
Section 0: Tools, x86, C

CS 162

August 28, 2020

Contents

1 Vocabulary 2

2 Make 3
2.1 More details about Make . 3

3 Git 4
3.1 Helpful Resources . 4
3.2 Some Commands to Know . 4

4 GDB: The GNU Debugger 6
4.1 Some Commands to Know . 6
4.2 Helpful Resources . 6

5 Debugging Example 7

6 x86 Assembly 8
6.1 Registers . 8
6.2 Syntax . 8
6.3 Practice: Clearing a Register . 9
6.4 Calling Convention . 9
6.5 Instructions Supporting the Calling Convention . 9
6.6 Practice: Reading Disassembly . 10
6.7 Practice: x86 Calling Convention . 11

7 C Programs 12
7.1 Calling a Function in Another File . 12
7.2 Including a Header File . 12
7.3 Using #define . 13
7.4 Using #include Guards . 14

1

CS 162 Fall 2020 Section 0: Tools, x86, C

1 Vocabulary

With credit to the Anderson & Dahlin textbook (A&D):

• stack - The stack is the memory set aside as scratch space for a thread of execution. When a
function is called, a block is reserved on the top of the stack for local variables and some book-
keeping data. When that function returns, the block becomes unused and can be used the next
time a function is called. The stack is always reserved in a LIFO (last in first out) order; the most
recently reserved block is always the next block to be freed.

• heap - The heap is memory set aside for dynamic allocation. Unlike the stack, there is no enforced
pattern to the allocation and deallocation of blocks from the heap; you can allocate a block at any
time and free it at any time.

• process - A process is an instance of a computer program that is being executed, typically with
restricted rights. It consists of an address space and one or more threads of control. It is the main
abstraction for protection provided by the operating system kernel.

• address space - The address space for a process is the set of memory addresses that it can use
and the state associated with them. The memory corresponding to each process’ address space is
private and cannot be accessed by other processes, unless it is explicitly shared.

• C - A high-level programming language. In order to run it, C will be compiled to low level machine
instructions like x86 64 or RISC-V. Note that it is often times easier to express high level ideas in
C, but C cannot be used to express many details (such as register allocation).

• x86 - A very popular family of instruction sets (which includes i386 and x86 64). Unlike MIPS
or RISC-V, x86 is primarily based on CISC (Complex Instruction Set Computing) architecture.
Virtually all servers, desktops, and most laptops (with Intel or AMD) natively execute x86.

2

CS 162 Fall 2020 Section 0: Tools, x86, C

Tools are important for every programmer. If you spend time learning to use your tools, you will
save even more time when you are writing and debugging code. This section will introduce the most
important tools for this course.

2 Make

GNU Make is program that is commonly used to build other programs. When you run make, GNU Make
looks in your current directory for a file named Makefile and executes the commands inside, according
to the makefile language.

my_first_makefile_rule:

echo "Hello world"

The building block of GNUMake is a rule. We just created a rule, whose target is my_first_makefile_rule
and recipe is echo "Hello world". When we run make my_first_makefile_rule, GNU Make will
execute the steps in the recipe and print “Hello world”.

Rules can also contain a list of dependencies, which are other targets that must be executed
before the rule. In this example, the task_two rule has a single dependency: task_one. If we run
“make task_two”, then GNU Make will run task_one and then task_two.

task_one:

echo 1

task_two: task_one

echo 2

2.1 More details about Make

• If you just run make with no specified target, then GNU Make will build the first target.

• By convention, target names are also file names. If a rule’s file exists and the file is newer than
all of its dependencies, then GNU Make will skip the recipe. If a rule’s file does not exist, then
the timestamp of the target would be “the beginning of time”. Otherwise, the timestamp of the
target is the Modification Time of the corresponding file.

• When you run “make clean”, the “clean” recipe is executed every time, because a corresponding
file named “clean” is never actually created. (You can also use the .PHONY feature of the makefile
language to make this more robust.)

• Makefile recipes must be indented with tabs, not spaces.

• You can run recipes in parallel with “make -j 4” (specify the number of parallel tasks).

