
to iterate over all threads.

15

CS 162 Spring 2022 Project 2 Threads

• Member of struct thread: struct list_elem elem

A “list element” used to put the thread into doubly linked lists, either ready_list (the list of threads
ready to run) or a list of threads waiting on a semaphore in sema_down(). It can do double duty
because a thread waiting on a semaphore is not ready, and vice versa.

• Member of struct thread: uint32_t *pagedir

(Used in Projects Userprog and Filesys.) The page table for the process, if this is a user process.

• Member of struct thread: unsigned magic

Always set to THREAD_MAGIC, which is just an arbitrary number defined in threads/thread.c, and
used to detect stack overflow. thread_current() checks that the magic member of the running
thread’s struct thread is set to THREAD_MAGIC. Stack overflow tends to change this value, triggering
the assertion. For greatest benefit, as you add members to struct thread, leave magic at the end.

A.3 Thread Functions

threads/thread.c implements several public functions for thread support. Let’s take a look at the most
useful ones for this project:

• Function: void thread_init (void)

Called by main() to initialize the thread system. Its main purpose is to create a struct thread for
Pintos’s initial thread. This is possible because the Pintos loader puts the initial thread’s stack at the
top of a page, in the same position as any other Pintos thread.

Before thread_init() runs, thread_current() will fail because the running thread’s magic value is
incorrect. Lots of functions call thread_current() directly or indirectly, including lock_acquire()

for locking a lock, so thread_init() is called early in Pintos initialization.

• Function: struct thread *thread_current (void)

Returns the running thread.

• Function: void thread_exit (void) NO_RETURN

Causes the current thread to exit. Never returns, hence NO_RETURN.

16

CS 162 Spring 2022 Project 2 Threads

B Scheduler

The actual priority scheduler does not require much complexity in and of itself; consider how extant operating
systems implement this sort of scheduler if you’re confused as to how to approach this in an efficient way.

1. Don’t forget to implement thread_get_priority, which is the function that returns the current
thread’s priority. This function should take donations into account. You should return the effective
priority of the thread.

2. A thread cannot change another thread’s priority, except via donations. The function thread_set_priority

only acts on the current thread.

3. If a thread no longer has the highest effective priority (e.g. because it released a lock or it called
thread_set_priority with a lower value), it must immediately yield the CPU. If a lock is released,
but the current thread still has the highest effective priority, it should not yield the CPU.

The priority donation component of this task will likely require some thought — it may be helpful to sketch
out some scenarios on paper or on a whiteboard to see if your proposed system holds up.

1. You only need to implement priority donation for locks. Do not implement them for other synchroniza-
tion variables (it doesn’t make any sense to do it for semaphores or monitors anyway). However, you
need to implement priority scheduling for locks, semaphores, and condition variables. Priority schedul-
ing is when you unblock the highest priority thread whenever a resource is released or a monitor is
signaled.

2. A thread can only donate (directly) to 1 thread at a time, because once it calls lock_acquire, the
donor thread is blocked.

3. Your implementation must handle nested donation: Consider a high-priority thread H, a mediumpri-
ority thread M, and a low-priority thread L. If H must wait on M and M must wait on L, then we
should donate H’s priority to L.

4. If there are multiple waiters on a lock when you call lock_release, then all of those priority donations
must apply to the thread that receives the lock next.

17

CS 162 Spring 2022 Project 2 Threads

C User Threads

C.1 Implementation Requirements

For this project, you will need to implement the following new system calls:

System Call: tid t sys pthread create(stub fun sfun, pthread fun tfun, const void* arg) Creates
a new user thread running stub function sfun, with arguments tfun and arg. Returns TID of created
thread, or TID_ERROR if allocation failed.

System Call: void sys pthread exit(void) NO RETURN Terminates the calling user thread. If the
main thread calls pthread_exit, it should join on all currently active threads, and then exit the
process.

System Call: tid t sys pthread join(tid t tid) Suspends the calling thread until the thread with TID
tid finishes. Returns the TID of the thread waited on, or TID_ERROR if the thread could not be joined
on. It is only valid to join on threads that are part of the same process and have not yet been joined
on. It is valid to join on a thread that was part of the same process, but has already terminated –
in such cases, the sys_pthread_join call should not block. Any thread can join on any other thread
(the main thread included). If a thread joins on main, it should be woken up and allowed to run after
main calls pthread_exit but before the process is killed (see above).

System Call: bool lock init(lock t* lock) Initializes lock, where lock is a pointer to a lock_t in userspace.
Returns true if in initialization was successful.

