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Pure Functions & Non-Pure Functions
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Example: Print Then Return

Implement a function h(x) that first prints, then returns, the value of f(x).

def h(x): def h(x): def h(x):
return print(f(x)) print(f(x)) y = f(x)
return f(x) print(y)
return y

(A) (B) (C)

What's a function f for which implementations (B) and (C) would have different behavior?

>>> h(2) >>> h(2)

(Demo)



Multiple Environments



Life Cycle of a User-Defined Function
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What happens?

A new function is created!

Name bound to that function
in the current frame

Operator & operands evaluated

Function (value of operator)
called on arguments
(values of operands)

A new frame is created!
Parameters bound to arguments

Body is executed in that new
environment
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Conditional Statements

Conditional statements (often called "If" Statements) contain statements that may or may
not be evaluated.

x=10 x=1 x=-1
if x > 2: T : Lated) | bi
print('big') wo separate (unrelate 19 )
if x > 0 conditional statements positive positive
print('positive')
if x > 2: One statement with two
print('big") clauses: if and elif bi ositive
elif x > 0: Only one body can ever J P
print('positive') be executed
1 x ?iﬁé('bi ' One statement with three
P g clauses: if, elif, else , o
elif x > 0: big positive not pos
print('positive') Only one body can ever
else: be executed

print('not pos"')



While Statements

While statements contain statements that are repeated as long as some condition is true.
Important considerations:
* How many separate names are needed and what do they mean?

e The while condition must eventually become a false value for the statement to end
(unless there is a return statement inside the while body).

e Once the while condition is evaluated, the entire body is executed.

(:Names and their initial values Ix

J

i, total = 0, 0 The while condition is evaluated
while i < 3: before each iteration
+

A name that appears in the while = 1
condition is changing total

total + 1<[Executed even when is set to 3

~
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Example: Nice Numbers



Nice Numbers

Rounding off 2,799 to 2,800 makes it nice.

Definition: A nice number doesn't have 98 or 99 or 01 or 02 among its digits.

Not-so—-nice numbers: 99 2,799 5,016 9,902 1,200,456 98,402,001

Nicer versions: 100 2,800 5,000 10,000 1,200,000 100,000,000

These numbers are nice enough already and unaffected: 755 2,859 45,622,895
Implement nice, which takes a positive integer n. It returns the nearest nice number to n.
« For numbers that end in 98 or 99 or 01 or 02, round to the nearest 100.

* Look for 98 or 99 or 01 or 02 among the digits that aren't at the end.

To solve a problem, describe a process and work through an example:

4798402001
47 9840 2

(Demo)
4 7 9 8

4 8
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Example: Prime Factorization



Prime Factorization

Each positive integer n has a set of prime factors: primes whose product is n

=2 % 2 % 2
9 =3 % 3
10 = 2 x 5
11 = 11
12 =2 x 2 x 3

One approach: Find the smallest prime factor of n, then divide by it

858 =2 %429 =2 x 3 %x 143 =2 x 3 *x 11 x 13

(Demo)



