Section 3: Files, Pipes, Signals, Dup, Synchronization

CS 162
September 18, 2020

Contents
1 Vocabulary 2
2 Files 4
2.1 Files vs File Descriptor e 4
2.2 Quick practice with write and seek oL 4
2.3 Reading and Writing with File Pointers vs. Descriptors 5
3 Pipes 6
3.1 Basic Pipes e e 6
3.2 Pipeand Fork e 7
4 Signals 8
4.1 Signal Handlers e 9
5 Dup and Dup2 10
6 Synchronization 11
6.1 Locking via Disabling Interruptso Lo 11

CS 162 Fall 2020 Section 3: Files, Pipes, Signals, Dup, Synchronization

1 Vocabulary

file descriptors - File descriptors are an index into a file-descriptor table stored by the kernel.
The kernel creates a file-descriptor in response to an open call and associates the file-descriptor
with some abstraction of an underlying file-like object; be that an actual hardware device, or a
file-system or something else entirely. Using file descriptors, a process’s read or write calls are
routed to the correct place by the kernel. When your program starts you have 3 file descriptors.

File Descriptor File

0 stdin
1 stdout
2 stderr

int open(const char *path, int flags) - open is a system call that is used to open a new file
and obtain its file descriptor. Initially the offset is 0.

size_t read(int fd, void *buf, size_t count) - read is a system call used to read count bytes
of data into a buffer starting from the file offset. The file offset is incremented by the number of
bytes read.

size_t write(int fd, const void *buf, size_t count) - write is a system call that is used to write
up to count bytes of data from a buffer to the file offset position. The file offset is incremented by
the number of bytes written.

size_t lseek(int fd, off_t offset, int whence) - Iseek is a system call that allows you to move
the offset of a file. There are three options for whence

— SEEK_SET - The offset is set to offset.
— SEEK_CUR - The offset is set to current_offset + offset
— SEEK_END - The offset is set to the size of the file + offset

test_and_set - An atomic operation implemented in hardware. Often used to implement locks
and other synchronization primitives. In this handout, assume the following implementation.

int test_and_set(int *value) {
int result = *value;
*value = 1;
return result;

3

This is more expensive than most other instructions, and it is not preferable to repeatedly execute
this instruction.

pipe - A system call that can be used for interprocess communication.

More specifically, the pipe () syscall creates two file descriptors, which the process can write() to
and read () from. Since these file descriptors are preserved across fork() calls, they can be used
to implement inter-process communication.

/* On error, pipe() returns -1. On success, it returns O
* and populates the given array with two file descriptors:
x - fildes[0] will be used to read from the data queue.
* - fildes[1] will be used to write to the data queue.

CS 162 Fall 2020 Section 3: Files, Pipes, Signals, Dup, Synchronization

*
* Note that whether you can write to fildes[0] or read from
* fildes[1] is undefined. */

int pipe(int fildes[2]);

e int dup(int oldfd) - creates an alias for the provided file descriptor and returns the new fd value.
dup always uses the smallest available file descriptor. Thus, if we called dup first thing in our
program, it would use file descriptor 3 (0, 1, and 2 are already signed to stdin, stdout, stderr). The
old and new file descriptors refer to the same open file description and may be used interchangeably.

e int dup2(int oldfd, int newfd) - dup2 is a system call similar to dup. It duplicates the oldfd
file descriptor, this time using newfd instead of the lowest available number. If newfd was open,
it closed before being reused. This becomes very useful when attempting to redirect output, as
it automatically takes care of closing the file descriptor, performing the redirection in one elegant
command. For example, if you wanted to redirect standard output to a file, then you would simply
call dup2, providing the open file descriptor for the file as the first command and 1 (standard
output) as the second command.

e signals - A signal is a software interrupt, a way to communicate information to a process about
the state of other processes, the operating system, and the hardware. A signal is an interrupt in
the sense that it can change the flow of the program —when a signal is delivered to a process, the
process will stop what its doing, either handle or ignore the signal, or in some cases terminate,
depending on the signal.