System Call: bool lock acquire(lock t* lock) Acquires lock, blocking if necessary, where lock is a pointer
to a lock_t in userspace. Returns true if the lock was successfully acquired, false if the lock was not
registered with the kernel in a lock_init call or if the current thread already holds the lock.

System Call: bool lock release(lock t* lock) Releases lock, where lock is a pointer to a lock_t in
userspace. Returns true if the lock was successfully released, false if the lock was not registered with
the kernel in a lock_init call or if the current thread does not hold the lock.

System Call: bool sema init(sema t* sema, int val) Initializes sema to val, where sema is a pointer
to a sema_t in userspace. Returns true if in initialization was successful.

System Call: bool sema down(sema t* sema) Downs sema, blocking if necessary, where sema is a
pointer to a sema_t in userspace. Returns true if the semaphore was successfully downed, false if the
semaphore was not registered with the kernel in a sema_init call.

System Call: bool sema up(sema t* sema) Ups sema, where sema is a pointer to a sema_t in userspace.
Returns true if the sema was successfully up’d, false if the sema was not registered with the kernel in
a sema_init call.

System Call: tid t get tid(void) Returns the TID of the calling thread.

The defintions of pid_t, stub_fun, and pthread_fun in the kernel are in userprog/process.h, and mimic
the userspace definitions described in the ?? section.

You will also need to update the system calls you implemented in Project User Programs to support multiple
user threads. Most of the changes you’ll make are short and straightforward, but substantial changes will
be made to the process control syscalls. The expected behavior of process control syscalls with respect to
multithreaded user programs is outlined below:

• pid_t exec(const char* file)

When either a single-threaded or multithreaded program exec’s a new process, the new process should
only have a single thread of control, the main thread. New threads of control can be created in the
child process with the pthread syscalls.

• int wait(pid_t)

18

CS 162 Spring 2022 Project 2 Threads

When a user thread waits on a child process, only the user thread that called wait should be suspeneded;
the other threads in the parent process should be able to continue working.

• void exit(int status)

When exit is called on a multithreaded program, all currently active threads in the user program should
be immediately terminated: none of the user threads should be able to execute any more user-level
code. Each of the backing kernel threads should release all its resources before terminating.

We recommend you implement this functionality without keeping a list of all resources a kernel thread
can have. As a hint and simplifying assumption, you may assume that a user thread that enters the
kernel never blocks indefinitely. You are not required to make use of this assumption, but it will make
implementation of this section much easier.

The assumption above is not true in a number of scenarios, which our test suite simply ignores. For
clarity, we list a few such scenarios: (1) a user thread calls wait on a child process that infinite loops,
(2) two user threads deadlock with their own user-level synchronization primitives, or (3) a user thread
is waiting on STDIN, which may never arrive.

The assumption above does not apply to the case where threads are waiting on other threads in the
same process through pthread_join. Joiners should still be woken up with the thread they joined on
is killed, and joiners on the exiting thread should also be woken up.

C.2 Synchronization

To ease implementation difficulty, we will not be requiring you to implement fine-grained synchronization
syscalls for multithreaded programs. You are allowed to serialize actions per-process (but not globally).

C.3 Additional Information

• Exit Codes: (1) If the main thread calls pthread_exit, the process should terminate with exit code
0. (2) If any thread calls exit(n), the process should terminate with exit code n. (3) If the process
terminates with an exception, it should exit with exit code -1. These are listed in priority order (with
3 being the highest priority), in the sense that if any of these occur simultaneously, the exit code
should be the exit code corresponding termination with the highest prioirty. For example, if main
calls pthread_exit and while it is waiting for user threads to finish, one of them terminates with an
exception, the exit code should be set to -1. Also, if multiple calls to exit(n) are made at the same
time with different values of n, any choice of n is valid. Treat exit code rules as secondary: we will not
test you on them in design review, and you should only be concerned about them if you are failing a
test because of the wrong exit code.

• Switching between user threads and switching between user processes require different actions on part
of the kernel. Specifically, for switches between processes, (1) the page table base pointer must be
updated and (2) any virtual caches (which for our purposes, is the TLB) should be invalidated. For
switches between user threads, both of these things should be avoided. This is already done for you
in process_activate, which is called everytime a new thread is created in load and everytime a new
thread scheduled in thread_schedule_tail. Don’t forget to activate the process when you create a
new user thread.

