Representation

Announcements

Inheritance

Inheritance Example

A CheckingAccount 1is a specialized type of Account

>>> ch = CheckingAccount('Tom")

>>> ch.interest # Lower interest rate for checking accounts
0.01

>>> ch.deposit(20) # Deposits are the same

20

>>> ch.withdraw(5) # Withdrawals incur a $1 fee

14

Most behavior is shared with the base class Account

class CheckingAccount (Account):
"""A bank account that charges for withdrawals.''""
withdraw_fee = 1
interest = 0.01

def withdraw(self, amount):

return Account.withdraw(self, amount + self.withdraw_fee)

T ’_,,——””' or

return {super().withdraw(amount + self.withdraw_fee)

Looking Up Attribute Names on Classes

Base class attributes aren't copied into subclasses!

To look up a name in a class:
1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls Account._ _init_

>>> ch.interest # Found in CheckingAccount
0.01

>>> ch.deposit(20) # Found in Account

20

>>> ch.withdraw(5) # Found in CheckingAccount
14

Example: Three Attributes

class A:
X, Y, z=0,1, 2

def f(self):
return [self.x, self.y, self.z]

class B(A):
“""What would Python Do?

>>> A().f()
[0, 1, 2]

>>> B).f()
[6, 1, 'A']

X =6
def init (self):
self.z = 'A’'

A class

X: 0
y: 1
z: 2

B class

X: 6

A instance

B instance

z: 'A'

String Representations

String Representations

In Python, all objects produce two string representations:
The str is legible to humans

*The repr is legible to the Python interpreter

The str and repr strings are often the same, but not always

>>> from fractions import Fraction
>>> half = Fraction(1, 2)

>>> str(half)

'1/2"

>>> repr(half)

'Fraction(1, 2)'

Class Practice

Spring 2023 Midterm 2 Question 2(a)

class Letter:
def init (self, contents):

self.contents = contents

Implement the Letter class. A Letter has two
instance attributes: contents (a str) and sent
(a bool). Each Letter can only be sent once.
The send method prints whether the letter was

self.sent = False sent, and if it was, returns the reply, which

is a new Letter instance with the same

contents, but in all caps.

def send(self): Hint:

if self.sent:
print(self, 'was already sent.')

else:
print(self, 'has been sent.')

self.sent = True

return Letter(self.contents.upper())

def __repr__(self):
return self.contents

"hi'.upper() evaluates to 'HI'.

"nA letter receives an all-caps reply.

>>> hi = Letter('Hello, World!"')
>>> hi.send()

Hello, World! has been sent.
HELLO, WORLD!

>>> hi.send()

Hello, World! was already sent.
>>> Letter('Hey').send().send()
Hey has been sent.

HEY has been sent.

HEY

Spring 2023 Midterm 2 Question 2(b)

class Numbered(Letter):
number = 0
def init (self, contents):

super().__init__ (contents)

self.number = Numbered.number

Numbered.number += 1

def __repr__(self):

return '#' 4+ str(self.number)

Implement the Numbered class. A Numbered letter
has a number attribute equal to how many
numbered letters have previously been
constructed. This number appears in its repr
string. Assume Letter is implemented correctly.

""UA numbered letter has a different
repr method that shows its number.

>>> hey = Numbered('Hello, World!"')
>>> hey.send()

#0 has been sent.

HELLO, WORLD!

>>> Numbered('Hi!').send()

#1 has been sent.

HI!

>>> hey

#0