• GNU Make creates automatic rules if you don’t specify them. For example, if you create a file
named my_program.c, GNU Make will know how to compile it if you run “make my_program”.

• There are many features of the makefile language. Special variables like $@ and $< are commonly
used in Makefiles. Look up the documentation online for more!

Pintos, the educational operating system that you will use for projects, has a complex build system
written with Makefiles. Understanding GNU Make will help you navigate the Pintos build system.

3

CS 162 Fall 2020 Section 0: Tools, x86, C

3 Git

Git is a distributed revision control and source code management (SCM) system with an emphasis on
speed, data integrity, and support for distributed, non-linear workflows. GitHub is a Git repository
hosting service, which offers all of the distributed revision control and SCM functionality of Git as well
as adding many useful and unique features.

In this course, we will use Git and GitHub to manage all of our source code. It’s important that you
learn Git, but NOT just by reading about it.

3.1 Helpful Resources

• https://try.github.io/

• Atlassian Git Cheat Sheet, especially the section Git Basics

3.2 Some Commands to Know

• git init
Create a repository in the current directory

• git clone <url>
Clone a repository from <url> into a new directory

• git status
Show the working tree status

• git pull <repo> <branch>
Fetch from branch <branch> of repository <repo> and integrate with current branch of repository
checked out

• git push <repo> <branch>
Pushes changes from local branch <branch> to remote repository <repo>

• git add <file(s)>
Add file contents to the index

• git commit -m <commit message>
Record changes to the repository with the provided commit message

• git branch
List or delete branches

• git checkout
Checkout a branch or path to the working tree

• git merge
Join two or more development histories together

• git rebase
Reapply commits on top of another base commit

• git diff [--staged]
Show a line-by-line comparison between the current directory and the index (or between the index
and HEAD, if you specify --staged).

4

https://try.github.io/
https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet

CS 162 Fall 2020 Section 0: Tools, x86, C

• git show [--format=raw] <tree-ish>
Show the details of anything (a commit, a branch, a tag).

• git reset [--hard] <tree-ish>
Reset the current state of the repository

• git log
Show commits on the current branch

• git reflog
Show recent changes to the local repository

5

CS 162 Fall 2020 Section 0: Tools, x86, C

4 GDB: The GNU Debugger

GDB is a debugger that supports C, C++, and other languages. You will not be able to debug your
projects effectively without advanced knowledge of GDB, so make sure to familiarize yourself with GDB
as soon as possible.

4.1 Some Commands to Know

• run, r: start program execution from the beginning of the program. Also allows argument passing
and basic I/O redirection.

• quit, q: exit GDB

• kill: stop program execution.

• break, break x if condition: suspend program at specified function (e.g. “break strcpy”) or
line number (e.g. “break file.c:80”).

• clear: the “clear” command will remove the current breakpoint.

• step, s: if the current line of code contains a function call, GDB will step into the body of the
called function. Otherwise, GDB will execute the current line of code and stop at the next line.

• next, n: Execute the current line of code and stop at the next line.

• continue, c: continue execution (until the next breakpoint).

• finish: Continue to end of the current function.

• print, p: print value stored in variable.

• call: execute arbitrary code and print the result.

• watch; rwatch; awatch: suspend program when condition is met. i.e. x > 5.

• backtrace, bt, bt full: show stack trace of the current state of the program.

• disassemble: show an assembly language representation of the current function.

• set follow-fork-mode <mode> (Mac OS does not support this):
GDB can only debug 1 process at a time. When a process forks itself (creates a clone of itself),
follow either the parent (original) or the child (clone). <mode> can be either parent or child.

The print and call commands can be used to execute arbitrary lines of code while your program is
running! You can assign values or call functions. For example, “call close(0)” or “print i = 4”.
(You can actually use print and call interchangeably most of the time.) This is one of the most powerful
features of gdb.

4.2 Helpful Resources

• GDB Cheat Sheet

6

https://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

CS 162 Fall 2020 Section 0: Tools, x86, C

5 Debugging Example

Take a moment to read through the code for asuna.c. It takes in 0 or 1 arguments. If an argument is
provided, asuna uses quicksort to sort all the chars in the argument. If no argument is provided, then
asuna uses a default string to sort.