• You are not required to augment the scheduler for user threads; you can just let the scheduler treat all
threads the same, even if they belong to the same process. As a pathological example, if a user program
A has 100 threads, and a user program B has only 1 thread, most of the CPU will be dominated by
A’s threads, and B’s thread will be starved. You are not required to augment the scheduler to make
this scenario more fair.

• User threads should be able to be implemented independently of the efficient alarm clock and strict
priority scheduler. The alarm clock does not have an exposed interface via system calls, so the efficient
alarm clock and user threads are completely independent. There is some overlap between strict priority

19

CS 162 Spring 2022 Project 2 Threads

scheduler and user threads because use threads use both the scheduler and locks. However, the tasks
should still be fairly independent of one another, since all user threads should have the same priority
(PRI_DEFAULT).

• As our test programs are multithreaded, the console_lock defined in tests/lib.c is essential; threads
can acquire this during printing calls to make sure print output of different threads is not interleaved.
Currently, the test code only uses the console lock when syn_msg (defined in tests/lib.c) is set to
true. The console lock is initialized in tests/main.c before test_main is called in each of the tests.
Because the console lock is a user-level lock, it will only work after you have implemented user-level
locking. Until you’ve implemented user-level locking, all your tests will fail as a result of console
lock initialization; you can comment out the line lock_init(&console_lock) in tests/main.c to
temporarily prevent this issue.

• In threads/interrupt.c, you will find the function is trap from userspace which will return true
if this interrupt represents a transition from user mode to kernel mode. You might find this helpful for
this project.

• Workflow Recommendations: this task is most easily done in small steps. Start by implementing a bare-
bones pthread_create and pthread_execute so that you pass tests/userprog/multithreading/

create-simple. Then, slowly add more and more features. It is easier to augment a working design
than to fix a broken one. Make sure to carefully track resources. Everything that you allocate
must be freed !

20

CS 162 Spring 2022 Project 2 Threads

D Pthread Library

D.1 Threading

A subset of the pthread (Pintos thread) library is provided for you in lib/user/pthread.h. These function
serve as the glue between the high-level API of pthread_create, pthread_exit, and pthread_join and
the low-level system call implementation of these functions. We’ll walk you through how the pthread library
works by starting at the high-level usage in one of our tests, and walk down the stack until we get to the
kernel syscall interface.

• tests/userprog/multithreading/create-simple.c In the create-simple test, we see how the high-
level API of the threading library is supposed to work. The main thread of the process first runs
test_main. It then creates a new thread to run thread_function with the pthread_check_create

call, and waits for that thread to finish with the pthread_check_join. The expected output of this
test is shown in tests/userprog/multithreading/create-simple.ck.

• The functions pthread_check_create and pthread_check_join are simple wrappers (defined in
tests/lib.c) around the “real” functions, pthread_create and pthread_join, that take in roughly
the same values and return the same values as pthread_create and pthread_join, and ensure that
pthread_create and pthread_join did not fail. The APIs for pthread_create and pthread_join

are:

tid_t pthread_create(pthread_fun fun, void* arg)

A pthread_fun is simply a pointer to a function that takes in an arbitrary void* argument, and
returns nothing. This is defined in user/lib/pthread.h. So, the arguments to pthread_create are
a function to run, as well as an argument to give that function.

This function creates a new child thread to run the pthread_fun with argument arg. This function
returns to the parent thread the TID of the child thread, or TID_ERROR if the thread could not be
created successfully.

bool pthread_join(tid_t tid)

The caller of this function waits until the thread with TID tid finishes executing. This function returns
true if tid was valid.

• The implementation of pthread_create and pthread_join are in the file lib/user/pthread.c.
They each are simple wrappers around the functions sys_pthread_create and sys_pthread_join,
which are syscalls for the OS, that you will be required to implement. Their APIs are similar to
pthread_create and pthread_join, and are as follows:

tid_t sys_pthread_create(stub_fun sfun, pthread_fun tfun, const void* arg)

The sys_pthread_create function creates a new thread to run stub_fun sfun, and gives it as argu-
ments a pthread_fun and a void* pointer, which is intended to be the argument of the pthread_fun.
It returns to the parent the TID of the created thread, or TID_ERROR if the thread could not be created.

What is a stub function? There is only one stub function that we are concerned with here, called
_pthread_start_stub defined in lib/user/pthread.c, and it’s implementation is copied below. This
function returns nothing but takes two arguments: a function to run, and an argument for that function.
The stub function runs the function on the argument, then calls pthread_exit(). pthread_exit() is
a system call that simply kills the current user thread.

