
Generators

Announcements

Tree Practice

Spring 2023 Midterm 2 Question 4(a)
Implement exclude, which takes a tree t and a value x. It returns a tree containing the root
node of t as well as each non-root node of t with a label not equal to x. The parent of a
node in the result is its nearest ancestor node that is not excluded.

4

def exclude(t, x):
 """Return a tree with the non-root nodes of tree t labeled anything but x.

 >>> t = tree(1, [tree(2, [tree(2), tree(3), tree(4)]), tree(5, [tree(1)])])
 >>> exclude(t, 2)
 [1, [3], [4], [5, [1]]]
 >>> exclude(t, 1) # The root node cannot be excluded
 [1, [2, [2], [3], [4]], [5]]
 """
 filtered_branches = map(lambda y: _______________, branches(t))
 bs = []
 for b in filtered_branches:

 if ________________:

 bs.________(______________)
 else:
 bs.append(b)
 return tree(label(t), bs)

exclude(y, x)

label(b) == x

extend

1

2 5

12 43

In Spring 2023,
20% of students
got this right

37% of students
got this right

30% got
it right;
1 of 4
options

branches(b) 24% got
it right

2 5

12 43

2 5

12 3

1

4

Min Practice

Match the description to the code

w = {...} # a dict with unique keys and values

m = {v: k for k, v in w.items()}

Which expression evaluates to?

1. The key that has the smallest value in w

2. The value that has the smallest key in w

3. The smallest absolute difference between
a key and its value

6

min(w.keys(), key=lambda k: w[k])

min(w.keys(), key=lambda k: m[k])

min(w.values(), key=lambda v: w[v])

min(w.values(), key=lambda v: m[v])

min(w.keys(), key=lambda k: abs(k - w[k]))

min(w.keys(), key=lambda k: abs(k - m[k]))

min(map(lambda k: abs(k - w[k]), w.keys()))

min(map(lambda k: abs(k - m[k]), w.keys()))

Generators

Generators and Generator Functions

A generator function is a function that yields values instead of returning them

A normal function returns once; a generator function can yield multiple times

A generator is an iterator created automatically by calling a generator function

When a generator function is called, it returns a generator that iterates over its yields

8

(Demo)

>>> def plus_minus(x):
... yield x
... yield -x

>>> t = plus_minus(3)
>>> next(t)
3
>>> next(t)
-3
>>> t
<generator object plus_minus ...>

Spring 2023 Midterm 2 Question 5(b)

9

Definition. When parking vehicles in a row, a motorcycle takes up 1 parking spot and a car
takes up 2 adjacent parking spots. A string of length n can represent n adjacent parking
spots using % for a motorcycle, <> for a car, and . for an empty spot.
For example: '.%%.<><>' (Thanks to the Berkeley Math Circle for introducing this question.)
Implement park, a generator function that yields all the ways, represented as strings, that
vehicles can be parked in n adjacent parking spots for positive integer n.

def park(n):
 """Yield the ways to park cars and motorcycles in n adjacent spots.

 >>> sorted(park(1))
 ['%', '.']
 >>> sorted(park(2))
 ['%%', '%.', '.%', '..', '<>']
 >>> len(list(park(4))) # some examples: '<><>', '.%%.', '%<>%', '%.<>'
 29
 """

Example: Call Expressions

Problem Definition

Imagine you can call only the following three functions:

- f(x): Subtracts one from an integer x

- g(x): Doubles an integer x

- h(x, y): Concatenates the digits of two different
positive integers x and y. For example, h(789, 12)
evaluates to 78912 and h(12, 789) evaluates to 12789.

Definition: A small expression is a call expression that
contains only f, g, h, the number 5, and parentheses. All
of these can be repeated. For example, h(g(5), f(f(5))) is
a small expression that evaluates to 103.

What's the shortest small expression you can find that
evaluates to 2023?

11

From Discussion 0: A Simple Restatement:

You start with 5. You can:

- Subtract 1 from a number

- Double a number

- Glue two numbers together

How do you get to 2024?

5➡10➡20
5➡4➡3➡2

5➡4

(Demo)

A Computational Approach
def f(x):
 return x - 1

def smalls(n):
 """Yield all call expressions involving f, g, h, and 5 that have n calls.

 >>> [exp for exp in smalls(7) if eval(exp) == 2024]
 ['g(h(g(5), g(g(f(f(5))))))']
 """
 if n == 0:
 yield '5'
 else:
 for operand in smalls(n-1):
 yield _____________________
 yield _____________________
 for k in range(n):
 for first in smalls(k):
 for second in ______________:
 if eval(first) > 0 and eval(second) > 0:
 yield ____________________________________

12

def g(x):
 return 2 * x

def h(x, y):
 return int(str(x) + str(y))

'f(' + operand + ')'
'g(' + operand + ')'

smalls(n-k-1)

'h(' + first + ', ' + second + ')'

