
Section 5: Scheduling

CS 162

October 2, 2020

Contents

1 Vocabulary 2

2 Scheduling 3

2.1 Round Robin Scheduling . 3
2.2 Life Ain’t Fair . 4
2.3 All Threads Must Die . 6

3 Fall 2019 Practice Midterm 8

3.1 Optional Practice: Delivery Service . 8

1

CS 162 Fall 2020 Section 5: Scheduling

1 Vocabulary

• Scheduler - Routine in the kernel that picks which thread to run next given a vacant CPU and
a ready queue of unblocked threads.

• Preemption - The process of interrupting a running thread to allow for the scheduler to decide
which thread runs next.

• FIFO Scheduling - First-In-First-Out (aka First-Come-First-Serve) scheduling runs jobs as they
arrive. Turnaround time can degrade if short jobs get stuck behind long ones (convoy effect);

• round-robin Scheduling - Round-Robin scheduling runs each job in fixed-length time slices
(quanta). The scheduler preempts a job that exceeds its quantum and moves on, cycling through
the jobs. It avoids starvation and is good for short jobs, but context switching overhead can become
important depending on quanta length;

• Shortest Time Remaining First Scheduling - A scheduling algorithm where the thread that
runs is the one with the least time remaining. This is ideal for throughput but also must be
approximated in practice.

• Linux CFS - Linux scheduling algorithm designed to optimize for fairness. It gives each thread a
weighted share of some target latency and then ensures that each thread receives that much virtual
CPU time in its scheduling decisions.

• Earliest Deadline First - Scheduling algorithm used in real time systems. It attempts to meet
deadlines of threads that must be processed in real time by selecting the thread that has the closest
deadline to complete first.

• Multi-Level Feedback Queue Scheduling - MLFQS uses multiple queues with priorities, drop-
ping CPU-bound jobs that consume their entire quanta into lower-priority queues.

• Priority Inversion - If a higher priority thread is blocking on a resource (a lock, as far as
you’re concerned but it could be the Disk or other I/O device in practice) that a lower priority
thread holds exclusive access to, the priorities are said to be inverted. The higher priority thread
cannot continue until the lower priority thread releases the resource. This can be amended by
implementing priority donation.

• Priority Donation - If a thread attempts to acquire a resource (lock) that is currently being held,
it donates its effective priority to the holder of that resource. This must be done recursively until
a thread holding no locks is found, even if the current thread has a lower priority than the current
resource holder. (Think about what would happen if you didn’t do this and a third thread with
higher priority than either of the two current ones donates to the original donor.) Each thread’s
effective priority becomes the max of all donated priorities and its original priority.

2

CS 162 Fall 2020 Section 5: Scheduling

2 Scheduling

2.1 Round Robin Scheduling

Which of the following are true about Round Robin Scheduling?

1. The average wait time is less than that of FCFS for the same workload.

2. It requires pre-emption to maintain uniform quanta.

3. If quanta is constantly updated to become the # of cpu ticks since boot, Round Robin becomes
FIFO.

4. If all threads in the system have the samee priority, Priority Schedulers must behave like round
robin.

5. Cache performance is likely to improve relative to FCFS.

6. If no new threads are entering the system all threads will get a chance to run in the cpu every
QUANTA*SECONDS_PER_TICK*NUMTHREADS seconds. (Assuming QUANTA is in ticks).

7. It is the fairest scheduler

3

CS 162 Fall 2020 Section 5: Scheduling

2.2 Life Ain’t Fair

Suppose the following threads denoted by THREADNAME : PRIORITY pairs arrive in the ready queue
at the clock ticks shown. Assume all threads arrive unblocked and that each takes 5 clock ticks to finish
executing. Assume threads arrive in the queue at the beginning of the time slices shown and are ready
to be scheduled in that same clock tick. (This means you update the ready queue with the arrival before
you schedule/execute that clock tick.) Assume you only have one physical CPU.

0 Taj : 7

1

2 Kevin : 1

3 Neil: 3

4

5 Akshat : 5

6

7 William: 11

8

9 Alina: 14

Determine the order and time allocations of execution for the following scheduler scenarios:

• Round Robin with time slice 3

• Shortest Time Remaining First (SRTF/SJF) WITH preemptions

• Preemptive priority (higher is more important)

Write answers in the form of vertical columns with one name per row, each denoting one clock tick of
execution. For example, allowing Taj 3 units at first looks like:

0 Taj

1 Taj

2 Taj

It will probably help you to draw a diagram of the ready queue at each tick for this problem.