/* OS jumps to this function when a new thread is created.

OS is required to setup the stack for this function and

set %eip to point to the start of this function */

void _pthread_start_stub(pthread_fun fun, void* arg) {

(*fun)(arg); // Invoke the thread function

pthread_exit(); // Call pthread_exit

21

CS 162 Spring 2022 Project 2 Threads

Why this extra layer of indirection? You might have noticed in tests/userprog/multithreading/

create-simple.c that pthread_exit() was never called; instead, as soon as the created thread re-
turns from thread_function, it is presumed to have been killed. The stub function is how this
is implemented: the OS actually jumps to _pthread_start_stub instead of directly jumping to
thread_function when the new thread is created. The stub function then calls thread_function.
Then, when thread_function returns, it returns back into _pthread_start_stub. Then, the imple-
mentation of pthread_start_stub kills the thread by calling pthread_exit().

tid_t sys_pthread_join(tid_t tid)

The caller of this function waits until the thread with TID tid finishes executing. This function returns
the TID of the child it waited on, or TID_ERROR if it was invalid to wait on that child.

void sys_pthread_exit(void) NO_RETURN

This function terminates the calling thread. The function pthread_exit simply calls this function.

The functions sys_pthread_create, sys_pthread_join, and sys_pthread_exit are system calls that
you are required to implement for this project. They have slightly different APIs than the high level
pthread_create, pthread_join, and pthread_exit functions defined in lib/user/pthread.h, but are fun-
damentally very similar. We have setup the user-side of the syscall interface for you in lib/syscall-nr.h,
lib/user/syscall.c, and lib/user/syscall.h, and it is your job to implement these system calls in
userprog/ in the kernel.

D.2 User-Level Synchronization

Our pthread library also provides an interface to user-level synchronization primitives. See lib/user/syscall.h.
We define the primitives lock_t and sema_t to represent locks and semaphores in user programs. You can
change these definitions if you’d like, but we found the current definitions sufficient for our implementation.
We provide the following syscall stubs:

• bool lock_init(lock_t* lock)

Initializes lock by registering it with the kernel, and returns true if the initialization was successful. In
tests/lib.c, you will see we define lock_check_init, which is analogous to pthread_check_create

and pthread_check_join; it simply verifies that the initialization was successful.

• void lock_acquire(lock_t* lock)

Acquires lock, and exits the process if acquisition failed. The syscall implementation of lock_acquire
should return a boolean as to whether acquisition failed; the user level implementation of lock_acquire
in lib/user/syscall.c handles termination of the process. You should not update the lock_acquire
(or for that matter, any of the below functions) code in lib/user/syscall.c to remove the exit call
– it will simply make debugging more difficult.

• void lock_release(lock_t* lock)

Acquires lock, and exits the process if the release failed. The syscall implementation of lock_release
should return a boolean as to whether release failed.

• bool sema_init(sema_t* sema, int val)

Initializes sema to val by registering it with the kernel, and returns true if the initialization was success-
ful. In tests/lib.c, you will see we define lock_check_init, which is analogous to pthread_check_create
and pthread_check_join; it simply verifies that the initialization was successful.

• void sema_down(sema_t* sema)

Downs sema, and exits the process if the down operation failed. The syscall implementation of
sema_down should return a boolean as to whether the down operation failed.

22

CS 162 Spring 2022 Project 2 Threads

• void sema_up(sema_t* sema)

Ups sema, and exits the process if the up operation failed. The syscall implementation of sema_up
should return a boolean as to whether the up operation failed.

Your task will be to implement those system calls in the kernel. On every synchronization system call, you
are allowed to make a kernel crossing. In other words, you do not need to avoid kernel crossings like is done
in the implementation of futex.

Given user-level locks and semaphores, it’s possible to implement user-level condition variables entirely at
user-level with locks and semaphores as primitives. Feel free to implement condition variables if you would
like, but it is not required as part of the project. The implementation will look similar to the implementation
of CVs in threads/synch.c.

23

CS 162 Spring 2022 Project 2 Threads

E Synchronization

If sharing of resources between threads is not handled in a careful, controlled fashion, the result is usually a
big mess. This is especially the case in operating system kernels, where faulty sharing can crash the entire
machine. Pintos provides several synchronization primitives to help out.

E.1 Disabling Interrupts

The crudest way to do synchronization is to disable interrupts, that is, to temporarily prevent the CPU from
responding to interrupts. If interrupts are off, no other thread will preempt the running thread, because
thread preemption is driven by the timer interrupt. If interrupts are on, as they normally are, then the
running thread may be preempted by another at any time, whether between two C statements or even
within the execution of one.