e int signal(int signum, void (*handler)(int)) - signal() is the primary system call for signal
handling, which given a signal and function, will execute the function whenever the signal is
delivered. This function is called the signal handler because it handles the signal.

e SIG_IGN, SIG_DFL Usually the second argument to signal takes a user defined handler for the
signal. However, if you’d like your process to drop the signal you can use SIG_IGN. If you'd like
your process to do the default behavior for the signal use SIG_DFL.

CS 162 Fall 2020 Section 3: Files, Pipes, Signals, Dup, Synchronization

2 Files

2.1 Files vs File Descriptor

What’s the difference between fopen and open?

2.2 Quick practice with write and seek

What will the test.txt file look like after I run this program? For simplicity assume read() and write()
do not return short. (Hint: if you write at an offset past the end of file, the bytes inbetween the end of
the file and the offset will be set to 0.)

int main() {
char buffer[200];
memset (buffer, ’a’, 200);
int fd = open("test.txt", O_CREAT|O_RDWR) ;
write(fd, buffer, 200);
lseek(fd, 0, SEEK_SET);
read(fd, buffer, 100);
1seek(fd, 500, SEEK_CUR);
write(fd, buffer, 100);

CS 162 Fall 2020 Section 3: Files, Pipes, Signals, Dup, Synchronization

2.3 Reading and Writing with File Pointers vs. Descriptors

Write a utility function, void copy(const char *src, const char *dest), that simply copies the file
contents from src and places it in dest. You can assume both files are already created. Also assume that
the src file is at most 100 bytes long. First, use the file pointer library to implement this. Fill in the
code given below:

void copy(const char *src, const char *dest) {
char buffer [100];
FILE* read_file = fopen(________ D -
int buf_size = fread(__________ S mmmm mmmmmemeem R)
fclose(read_file);

FILE* write_file = fopen(________ D -
fwrite(__________ > o);
fclose(write_file);

}

Next, use file descriptors to implement the same thing.

void copy(const char *src, const char *dest) {
char buffer [100];
int read_fd = open(________ e);
int bytes_read = O;
int buf_size = 0;

while ((bytes_read = read(__________ e e)) >0 {

close(read_fd);

int bytes_written = 0O;

int write_fd = open(________ e)
while (_____________________) {

__________ += write(__________, oy e __)}
}

close(write_£fd);

Compare the file pointer implementation to the file descriptor implementation. In the file descriptor
implementation, why does read and write need to be called in a loop?

CS 162 Fall 2020 Section 3: Files, Pipes, Signals, Dup, Synchronization

3 Pipes

3.1 Basic Pipes

In the following code we use a pipe to communicate data between 2 file descriptors.

int main() {

int fds[2];

pipe(fds);

int rfd = fds[0];

int wfd = fds[1];

char *str = "hello world";

size_t bytes_written = O;

size_t total = 0;

while (bytes_written = write(wfd, &str[totall, strlen(&str([totall) + 1)) {
total += bytes_written;

if (strl[total - 1] == ’\0’) break;
}
close(wfd);
char *read_str = malloc(strlen(str) + 1);
total = 0;

size_t bytes_read;

while (bytes_read = read(rfd, &read_str[total], 50)) {
total += bytes_read;

}

printf("%s", read_str);

return 0O;

}

What would the code above print out?

