Inheritance

Announcements

Lab 6 Review

Lab 6: Email

Sending an email:

>>>
>>>
>>>
>>>
>>>

"Hi!

S

-0 T O

Server()
Client(s, 'John')
Client(s, 'Jack')

.compose('Hi!"', 'Jack')
.inbox[0@] .msg

class Email:
def __init__ (self, msg, sender, recipient_name):
self.msg = msg
self.sender = sender
self.recipient_name = recipient_name

class Server:
"""Each Server has a dictionary from client names to client objects."""
def __init__ (self):
self.clients = {}

def send(self, email):
"""Append the email to the inbox of the client it is addressed to."""

self.clients[email.recipient_namel jnpox.append(email)

def register_client(self, client):
"""Add a client to the dictionary of clients."""

self.clients| client.name | _ client

class Client:
"""A client has a server, a name (str), and an inbox (list)."""
def __init__ (self, server, name):
self.inbox = []
self.server = server
self.name = name
server.register_client(self)

def compose(self, message, recipient_name):
"""Send an email with the given message to the recipient."""

email = Email(message, self , recipient_name

self.server.send(email)

Lab 6: Make Change

25 {2: 2, 3: 2, 4: 3, 5: 1}
def make_change(amount, coins):

“"""Return a list of coins that sum to amount, preferring the smallest coins
available and placing the smallest coins first in the returned list."""
if not coins:

return None
smallest = min(coins) —> 2
rest = remove_one(coins, smallest) -> {2: 1, 3: 2, 4: 3, 5: 1}
if amount < smallest:

return None

elif amount == smallest:

return Lsmallest]

else: 23

result = make_change(_@mount-smallest = rest) -> [3, 3, 4, 4, 4, 5]
if result:
return [smallest] + result [2] + [3, 3, 4, 4, 4, 5] == [2, 3, 3, 4, 4, 4, 5]
else:
return make_change(amount, rest)

Attributes & Methods

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object of
the dot expression

2. <name> 1is matched against the instance attributes of that object; if an
attribute with that name exists, its value is returned

3. If not, <name> is looked up in the class, which yields a class attribute value

4., That value is returned unless it is a function, in which case a bound method 1is
returned instead

Class Attributes

A class attribute can be accessed from either an instance or its class. There is only one

value for a class attribute, regardless of how many instances.

class Transaction:
A logged transaction. Transaction class

>>>
>>>
>>>

17

>>>
13

log

def

def

log:

List

s = [20, -3, -4]
ts = [Transaction(x) for x in s]
ts[1].balance()

\,,
/

|

ts[2].balance()
Transaction instance Transaction instance Transaction instance
Always bound to some amount: 20 amount: -3 amount: -4
= [] Transaction 1instance prior: | prior: | prior:
inl se , amoun . .
— — empty list ~ v
self.amount = amount Pty \\\\\

self.prior = list(self.log)
self.log.append(self)

[»Equivalently: list(type(self).log)]

balance(self):

return self.amount + sum([t.amount for t in self.prior])

(Demo)

Accessing Attributes

Accessing Attributes

Using getattr, we can look up an attribute using a string

>>> tom_account.balance >>> getattr(tom_account, 'balance')
10 10

>>> hasattr(tom_account, 'deposit')
True

getattr and dot expressions look up a name in the same way

Looking up an attribute name in an object may return:
* One of its instance attributes, or

® One of the attributes of its class

Example: Close Friends

class Friend:
def __init_ (self, name):

self.name = name , . ,
self.heard from = {} A Friend just_messaged the friend that most recently
- heard from them.

A Friend instance tracks the number of times they
hear_from each other friend.

def hear_from(self, friend): how_close is one Friend (self) to another (friend)?

if friend not in self.heard_from:
self.heard_from[friend] = 0

self.heard froa[friénd] +=]1 * Plus a bonus of 3 if they are the one that most

friend. just_messaged = self recently heard from self

« The number of times friend has heard from self

self's closest friend among a list of friends is the
def how close(self, friend): one with the largest self.how_close(friend) value

bonus = 0

if hasattr(self, 'just_messaged') self.just_messaged == friend

and

bonus = 3

return friend.heard_from.get(self, @) ; ponus

def closest(self, friends):

return max(friends, key= self.how_close)

Inheritance

Inheritance Example

A CheckingAccount 1is a specialized type of Account

>>> ch = CheckingAccount('Tom")

>>> ch.interest # Lower interest rate for checking accounts
0.01

>>> ch.deposit(20) # Deposits are the same

20

>>> ch.withdraw(5) # Withdrawals incur a $1 fee

14

Most behavior is shared with the base class Account

class CheckingAccount (Account):
"""A bank account that charges for withdrawals.''""
withdraw_fee = 1
interest = 0.01

def withdraw(self, amount):

return Account.withdraw(self, amount + self.withdraw_fee)

T ’_,,——””' or

return {super().withdraw(amount + self.withdraw_fee)

Looking Up Attribute Names on Classes

Base class attributes aren't copied into subclasses!

To look up a name in a class:
1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls Account._ _init_

>>> ch.interest # Found in CheckingAccount
0.01

>>> ch.deposit(20) # Found in Account

20

>>> ch.withdraw(5) # Found in CheckingAccount
14

Example: Three Attributes

class A:
X, Y, z=0,1, 2

def f(self):
return [self.x, self.y, self.z]

class B(A):
“""What would Python Do?

>>> A().f()
[0, 1, 2]

>>> B().f()
[6, 1, 'A']

X =6
def init (self):
self.z = 'A’'

A class

X: 0
y: 1
z: 2

B class

X: 6

A instance

B instance

z: 'A'