1 int partition(char* a, int l, int r){

2 int pivot , i, j, t;

3 pivot = a[l];

4 i = l; j = r+1;

5

6 while (1){

7 do

8 ++i;

9 while(a[i] <= pivot && i <= r);

10 do

11 --j;

12 while(a[j] > pivot);

13 if(i >= j)

14 break;

15 t = a[i];

16 a[i] = a[j];

17 a[j] = t;

18 }

19 t = a[l];

20 a[l] = a[j];

21 a[j] = t;

22 return j;

23 }

1 void sort(char a[], int l, int r){

2 int j;

3

4 if(l < r){

5 j = partition(a, l, r);

6 sort(a, l, j-1);

7 sort(a, j+1, r);

8 }

9 }

1 void main(int argc , char** argv){

2 char* a = NULL;

3 if(argc > 1)

4 a = argv [1];

5 else

6 a = "Asuna is the best char!";

7 printf("Unsorted: \"%s\"\n", a);

8 sort(a, 0, strlen(a) - 1);

9 printf("Sorted: \"%s\"\n", a);

10 }

When asuna is run, we get the following output:

$./asuna "Kirito is the best char!"

Unsorted: "Kirito is the best char!"

Sorted : " !Kabceehhiiiorrssttt"

$./asuna

Unsorted: "Asuna is the best char!"

Segmentation fault (core dumped)

Use the debugging tools to find why asuna.c crashes when no arguments are provided.

7

CS 162 Fall 2020 Section 0: Tools, x86, C

6 x86 Assembly

In the projects for this class, you will write an operating system for a 32-bit x86 machine. The class
VM (and probably your laptop) use a 64-bit x86 processor (i.e., an x86-64 processor) that is capable of
executing 32-bit x86 instructions. There are significant differences between the 64-bit and 32-bit versions
of x86. For this worksheet, we will focus on the 32-bit x86 ISA because that is the ISA you will have
to read when working on the projects. Remember that if you compile programs on your local machine
or directly in the class VM (not in Pintos), the result will be in x86-64 assembly.

6.1 Registers

The 32-bit x86 ISA has 8 main registers: eax, ebx, ecx, edx, esi, edi, esp, and ebp. You can omit the
“e” to reference the bottom half of each register. For example, ax refers to the bottom half of eax. esp
is the stack pointer and ebp is the base pointer. Additionally, eip is the instruction pointer, similar to
the program counter in MIPS or RISC-V.

x86 also has segment registers (cs, ds, es, fs, gs, and ss) and control registers (e.g., cr0). You can
think of segment registers as offsets when accessing memory in certain ways (e.g., cs is for instruction
fetches, ss is for stack memory), and control registers as configuring what features of the processor are
enabled (e.g., protected mode, floating point unit, cache, paging). We won’t focus on them in this
worksheet, but you should know that they exist. In particular, Pintos sets these up carefully
upon startup in pintos/src/threads/start.S, so look there if you are interested. Keep in mind that
there are special restrictions as to how these registers are used as operands to instructions.

6.2 Syntax

Although the x86 ISA specifies the registers and instructions, there are two different syntaxes for writ-
ing them out: Intel and AT&T. Instruction operands are written in a different order in each syntax,
which can make it confusing to read one syntax if you are used to the other. For this worksheet, we
will focus on the AT&T syntax because it is the version used by the toolchain we are using (gcc, as).

In the AT&T syntax:

• Registers are preceded by a percent sign (e.g., %eax for the register eax)
• Immediates are preceded by a dollar sign (e.g., $4 for the constant 4)
• For many (but not all!) instructions, use parentheses to dereference memory addresses (e.g., (%eax)
reads from the memory address in eax)

• You can add a constant offset by prefixing the parentheses (e.g., 8(%eax) reads from the memory
address eax+ 8)

• Source operands typically precede destination operands, for instructions with two operands.

Instructions are often suffixed by a letter to specify the size of operands. Use the suffix b to work with
8-bit bytes. Use the suffix w to work with 16-bit words. Use the suffix l to work with 32-bit longwords
(or doublewords). (Analogously, on the x86-64 ISA, append q to work with 64-bit quadwords). If you
omit the suffix, the assembler will add it for you.

