Tree Recursion

Announcements

Recursion Review

How to Know That a Recursive Implementation is Correct

Tracing: Diagram the whole computational process (only feasible for very small examples)
Induction: Check f(@), then check that f(n) is correct as long as f(n-1) ... f(0) are.

Abstraction: Assume f is correct (on simpler examples), then use it to implement f.

One-Line Streak (Spring 2024 Midterm 1 Question 4(e) — The A+ Question)

Definition. A dice integer is a positive integer whose digits are all from 1 to 6.

def streak(n):
"""Return whether positive n is a dice integer in which all the digits are the same.

>>> streak(22222)

True

>>> streak(4)

True

>>> streak(22322) # 2 and 3 are different digits.

False

>>> streak(99999) # 9 is not allowed in a dice integer.
False

return (n >= 1 and n <= 6) or (n > 9 and N % 10 ==n // 10 % 10 4nq streak(n // 10))

Idea: In a streak, all pairs of adjacent digits are equal.

Discussion Review: Sevens

The Game of Sevens

Players in a circle count up from 1 in the clockwise direction. If a number is divisible by
7 or contains a 7 (or both), switch directions. If someone says a number when it's not
their turn or someone misses the beat on their turn, the game ends.

Implement sevens(n, k) which returns the position of who says n among k players.

1. Pick an example input and corresponding output.
2. Describe a process (in English) that computes the output from the input

n: the final number
K: how many players
i: the current number
who: the current player
direction: who's next

(Demo)

Mutual Recursion

Mutually Recursive Functions
Two functions f and g are mutually recursive if f calls g and g calls f.

def unique_prime_factors(n): def smallest _factor(n):
"""Return the number of unique prime factors of n. "The smallest divisor of n above 1."

>>> unique_prime_factors(51) # 3 x 17

2

>>> unique_prime_factors(9) # 3 % 3

1

>>> unique_prime_factors(576) # 2 x 2 % 2 x 2 x 2 x 2 x 3 % 3
2

k = smallest_factor(n)
def no_k(n):
"Return the number of unique prime factors of n other than k."
if n == 1:
return 0
elif n % k !'= 0:

return Unique_prime_factors(n)

else:
return no_k(n // k)

Tree Recursion

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

count_partitions(6, 4)

2+4=6 -ae L 1 1 1
1+1+4=6 o e [X X X]
3+3=6 oee oee
1+2+3=6 o oo C I X)
1+1+1+3=6 ‘I' 1'.' 'I' ‘I"ll.‘l'
2+2+2=6 [X) [X) [X 1}
1+1+2+ 2= .I'D ‘I' ‘I"ll' (ll.‘l'
1+1+1+1+2=26 ‘I'i ‘I'i 1‘.' 1‘.' ‘IID‘I'
1+1+1+1+1+1=6 ‘I'i ‘I'i 1‘.' ‘I'i 1‘.' ‘I'

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in non-
decreasing order.

count_partitions(6, 4)

*Recursive decomposition: finding

simpler instances of the problem. '__.E
-Explore two possibilities: "'
-Use at least one 4 ','

-Don't use any 4 Jl

*Solve two simpler problems: "'
-count_partitions(2, 4) - ="
ccount_partitions(6, 3) == ===== === === é

*Tree recursion often involves
exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in

increasing order.

Recursive decomposition: finding
simpler instances of the problem.

Explore two possibilities:
Use at least one 4

Don't use any 4

Solve two simpler problems:
count_partitions(2, 4)
count_partitions(6, 3)

Tree recursion often involves
exploring different choices.

def count_partitions(n, m)
if n

return 1
elif n < 0:

return 0
elif m

return 0

else:
with m count partitions(n-m, m)
without m count partitions(n, m-1)
return with m + without m

(Demo)

pythontutor. com/compos ingprograns. html#code=def%20count_partitions28n,
ount_partitions%28n,

eturn%201

ount_partit

without_r
eturn%s20with_r

1520%28%201 B%201%20%28%20:

% thout

isplaysorigin=composingprograms. j

s&cum:

ult: ount_partitions%285,
ulative=false&py=3&rawInputLstISON=[]&curInstr=

0

Spring 2023 Midterm 2 Question 5

Definition. When parking vehicles in a row, a motorcycle takes up 1 parking spot and a car
takes up 2 adjacent parking spots. A string of length n can represent n adjacent parking
spots using % for a motorcycle, <> for a car, and . for an empty spot.

For example: '.%%.<><>' (Thanks to the Berkeley Math Circle for introducing this question.)

Implement count_park, which returns the number of ways that vehicles can be parked in n
adjacent parking spots for positive integer n. Some or all spots can be empty.

def count_park(n):
"""Count the ways to park cars and motorcycles in n adjacent spots.

>>> count_park(1l) # '.' or 's'
2
>>> count_park(2) # '..', '.%', '%.', '%%', or '<>'
5
>>> count_park(4) # some examples: '<><>', '.%%.', '%<>%', '%.<>!
29 —t — —
minn
if n < 0:
return 0
elif n ==
return 1
else:

return count_park(n-2) + count_park(n-1) + count_park(n-1)

