Control



Announcements



Print and None



Pure Functions & Non-Pure Functions

p
Pure Functions J— [_Estur” value ] A return value is
just return values . =2 p abs L_ A the value of a call
R = b2 < expression and can
[Argument ] be used as part of a
larger expression

2, 100 D pow L

-

~

J

A ] P 1267650600228229401496703205376

[ 2 Arguments ]

Non-Pure Functions

[ Returns None! ]

have side effects -2 p print f"y“”a
_l—r/— :‘. ___________ :

Python displays the output “-2”"

( N\
A side effect isn't a

value; it's anything
< that happens as a
consequence of

calling a function
\ J




Example: Print Then Return

Implement a function h(x) that first prints, then returns, the value of f(x).

def h(x): def h(x): def h(x):
return print(f(x)) print(f(x)) y = f(x)
return f(x) print(y)
return y

(A) (B) (C)

What's a function f for which implementations (B) and (C) would have different behavior?

>>> h(2) >>> h(2)

(Demo)



Multiple Environments



Life Cycle of a User-Defined Function

[ Formal parameter ]

m"m"m"m"mv ________________ Return
Def statement: %dgéfé( Xi): Pl
et returnimulix, x)ii |
statement | AT
[_j;dy (return statement)]
A R VS : 242
Call expression: square(2+2%<:{ 2£i£ﬁ&gﬂ:-z 1
______ P
operator: square
function: func square(x)
Calling/Applying: 4 } éﬁQ@féKlg ______ Xﬁ L_

[ Argument j7 [ Slgngkure ’é?ﬁ

[ Return value ]

https://pythontutor. con/cp,

What happens?

A new function is created!

Name bound to that function
in the current frame

Operator & operands evaluated

Function (value of operator)
called on arguments
(values of operands)

A new frame is created!
Parameters bound to arguments

Body is executed in that new
environment




Control



Conditional Statements

Conditional statements (often called "If" Statements) contain statements that may or may
not be evaluated.

x=10 x=1 x=-1
if x > 2: T : Lated) | bi
print('big') wo separate (unrelate 19 )
if x > 0 conditional statements positive positive
print('positive')
if x > 2: One statement with two
print('big") clauses: if and elif bi ositive
elif x > 0: Only one body can ever J P
print('positive') be executed
1 x ?iﬁé('bi ' One statement with three
P g clauses: if, elif, else , o
elif x > 0: big positive not pos
print('positive') Only one body can ever
else: be executed

print('not pos"')



While Statements

While statements contain statements that are repeated as long as some condition is true.
Important considerations:
* How many separate names are needed and what do they mean?

e The while condition must eventually become a false value for the statement to end
(unless there is a return statement inside the while body).

e Once the while condition is evaluated, the entire body is executed.

(:Names and their initial values Ix

J

i, total = 0, 0 The while condition is evaluated
while i < 3: before each iteration
+

A name that appears in the while = 1
condition is changing total

total + 1<[Executed even when is set to 3

~

J




Example: Nice Numbers



Nice Numbers

Rounding off 2,799 to 2,800 makes it nice.

Definition: A nice number doesn't have 98 or 99 or 01 or 02 among its digits.

Not-so—-nice numbers: 99 2,799 5,016 9,902 1,200,456 98,402,001

Nicer versions: 100 2,800 5,000 10,000 1,200,000 100,000,000

These numbers are nice enough already and unaffected: 755 2,859 45,622,895
Implement nice, which takes a positive integer n. It returns the nearest nice number to n.
« For numbers that end in 98 or 99 or 01 or 02, round to the nearest 100.

* Look for 98 or 99 or 01 or 02 among the digits that aren't at the end.

To solve a problem, describe a process and work through an example:

4798402001
47 9840 2

(Demo)
4 7 9 8

4 8

https://pythontutor. con/cp/
.............

%%%%%%%%%%%%%%%



Example: Prime Factorization



Prime Factorization

Each positive integer n has a set of prime factors: primes whose product is n

=2 % 2 % 2
9 =3 % 3
10 = 2 x 5
11 = 11
12 =2 x 2 x 3

One approach: Find the smallest prime factor of n, then divide by it

858 =2 %429 =2 x 3 %x 143 =2 x 3 *x 11 x 13

(Demo)