Some examples:

• addw %ax, %bx: Add the word in ax to the word in bx, and store the result in bx.
• addl %eax, %ebx: Add the longword in eax to the longword in ebx, and store the result in ebx.
• addl (%eax), %ebx: Add the longword in memory at the address in eax to the longword in ebx,

and store the result in ebx.
• addl 12(%eax), %ebx: Add the longword in memory at the address eax+ 12 to the longword in
ebx, and store the result in ebx.

• subl $12, %esp: Subtract the constant 12 from the longword in esp, and store the result in esp.

8

CS 162 Fall 2020 Section 0: Tools, x86, C

Notice that you don’t need special instructions to load from/store to memory. Some other useful
instructions are and, or, and xor. An especially common instruction is mov:

• movl %eax, %ebx: Copy the longword in eax into ebx.
• movl $4, %ecx: Set the longword in ecx to 4.
• movl 4, %ecx: Read the longword in memory at address 4 and store the result in ecx.
• movl %edx, -8(%ecx): Write the longword in edx to memory at the address ecx− 8.

For the instructions lea and leal, which you will find in Pintos, the parenthesis notation for memory
works differently. They calculate an absolute memory address given a register and offset.

• leal 8(%eax), %ebx: Sets ebx to eax + 8. You can think of this as setting ebx to the memory
address that movl 8(%eax), %ebx would read from.

6.3 Practice: Clearing a Register

Write an instruction that clears register eax (i.e., stores zero in eax).

6.4 Calling Convention

The caller does the following:

1. Push the arguments onto the stack, in reverse order. After this step, the top of the stack must be
16-byte aligned — add padding before pushing arguments, if necessary, so that this is true.

2. Push the return address and jump to the function you are trying to call.
3. When the callee returns, the return address is gone but the arguments are still on the stack.

The callee does the following, and must preserve ebx, esi, edi, and ebp:

1. (Typical, but not required) Push ebp onto the stack, and store current esp into ebp.
2. Compute the return value and store it in eax.
3. Restore esp to its value at the time the callee began executing.
4. Pop the return address off of the stack and jump to it.

6.5 Instructions Supporting the Calling Convention

• pushl %eax is equivalent to:

subl $4, %esp

movl %eax, (%esp)

• popl %eax is equivalent to:

movl (%esp), %eax

addl $4, %esp

• call $0x1234: push the return address (address of the next instruction of the caller) onto the
stack and jump to the specified address (address of the callee).

• leave is equivalent to:

movl %ebp, %esp

popl %ebp

9

CS 162 Fall 2020 Section 0: Tools, x86, C

• ret pops a longword off of the stack (typically a return address) and jumps to it.

pushal pushes eax, ecx, edx, ebx, esp, ebp, esi, and edi to the stack, and popal pops values off of
the stack and stores them in those registers. They are useful to switch context or handle interrupts.

6.6 Practice: Reading Disassembly

file.c:

int global = 0;

int callee(int x, int y) {

int local = x + y;

return local + 1;

}

void caller(void) {

global = callee(3, 4);

}

When gcc compiles this file, with optimizations off, it outputs:
file.s:

callee:

pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl 8(%ebp), %edx

movl 12(%ebp), %eax

addl %edx, %eax

movl %eax, -4(%ebp)

movl -4(%ebp), %eax

addl $1, %eax

leave

ret

caller:

pushl %ebp

movl %esp, %ebp

pushl $4

pushl $3

call callee

addl $8, %esp

movl %eax, global

nop

leave

ret

What does each instruction do? Mark the prologue(s), epilogue(s), and call sequence(s).