Incidentally, this means that Pintos is a “preemptible kernel,” that is, kernel threads can be preempted at
any time. Traditional Unix systems are “nonpreemptible,” that is, kernel threads can only be preempted at
points where they explicitly call into the scheduler. (User programs can be preempted at any time in both
models.) As you might imagine, preemptible kernels require more explicit synchronization.

You should have little need to set the interrupt state directly. Most of the time you should use the other
synchronization primitives described in the following sections. The main reason to disable interrupts is to
synchronize kernel threads with external interrupt handlers, which cannot sleep and thus cannot use most
other forms of synchronization.

Some external interrupts cannot be postponed, even by disabling interrupts. These interrupts, called non-
maskable interrupts (NMIs), are supposed to be used only in emergencies, e.g. when the computer is on
fire. Pintos does not handle non-maskable interrupts.

Types and functions for disabling and enabling interrupts are in threads/interrupt.h.

• Type: enum intr_level

One of INTR_OFF or INTR_ON, denoting that interrupts are disabled or enabled, respectively.

• Function: enum intr_level intr_get_level (void)

Returns the current interrupt state.

• Function: enum intr_level intr_set_level (enum intr_level level)

Turns interrupts on or off according to level. Returns the previous interrupt state.

• Function: enum intr_level intr_enable (void)

Turns interrupts on. Returns the previous interrupt state.

• Function: enum intr_level intr_disable (void)

Turns interrupts off. Returns the previous interrupt state.

This project only requires accessing a little bit of thread state from interrupt handlers. For the alarm clock,
the timer interrupt needs to wake up sleeping threads. In the advanced scheduler, the timer interrupt needs
to access a few global and per-thread variables. When you access these variables from kernel threads, you
will need to disable interrupts to prevent the timer interrupt from interfering.

When you do turn off interrupts, take care to do so for the least amount of code possible, or you can end
up losing important things such as timer ticks or input events. Turning off interrupts also increases the
interrupt handling latency, which can make a machine feel sluggish if taken too far.

The synchronization primitives themselves in synch.c are implemented by disabling interrupts. You may
need to increase the amount of code that runs with interrupts disabled here, but you should still try to keep
it to a minimum.

Disabling interrupts can be useful for debugging, if you want to make sure that a section of code is not
interrupted. You should remove debugging code before turning in your project. (Don’t just comment it out,
because that can make the code difficult to read.)

24

CS 162 Spring 2022 Project 2 Threads

There should be no busy waiting in your submission. A tight loop that calls thread_yield() is one form of
busy waiting.

E.2 Semaphores

A semaphore is a nonnegative integer together with two operators that manipulate it atomically, which
are:

• “Down” or “P”: wait for the value to become positive, then decrement it.

• “Up” or “V”: increment the value (and wake up one waiting thread, if any).

A semaphore initialized to 0 may be used to wait for an event that will happen exactly once. For example,
suppose thread A starts another thread B and wants to wait for B to signal that some activity is complete. A
can create a semaphore initialized to 0, pass it to B as it starts it, and then “down” the semaphore. When
B finishes its activity, it “ups” the semaphore. This works regardless of whether A “downs” the semaphore
or B “ups” it first.

A semaphore initialized to 1 is typically used for controlling access to a resource. Before a block of code
starts using the resource, it “downs” the semaphore, then after it is done with the resource it “ups” the
resource. In such a case a lock, described below, may be more appropriate.

Semaphores can also be initialized to 0 or values larger than 1.

Pintos’ semaphore type and operations are declared in threads/synch.h.

• Type: struct semaphore

Represents a semaphore.

• Function: void sema_init (struct semaphore *sema, unsigned value)

Initializes sema as a new semaphore with the given initial value.

• Function: void sema_down (struct semaphore *sema)

Executes the “down” or “P” operation on sema, waiting for its value to become positive and then
decrementing it by one.

• Function: bool sema_try_down (struct semaphore *sema)

Tries to execute the “down” or “P” operation on sema, without waiting. Returns true if sema was
successfully decremented, or false if it was already zero and thus could not be decremented without
waiting. Calling this function in a tight loop wastes CPU time, so use sema_down or find a different
approach instead.

• Function: void sema_up (struct semaphore *sema)

Executes the “up” or “V” operation on sema, incrementing its value. If any threads are waiting on
sema, wakes one of them up.

