Calculator

Announcements

List Processing

Built-in List Processing Procedures

(append s t): list the elements of s and t; append can be called on more than 2 lists
(map f s): call a procedure f on each element of a list s and list the results

(filter f s): call a procedure f on each element of a list s and list the elements for
which a true value is the result

(apply f s): call a procedure f with the elements of a list s as its arguments

(Demo)
(12 3 4) ; count
((and a 1) (and a 2) (and a 3) (and a 4)) ; beats
(and 2 1 and a 2 and a 3 and a 4) ; rhythm

(define count (list 1 2 3 4))
(define beats (map _(lambda (x) (list 'and 'a x)) (qynt)

(define rhythm (@PPLly append peats))

Cons Count

Return how many cons cells appear in the diagram for a value s.
scm> '((c s) ((6)) 1 (a))
(define (cons-count s) ((c s) () 1 ()
(if (list? s) scm> ("(Cc s) ((6)) 1 (addd
(* (length s)
(apply + (map cons—count s)))

0))

Exceptions

Reducing a Sequence to a Value

def reduce(f, s, initial):

"""Combine elements of s pairwise using f, starting with initial.

E.g., reduce(mul, [2, 4, 81, 1) is equivalent to mul(mul(mul(1l, 2), 4), 8).

>>> reduce(mul, [2, 4, 81, 1)
04

f is ...
a two-argument function that returns a first argument

S 1S ...
a sequence of values that can be the second argument

initial is ...
a value that can be the first argument

(Demo)

16,777,216
pow 64 E\
o[
o] |2
pow| 2]

*
LLE]

reduce(pow, [1, 2, 3, 4], i)

Scheme-Syntax Calculator

(Demo)

Calculator Syntax

The Calculator language has primitive expressions and call expressions. (That's it!)

A primitive expression is a number: 2 -4 5.6

A call expression is a combination that begins with an operator (+, -, %, /) followed by 0
or more expressions: (+ 12 3) (/ 3 (+ 4 5))

Expressions are represented as Scheme lists (Pair instances) that encode tree structures.

Expression Expression Tree Representation as Pairs

first [rest first [rest first [rest first |rest

3
(+ 4 5) |

%k irs res irs res firs res irs res
(% 6 7 8)) s]|)l M [[e L7 % i

first [rest first |rest first [rest
+ | = 4 | = 5 |nil

Calculator Semantics

The value of a calculator expression is defined recursively.
Primitive: A number evaluates to itself.

Call: A call expression evaluates to its argument values combined by an operator.
+: Sum of the arguments
*: Product of the arguments
-: If one argument, negate it. If more than one, subtract the rest from the first.

/: If one argument, invert it. If more than one, divide the rest from the first.

Expression Expression Tree
(+5 61
(x 2 3) /
(x 2 55)) + 5|6 50
w AN
*x 2 3 x 2 5 5

Evaluation

The Eval Function

The eval function computes the value of an expression, which is always a number

It is a generic function that dispatches on the type of the expression (primitive or call)

Implementation Language Semantics

def calc_eval(exp):
A number evaluates...

if isinstance(exp, (int, float)): Recursive call ‘o itself
o itse

return exp returns a number

. , for each operand | A call expression evaluates...
elif isinstance(exp, Pair):

to its argument values
arguments = exp.rest.map(calc_eval)

...................... combined by an operator

A A

else:
_ T+, =1, A Scheme list
raise TypeError 'x', '/' of numbers

Applying Built-in Operators

The apply function applies some operation to a (Scheme) list of argument values

In calculator, all operations are named by built-in operators: +, -, *, /

Implementation Language Semantics

def calc_apply(operator, args):

if operator == '+': +:
return reduce(add, args, 0) Sum of the arguments
elif operator == '-': -
elif operator == 'x':
elif operator == '/"':
else:

raise TypeError

(Demo)

Interactive Interpreters

Read-Eval-Print Loop

The user interface for many programming languages 1is an interactive interpreter
1. Print a prompt
Read text input from the user

Parse the text input into an expression

2

3

4. Evaluate the expression

5 If any errors occur, report those errors, otherwise
6

Print the value of the expression and repeat

(Demo)