10

CS 162 Fall 2020 Section 0: Tools, x86, C

6.7 Practice: x86 Calling Convention

Sketch the stack frame of helper before it returns.

void helper(char* str, int len) {

char word[len];

strncpy(word, str, len);

printf("%s", word);

return;

}

int main(int argc, char *argv[]) {

char* str = "Hello World!";

helper(str, 13);

}

11

CS 162 Fall 2020 Section 0: Tools, x86, C

7 C Programs

7.1 Calling a Function in Another File

Consider a C program consisting of two files:
my_app.c:

#include <stdio.h>

int main(int argc, char** argv) {

char* result = my_helper_function(argv[0]);

printf("%s\n", result);

return 0;

}

my_lib.c:

char* my_helper_function(char* string) {

int i;

for (i = 0; string[i] != ’\0’; i++) {

if (string[i] == ’/’) {

return &string[i + 1];

}

}

return string;

}

You build the program with gcc my_app.c my_lib.c -o my_app.

1. What is the bug in the above program? (Hint: it’s in my_app.c.)

2. How can we fix the bug?

7.2 Including a Header File

Suppose we add a header file to the above program and revise my_app.c to #include it.
my_app.c:

#include <stdio.h>

#include "my_lib.h"

int main(int argc, char** argv) {

char* result = my_helper_function(argv[0]);

printf("%s\n", result);

return 0;

}

12

CS 162 Fall 2020 Section 0: Tools, x86, C

my_lib.h:

char* my_helper_function(char* string);

You build the program with gcc my_app.c my_lib.c -o my_app.

1. Suppose that we made a mistake in my_lib.h, and declared the function as char* my_helper_function(void);.
Additionally, the author of my_app.c sees the header file and invokes the function as my_helper_function().
Would the program still compile? What would happen when the function is called?

2. What could the author of my_lib.c do to make such a mistake less likely?

7.3 Using #define

Suppose we add a struct and #ifdef to the header file:
my_app.c:

#include <stdio.h>

#include "my_lib.h"

int main(int argc, char** argv) {

helper_args_t helper_args;

helper_args.string = argv[0];

helper_args.target = ’/’;

char* result = my_helper_function(&helper_args);

printf("%s\n", result);

return 0;

}

my_lib.h:

typedef struct helper_args {

#ifdef ABC

char* aux;

#endif

char* string;

char target;

} helper_args_t;

char* my_helper_function(helper_args_t* args);

my_lib.c:

#include "my_lib.h"

char* my_helper_function(helper_args_t* args) {

int i;

for (i = 0; args->string[i] != ’\0’; i++) {

if (args->string[i] == args->target) {

return &args->string[i + 1];

}

13

CS 162 Fall 2020 Section 0: Tools, x86, C

}

return args->string;

}

You build the program with:

$ gcc -c my_app.c -o my_app.o

$ gcc -c my_lib.c -o my_lib.o

$ gcc my_app.o my_lib.o -o my_app

Convince yourself that this program outputs the same thing as the one in 7.2.

1. What is the size of the helper_args_t struct?

2. Suppose we add the line #define ABC at the top of my_lib.h. Now what is the size of the
helper_args_t structure?

3. Suppose we leave my_lib.h unchanged (no #define ABC). But, suppose we instead use the follow-
ing commands to build the program:

$ gcc -DABC -c my_app.c -o my_app.o

$ gcc -c my_lib.c -o my_lib.o

$ gcc my_app.o my_lib.o -o my_app

The program will now either segfault or print something incorrect. What went wrong?

7.4 Using #include Guards

Suppose we split my_lib.h into two files: my_helper_function.h:

#include "my_helper_args.h"

char* my_helper_function(helper_args_t* args);

my_helper_args.h:

typedef struct helper_args {

char* string;

char target;

} helper_args_t;

1. What happens if we include the following two lines at the top of my_app.c?

#include "my_helper_function.h"

#include "my_helper_args.h"

2. How can we fix this? (Hint: look up #include guards.)

14

	Vocabulary
	Make
	More details about Make

	Git
	Helpful Resources
	Some Commands to Know

	GDB: The GNU Debugger
	Some Commands to Know
	Helpful Resources

	Debugging Example
	x86 Assembly
	Registers
	Syntax
	Practice: Clearing a Register
	Calling Convention
	Instructions Supporting the Calling Convention
	Practice: Reading Disassembly
	Practice: x86 Calling Convention

	C Programs
	Calling a Function in Another File
	Including a Header File
	Using #define
	Using #include Guards