Unlike most synchronization primitives, sema_up may be called inside an external interrupt handler.

Semaphores are internally built out of disabling interrupt and thread blocking and unblocking (thread_block
and thread_unblock). Each semaphore maintains a list of waiting threads, using the linked list implemen-
tation in lib/kernel/list.c.

E.3 Locks

A lock is like a semaphore with an initial value of 1. A lock’s equivalent of “up” is called “release”, and the
“down” operation is called “acquire”.

Compared to a semaphore, a lock has one added restriction: only the thread that acquires a lock, called the
lock’s “owner”, is allowed to release it. If this restriction is a problem, it’s a good sign that a semaphore
should be used, instead of a lock.

25

CS 162 Spring 2022 Project 2 Threads

Locks in Pintos are not “recursive,” that is, it is an error for the thread currently holding a lock to try to
acquire that lock.

Lock types and functions are declared in threads/synch.h.

• Type: struct lock

Represents a lock.

• Function: void lock_init (struct lock *lock)

Initializes lock as a new lock. The lock is not initially owned by any thread.

• Function: void lock_acquire (struct lock *lock)

Acquires lock for the current thread, first waiting for any current owner to release it if necessary.

• Function: bool lock_try_acquire (struct lock *lock)

Tries to acquire lock for use by the current thread, without waiting. Returns true if successful, false
if the lock is already owned. Calling this function in a tight loop is a bad idea because it wastes CPU
time, so use lock_acquire instead.

• Function: void lock_release (struct lock *lock)

Releases lock, which the current thread must own.

• Function: bool lock_held_by_current_thread (const struct lock *lock)

Returns true if the running thread owns lock, false otherwise. There is no function to test whether an
arbitrary thread owns a lock, because the answer could change before the caller could act on it.

E.4 Monitors

A monitor is a higher-level form of synchronization than a semaphore or a lock. A monitor consists of data
being synchronized, plus a lock, called the monitor lock, and one or more condition variables. Before it
accesses the protected data, a thread first acquires the monitor lock. It is then said to be “in the monitor”.
While in the monitor, the thread has control over all the protected data, which it may freely examine or
modify. When access to the protected data is complete, it releases the monitor lock.

Condition variables allow code in the monitor to wait for a condition to become true. Each condition variable
is associated with an abstract condition, e.g. “some data has arrived for processing” or “over 10 seconds has
passed since the user’s last keystroke”. When code in the monitor needs to wait for a condition to become
true, it “waits” on the associated condition variable, which releases the lock and waits for the condition to
be signaled. If, on the other hand, it has caused one of these conditions to become true, it “signals” the
condition to wake up one waiter, or “broadcasts” the condition to wake all of them.

The theoretical framework for monitors was laid out by C. A. R. Hoare. Their practical usage was later
elaborated in a paper on the Mesa operating system.

Condition variable types and functions are declared in threads/synch.h.

• Type: struct condition

Represents a condition variable.

• Function: void cond_init (struct condition *cond)

Initializes cond as a new condition variable.

• Function: void cond_wait (struct condition *cond, struct lock *lock)

Atomically releases lock (the monitor lock) and waits for cond to be signaled by some other piece of
code. After cond is signaled, reacquires lock before returning. lock must be held before calling this
function.

Sending a signal and waking up from a wait are not an atomic operation. Thus, typically cond_wait’s
caller must recheck the condition after the wait completes and, if necessary, wait again.

• Function: void cond_signal (struct condition *cond, struct lock *lock)

If any threads are waiting on cond (protected by monitor lock lock), then this function wakes up one

26

CS 162 Spring 2022 Project 2 Threads

of them. If no threads are waiting, returns without performing any action. lock must be held before
calling this function.

• Function: void cond_broadcast (struct condition *cond, struct lock *lock)

Wakes up all threads, if any, waiting on cond (protected by monitor lock lock). lock must be held
before calling this function.

E.5 Optimization Barriers

An optimization barrier is a special statement that prevents the compiler from making assumptions about
the state of memory across the barrier. The compiler will not reorder reads or writes of variables across the
barrier or assume that a variable’s value is unmodified across the barrier, except for local variables whose
address is never taken. In Pintos, threads/synch.h defines the barrier() macro as an optimization barrier.