4

CS 162 Fall 2020 Section 5: Scheduling

5

CS 162 Fall 2020 Section 5: Scheduling

2.3 All Threads Must Die

You have three threads with the associated priorities shown below. They each run the functions with
their respective names. Assume upon execution all threads are initially unblocked and begin at the top
of their code blocks. The operating system runs with a preemptive priority scheduler. You may assume
that set priority commands are atomic.

Tyrion : 4
Ned: 5
Gandalf: 11

Note: The following uses references to Pintos locks and data structures.

struct list braceYourself; // pintos list. Assume it’s already initialized and populated.

struct lock midTerm; // pintos lock. Already initialized.

struct lock isComing;

void tyrion(){

thread_set_priority(12);

lock_acquire(&midTerm);

lock_release(&midTerm);

thread_exit();

}

void ned(){

lock_acquire(&midTerm);

lock_acquire(&isComing);

list_remove(list_head(braceYourself));

lock_release(&midTerm);

lock_release(&isComing);

thread_exit();

}

void gandalf(){

lock_acquire(&isComing);

thread_set_priority(3);

while (thread_get_priority() < 11) {

printf("YOU .. SHALL NOT .. PAAASS!!!!!!);

timer_sleep(20);

}

lock_release(&isComing);

thread_exit();

}

6

CS 162 Fall 2020 Section 5: Scheduling

What is the output of this program when there is no priority donation? Trace the program execution
and number the lines in the order in which they are executed.

What is the output and order of line execution if priority donation was implemented? Draw a diagram
of the three threads and two locks that shows how you would use data structures and struct members
(variables and pointers, etc) to implement priority donation for this example.

7

CS 162 Fall 2020 Section 5: Scheduling

3 Fall 2019 Practice Midterm

3.1 Optional Practice: Delivery Service

Assume each numbered line of code takes 1 CPU cycle to run, and that a context switch takes 2 CPU
cycles. Hardware preemption occurs every 50 CPU cycles and takes 1 CPU cycle. The scheduler is
run after every hardware preemption and takes 0 time. Finally, the currently running thread does not
change until the end of a context switch.

Lock lock_a, lock_b; // Assume these locks are already initialized and unlocked.

int a = 0;

int b = 1;

bool run = true;

Kiki() {

1. bool cond = run;

2. while (cond) {

3. int x = a;

4. int y = b;

5. int sum = x + y;

6. lock_a.acquire();

7. lock_b.acquire();

8. a = y;

9. b = sum;

10. lock_a.release();

11. lock_b.release();

12. cond = run;

}

}

Jiji() {

1. bool cond = run;

2. while (cond) {

3. int x = b;

4. int sum = a + b;

5. lock_b.acquire();

6. lock_a.acquire();

7. b = sum;

8. a = x;

9. lock_b.release();

10. lock_a.release();

11. cond = run;

}

}

Tombo() {

1. while (true) {

2. lock_a.acquire()

3. a = 0;

4. lock_a.release()

5. lock_b.acquire()

6. b = 1;

8

CS 162 Fall 2020 Section 5: Scheduling

7. lock_b.release()

} }

Thread 1 runs Kiki, Thread 2 runs Jiji, and Thread 3 runs Tombo. Assuming round robin scheduling
(threads are initially scheduled in numerical order):

1. What are the values of a and b after 50 CPU cycles?

2. What are the values of a and b after 200 CPU cycles? What line is the program counter on for
each thread?

Now assume we use the same round robin scheduler but we just run 2 instances of Kiki.

3. What are the values of a and b after 100 cycles?

Now we replace our scheduler with a CFS-like scheduler. In particular, this scheduler is invoked on every
call to lock_acquire or lock_release. We still have 2 threads running Kiki, but this time thread 1
runs for 50 cycles before thread 2 starts.

4. What are the values of a and b at the end of the 73rd cycle?

9

	Vocabulary
	Scheduling
	Round Robin Scheduling
	Life Ain't Fair
	All Threads Must Die

	Fall 2019 Practice Midterm
	Optional Practice: Delivery Service