CS 162 Fall 2020 Section 3: Files, Pipes, Signals, Dup, Synchronization

3.2 Pipe and Fork

Now, we use pipes in order for 2 processes to share data between each other.

int main() {

int fds[2];

pipe(fds);

pid_t child_pid = fork();

size_t total = 0;

char *str = "hello world";

int rfd = fds[0];

int wfd = fds[1];

if (child_pid == 0) {
size_t bytes_written = 0;
while ((bytes_written = write(wfd, &str([totall, strlen(&str[totall) + 1))) {

total += bytes_written;

if (str[total - 1] == ’\0’) break;
}
} else {
close(wfd);
char *read_buf = malloc(strlen(str) + 1);
total = 0;

size_t bytes_read;
while ((bytes_read = read(rfd, &read_buf[total], 50))) {
total += bytes_read;

}

printf ("%s\n", read_buf);
}
return 0;

}

What would the code above print out?

CS 162 Fall 2020 Section 3: Files, Pipes, Signals, Dup, Synchronization

4 Signals

The following is a list of standard Linux signals:

Signal Value Action Comment

SIGHUP 1 Terminate Hangup detected on controlling terminal
or death of controlling process

SIGINT 2 Terminate Interrupt from keyboard (Ctrl - c)

SIGQUIT 3 Core Dump Quit from keyboard (Ctrl - \)

SIGILL 4 Core Dump Illegal Instruction

SIGABRT 6 Core Dump Abort signal from abort(3)

SIGFPE 8 Core Dump Floating point exception

SIGKILL 9 Terminate Kill signal

SIGSEGV 11 Core Dump Invalid memory reference

SIGPIPE 13 Terminate Broken pipe: write to pipe with no
readers

SIGALRM 14 Terminate Timer signal from alarm(2)

SIGTERM 15 Terminate Termination signal

SIGUSR1 30,10,16 Terminate User-defined signal 1
SIGUSR2 31,12,17 Terminate User—-defined signal 2

SIGCHLD 20,17,18 Ignore Child stopped or terminated
SIGCONT 19,18,25 Continue Continue if stopped

SIGSTOP 17,19,23 Stop Stop process

SIGTSTP 18,20,24 Stop Stop typed at tty

SIGTTIN 21,21,26 Stop tty input for background process
SIGTTOU 22,22,27 Stop tty output for background process

CS 162 Fall 2020 Section 3: Files, Pipes, Signals, Dup, Synchronization

4.1 Signal Handlers

Assume you are running this program from a Bash shell. List all the ways you can cause this program
to exit using signals.

#include <signal.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
void sigint_handler(int sig) {
if (sig == SIGINT || sig == SIGQUIT) {
exit(1);
}
}
void sigint_handler_2(int sig) {
if (sig == SIGINT) {
signal (SIGINT, sigint_handler);
}
}
int main() {
signal (SIGINT, sigint_handler_2);
signal (SIGQUIT, sigint_handler);

while (1) {
printf ("Sleeping for a second (U.U)\n");
sleep(1);

}

CS 162 Fall 2020 Section 3: Files, Pipes, Signals, Dup, Synchronization

5 Dup and Dup2
What does C print in the following code?

int main(int argc, char **argv)
{
int pid, status;
int newfd;
if ((newfd = open("output_file.txt", O_CREAT|O_TRUNC|O_WRONLY, 0644)) < 0) {
exit(1);
}
printf("The last digit of pi is...");
fflush(stdout) ;
dup2 (newfd, 1);
printf("five\n");
exit (0);

10

CS 162 Fall 2020 Section 3: Files, Pipes, Signals, Dup, Synchronization

6 Synchronization

6.1 Locking via Disabling Interrupts

Consider the following implementation of Locks:

Lock: :Acquire() { Lock: :Release() {
disable_interrupts(); enable_interrupts();

} }

1. For a single-processor system state whether this implementation is incorrect.

2. For a multiprocessor system, explain what additional reason(s) might make this implementation
incorrect?

11

	Vocabulary
	Files
	Files vs File Descriptor
	Quick practice with write and seek
	Reading and Writing with File Pointers vs. Descriptors

	Pipes
	Basic Pipes
	Pipe and Fork

	Signals
	Signal Handlers

	Dup and Dup2
	Synchronization
	Locking via Disabling Interrupts