One reason to use an optimization barrier is when data can change asynchronously, without the com-
piler’s knowledge, e.g. by another thread or an interrupt handler. The too_many_loops function in
devices/timer.c is an example. This function starts out by busy-waiting in a loop until a timer tick
occurs:

/* Wait for a timer tick. */

int64_t start = ticks;

while (ticks == start)

barrier ();

Without an optimization barrier in the loop, the compiler could conclude that the loop would never terminate,
because start and ticks start out equal and the loop itself never changes them. It could then “optimize”
the function into an infinite loop, which would definitely be undesirable.

Optimization barriers can be used to avoid other compiler optimizations. The busy_wait function, also in
devices/timer.c, is an example. It contains this loop:

while (loops-- > 0)

barrier ();

The goal of this loop is to busy-wait by counting loops down from its original value to 0. Without the
barrier, the compiler could delete the loop entirely, because it produces no useful output and has no side
effects. The barrier forces the compiler to pretend that the loop body has an important effect.

Finally, optimization barriers can be used to force the ordering of memory reads or writes. For exam-
ple, suppose we add a “feature” that, whenever a timer interrupt occurs, the character in global variable
timer_put_char is printed on the console, but only if global Boolean variable timer_do_put is true. The
best way to set up x to be printed is then to use an optimization barrier, like this:

timer_put_char = 'x';

barrier ();

timer_do_put = true;

Without the barrier, the code is buggy because the compiler is free to reorder operations when it doesn’t
see a reason to keep them in the same order. In this case, the compiler doesn’t know that the order of
assignments is important, so its optimizer is permitted to exchange their order. There’s no telling whether
it will actually do this, and it is possible that passing the compiler different optimization flags or using a
different version of the compiler will produce different behavior.

Another solution is to disable interrupts around the assignments. This does not prevent reordering, but it
prevents the interrupt handler from intervening between the assignments. It also has the extra runtime cost
of disabling and re-enabling interrupts:

enum intr_level old_level = intr_disable ();

timer_put_char = 'x';

timer_do_put = true;

27

CS 162 Spring 2022 Project 2 Threads

intr_set_level (old_level);

A second solution is to mark the declarations of timer_put_char and timer_do_put as volatile. This
keyword tells the compiler that the variables are externally observable and restricts its latitude for optimiza-
tion. However, the semantics of volatile are not well-defined, so it is not a good general solution. The base
Pintos code does not use volatile at all.

The following is not a solution, because locks neither prevent interrupts nor prevent the compiler from
reordering the code within the region where the lock is held:

lock_acquire (&timer_lock); /* INCORRECT CODE */

timer_put_char = 'x';

timer_do_put = true;

lock_release (&timer_lock);

The compiler treats invocation of any function defined externally, that is, in another source file, as a limited
form of optimization barrier. Specifically, the compiler assumes that any externally defined function may
access any statically or dynamically allocated data and any local variable whose address is taken. This often
means that explicit barriers can be omitted. It is one reason that Pintos contains few explicit barriers.

A function defined in the same source file, or in a header included by the source file, cannot be relied upon
as an optimization barrier. This applies even to invocation of a function before its definition, because the
compiler may read and parse the entire source file before performing optimization.

28

CS 162 Spring 2022 Project 2 Threads

F Advice

You should read through and understand as much of the Pintos source code that you mean to modify before
starting work on project. In a sense, this is why we have you write a design document; it should be obvious
that you have a good understanding, at the very least at a high level, of files such as userprog/process.c.
We see groups in office hours who are really struggling due to a conceptual misunderstanding that has
informed the way they designed their implementations and thus has caused bugs when trying to actually
implement them in code.

You should learn to use the advanced features of GDB. Often times, debugging your code usually takes
longer than writing it. However, a good understanding of the code you are modifying can help you pinpoint
where the error might be; hence, again, we strongly recommend you to read through and understand at least
the files you will be modifying in this project (with the caveat that it is a large codebase, so don’t overwhelm
yourself).

These projects are designed to be difficult and even push you to your limits as a systems programmer, so
plan to be busy and have fun!

F.1 Group Work

In the past, many groups divided each assignment into pieces. Then, each group member worked on his
or her piece until just before the deadline, at which time the group reconvened to combine their code and
submit. This is a bad idea. We do not recommend this approach. Groups that do this often find that two
changes conflict with each other, requiring lots of last-minute debugging. Some groups who have done this
have turned in code that did not even compile or boot, much less pass any tests.

Instead, we recommend integrating your team’s changes early and often, using git. This is less likely to
produce surprises, because everyone can see everyone else’s code as it is written, instead of just when it is
finished. These systems also make it possible to review changes and, when a change introduces a bug, drop
back to working versions of code.

