Scheme Lists

Announcements

Turtle Graphics

Drawing Stars

(forward 100) or (fd 100) draws a line

(right 90) or (rt 90) turns 90 degrees

{ (star 5 2)\& e
Number of sides\JLWhere to go next f; a -m%mé

(define (star n m)
(let ((a (/ (% 360 m) n)))
(define (side k)
(if (< k n) (begin (fd 100) (rt a) (side (+ k 1)))))
(side 0)))

(Demo)

Lists

Scheme Lists

In the late 1950s, computer scientists used confusing names

* cons: Two—-argument procedure that creates a linked list (cons 2 nil) |2 *“—*(Hzﬂ
e car: Procedure that returns the first element of a list 2
e cdr: Procedure that returns the rest of a list

e nil: The empty list

Important! Scheme lists are written in parentheses with elements separated by spaces

(cons 1 (cons 2 nil)) 1| |2
1 2)
define x (cons 1 (cons 2 nil))

>

(

>
> X
(1 2)

> (car x)
1

> (cdr x)
(2)

>
(

(cons 1 (cons 2 (cons 3 (cons 4 nil)))) 1] e 2| . 3| 41— 4
123 4)

(Demo)

List Construction

cons is always called on two arguments: a first value and the rest of the list.
list is called on any number of arguments that all become values in a list.

append is called on any number of list arguments that all become concatenated in a list.

. . (

scm> (define s (cons 1 (cons 24jjiill/,,/////////f((3) 2

scm> (list 3 s) (3 (1 2))

scm> (cons 3 S) / ((3) (1 2))
(31 (2))

scm> (append 3 s) — Error ((3) 1 (2))

scm> (list s s) (3 (1 (2)))
((3) (1 (2)))

scm> (cons s s)

scm> (append s s) ((12) (12))
\((1 2) 1 2)
(121 2)

Recursive Construction

To build a list one element at a time, use cons
To build a list with a fixed length, use 1list

;30 Return a list of two lists; the first n elements of s and the rest

;33 scm> (split (list 3456 7 8) 3)

i3 ((345) (67 8))

(define (split s n)

—

D

; The first n elements of s 3

(define (prefix s n)

(if (zero? n) nNil (cons (car s) (prefix (cdr s) (- n 1)))))

; The elements after the first n

(define (suffix s n)
(if (zero? n) S (suffix (cdr s) (= n 1))y)

(list (prefix s n) (suffix s n)))

Recursive Construction Version 2

To build a list one element at a time, use cons

To build a list with a fixed length, use 1list

;33 Return a list of two lists; the first n elements of s and the rest

;33 scm> (split (list 3 456 7 8) 3)
;33 ((345) (67 8))
(define (split s n)

(if (= n 0)
(list nil s)

3] J—[a]d—[5]-

T ﬂ.[

T T 4 L
! |]

3 4| e 5] e—nil

(let ((split-rest (split (cdr s) (- n 1))))
(cons (cons (car s) (car split-rest))

(cdr split-rest)))))

Symbolic Programming

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

> (define a 1)
> (define b 2) _ _
> (1list a b) No sign of “a” and “b” in the
(1 2) resulting value
BN
Quotation is used to refer to symbols directly in Lisp.
: b Short for (quote a), (quote b):
list ’

?a(b;s a 'b) Special form to indicate that the
> (list 'a b) expression itself is the value.
(a 2)

b c) (Demo)

List Processing

Built-in List Processing Procedures

(append s t): list the elements of s and t; append can be called on more than 2 lists
(map f s): call a procedure f on each element of a list s and list the results

(filter f s): call a procedure f on each element of a list s and list the elements for
which a true value is the result

(apply f s): call a procedure f with the elements of a list s as its arguments

(12 3 4) ; count
((and a 1) (and a 2) (and a 3) (and a 4)) ; beats
(and 2 1 and a 2 and a 3 and a 4) ; rhythm

(define count (list 1 2 3 4))
(define beats (map _(lambda (x) (list 'and 'a x)) (qynt)

(define rhythm (@PPLly append peats))

