Generators

Announcements

Tree Practice

Spring 2023 Midterm 2 Question 4(a)

Implement exclude, which takes a tree t and a value x. It returns a tree containing the root
node of t as well as each non-root node of t with a label not equal to x. The parent of a
node in the result is its nearest ancestor node that is not excluded.
def exclude(t, x):

"""Return a tree with the non-root nodes of tree t labeled anything but x.

>>> t = tree(1l, [tree(2, [tree(2), tree(3), tree(4)]), tree(5, [tree(1)]1)])
>>> exclude(t, 2)

[1, (31, [41, [5, [1]]] [:2]"3 J(4 }r-1“
>>> exclude(t, 1) # The root node cannot be excluded - —
(1, [2, (21, [3], [4]], [5]] —

(2) (5]

filtered_branches = map(lambda y: exclude(y, x) branches(t))

’

ro b) @) (1)

for b in filtered_branches: 375 of students ;895p¥1n% é@Zi,
label(b) == x got this right s O students
30% got |if got this right

- ()
1t right;
11 5?34 bs. extend branches(b)‘ﬁj 24% got i 5 |

options |else: it right

bs.append(b)
return tree(label(t), bs) [3 H:4][1]

Min Practice

Match the description to the code

w=+9{...} # a dict with unique keys and values min(w.keys(), key=lambda k: w[k]l)
m= {v: k for k, v in w.items()} min(w.keys(), key=lambda k: m[k])
Which expression evaluates to? min(w.values(), key=lambda vi wlv])

1. The key that has the smallest value in w min{w.values(), key=lambda v: mivl)

_ min(w.keys(), key=lambda k: abs(k — wlkl))
2. The value that has the smallest key in w

min(w.keys(), key=lambda k: abs(k — m[k]))
3. The smallest absolute difference between
a key and its value

/\

min(map(lambda k: abs(k - w[kl), w.keys()))

min(map(lambda k: abs(k - m[k]), w.keys()))

Generators

Generators and Generator Functions

>>> def plus_minus(x):
yield x
yield -x

>>> t = plus_minus(3)

>>> next(t)

3

>>> next(t)

-3

>>> t

<generator object plus_minus ...>

A generator function is a function that yields values instead of returning them
A normal function returns once; a generator function can yield multiple times
A generator is an iterator created automatically by calling a generator function

When a generator function is called, it returns a generator that iterates over its yields

(Demo)

Spring 2023 Midterm 2 Question 5(b)

Definition. When parking vehicles in a row, a motorcycle takes up 1 parking spot and a car
takes up 2 adjacent parking spots. A string of length n can represent n adjacent parking
spots using % for a motorcycle, <> for a car, and . for an empty spot.

For example: '.%%.<><>' (Thanks to the Berkeley Math Circle for introducing this question.)

Implement park, a generator function that yields all the ways, represented as strings, that
vehicles can be parked in n adjacent parking spots for positive integer n.

def park(n):
"""Yield the ways to park cars and motorcycles in n adjacent spots.

>>> sorted(park(1))
[Io/ol’ |.|]

>>> sorted(park(
[IO/OO/OI’ Io/o.I, |.O/o
>>> len(list(par
29

))
, |..|’ |<>|]
(

2
1
k(4))) # some examples: '<><>', '.%%.', '%<>%', '%.<>'

Example: Call Expressions

Problem Definition

From Discussion 0:

Imagine you can call only the following three functions:
— f(x): Subtracts one from an integer x
— g(x): Doubles an integer x

- h(x, y): Concatenates the digits of two different
positive integers x and y. For example, h(789, 12)
evaluates to 78912 and h(12, 789) evaluates to 12789.

Definition: A small expression is a call expression that
contains only f, g, h, the number 5, and parentheses. All
of these can be repeated. For example, h(g(5), f(f(5))) is
a small expression that evaluates to 103.

What's the shortest small expression you can find that
evaluates to 20237

(Demo)

A Simple Restatement:

You start with 5. You can:
— Subtract 1 from a number
— Double a number

— Glue two numbers together

How do you get toi;%€1;2§

563106320 5
SEI4EI3EI2
5634

?

A Computational Approach

def f(x): def g(x): def h(x, y):
return x - 1 return 2 * X return int(str(x) + str(y))

def smalls(n):
"""Yield all call expressions involving f, g, h, and 5 that have n calls.

>>> [exp for exp in smalls(7) if eval(exp) == 2024]
['g(h(g(5), g(g(f(f(5))))))"]

if n == 0:
yield '5'
else:
for operand in smalls(n-1):
yield 'f(' + operand + ')"

yield '9(' + operand + ')’

for k in range(n):

for first in smalls(k):
for second in Smalls(n-k-1) .

if eval(first) > @ and eval(second) > 0:
yield 'h(' + first + ', ' + second + ')’