We also encourage you to program in pairs, or even as a group. Having multiple sets of eyes looking at the
same code can help avoid subtle bugs that would’ve otherwise been very difficult to debug.

F.1.1 Meetings

We encourage each group to have regular meetings (e.g. twice a week) to make sure everyone is on the same
page. In-person meetings are generally much more productive, since people tend to be more attentive.

If you’re meeting through a call (e.g. Zoom), we recommend you enable live transcription4. Moreover, you
should take detailed notes during each meeting on a central document to reference back to.

F.2 Development

F.2.1 Compiler Warnings

Compiler warnings are your friend! When compiling your code, we have configured GCC to emit a variety
of helpful warnings when it detects suspicious or problematic conditions in your code (e.g. using the value
of an uninitialized variable, comparing two values of different types, etc). When you run make to compile
your code, by default it echoes each command it is executing, which creates a huge amount of output that
you usually don’t care about, obscuring compiler warnings. To hide this output and show only compiler
warnings (in addition to anything else printed to standard error by the commands make is running), you can
run make -s. The -s flag tells make to be silent instead of echoing every command. Do NOT pass the -s

flag when running make check or you won’t see your test results! Only use the -s flag when compiling
your code.

4https://support.zoom.us/hc/en-us/articles/207279736-Managing-closed-captioning-and-live-transcription

29

https://support.zoom.us/hc/en-us/articles/207279736-Managing-closed-captioning-and-live-transcription
https://support.zoom.us/hc/en-us/articles/207279736-Managing-closed-captioning-and-live-transcription

CS 162 Spring 2022 Project 2 Threads

If your code is buggy, the first thing you should do is check to see if the compiler is emitting
any warnings. While sometimes warnings might be emitted for code that is perfectly fine, in general it’s
best to remedy your code to fix warnings whenever you see them.

F.2.2 Faster Compilation

Depending on the machine you’re using, compiling the Pintos code may take a while to complete. You can
speed this up by using make’s -j flag to compile several files in parallel. For maximum effectiveness, the
value provided for -j (which effectively specifies how many things to compile in parallel) should be equal to
the number of (logical) CPUs on your machine which can be found by running the nproc command in your
shell. You can combine all of this into one command by running make -j $(nproc) instead of running just
make whenever you want to compile your code.

Please be warned however that you should only pass the -j flag to make when compiling your code.
You should not use it when running your tests with make check. While it is actually safe to do so for Project
User Programs, this is not the case for other projects, so it’s best not to get into the habit of it.

F.2.3 Repeated Commands

You’ll often find yourself having to type in the same/similar long commands (e.g. PINTOS DEBUG, loadusersymbols).
Instead of retyping these every time or copying and pasting, you can use reverse-i-search using Ctrl-R. This
will alow you to quickly search through your command history. If there are multiple matches, you can cycle
through them by pressing Ctrl-R repeatedly.

Within GDB, you can specifically shorten your commands which GDB will automatically match as long as
there are no ambiguities. For instance, you can type deb instead of debugpintos and n instead of next.
Moreover, pressing enter without typing any command will repeat the command, which is useful for stepping
through the code.

F.2.4 Hail Mary

Rarely you may find yourself in a bizarre situation where the behavior of your kernel isn’t changing even
though you’re certain you’ve changed your code in a way that should produce an obvious effect. If this occurs,
you can destroy all compiled objects and caches, and restore your current terminal and shell parameters to
sane values by running the following.

hash -r

stty sane

cd ~/code/group/pintos/src

make clean

Once you’ve done the above, recompile your code and try whatever it was you were doing again.

30

	Introduction
	Setup

	Tasks
	Efficient Alarm Clock
	Strict Priority Scheduler
	User Threads
	Concept Check
	Testing

	Deliverables
	Design
	Document
	Review
	Grading

	Code
	Checkpoints
	Testing
	Quality

	Report
	Evaluations
	Submission
	Grading

	Plan
	Checkpoint 1
	Checkpoint 2
	Final

	FAQ
	Efficient Alarm Clock
	Strict Priority Scheduler

	Threads
	Understanding Threads
	The Thread Struct
	Thread Functions

	Scheduler
	User Threads
	Implementation Requirements
	Synchronization
	Additional Information

	Pthread Library
	Threading
	User-Level Synchronization

	Synchronization
	Disabling Interrupts
	Semaphores
	Locks
	Monitors
	Optimization Barriers

	Advice
	Group Work
	Meetings

	Development
	Compiler Warnings
	Faster Compilation
	Repeated Commands
	Hail Mary

