
Calculator

Announcements

List Processing

Built-in List Processing Procedures

(append s t): list the elements of s and t; append can be called on more than 2 lists

(map f s): call a procedure f on each element of a list s and list the results

(filter f s): call a procedure f on each element of a list s and list the elements for
which a true value is the result

(apply f s): call a procedure f with the elements of a list s as its arguments

4

(define count (list 1 2 3 4))

(define beats (map ______________________________ count)

(define rhythm (______ _______ beats))

(1 2 3 4) ; count
((and a 1) (and a 2) (and a 3) (and a 4)) ; beats
(and a 1 and a 2 and a 3 and a 4) ; rhythm

(lambda (x) (list 'and 'a x))

apply append

(Demo)

Cons Count

Return how many cons cells appear in the diagram for a value s.

5

(define (cons-count s)

 (if (list? s)

 (__ (length s)

 (apply + __________________))

 _______________________________))

(map cons-count s)

+

0

Exceptions

f is ...
 a two-argument function that returns a first argument
s is ...
 a sequence of values that can be the second argument
initial is ...
 a value that can be the first argument

Reducing a Sequence to a Value

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

7

reduce(pow, [1, 2, 3, 4], 2)

pow 2 1

pow

pow

pow

2 2

4 3

64 4

16,777,216

[

[

(Demo)

Scheme-Syntax Calculator

(Demo)

Calculator Syntax

The Calculator language has primitive expressions and call expressions. (That's it!)

A primitive expression is a number: 2 -4 5.6

A call expression is a combination that begins with an operator (+, -, *, /) followed by 0
or more expressions: (+ 1 2 3) (/ 3 (+ 4 5))

9

Expressions are represented as Scheme lists (Pair instances) that encode tree structures.

(* 3
 (+ 4 5)
 (* 6 7 8))

Expression

restfirst
*

restfirst
3

restfirst restfirst
nil

restfirst
+

restfirst
4

restfirst
5 nil

restfirst
*

restfirst
6

restfirst
7

restfirst
8 nil

Representation as PairsExpression Tree

* 3

+ 4 5 * 6 87

Calculator Semantics

The value of a calculator expression is defined recursively.

Primitive: A number evaluates to itself.

Call: A call expression evaluates to its argument values combined by an operator.

+: Sum of the arguments

*: Product of the arguments

-: If one argument, negate it. If more than one, subtract the rest from the first.

/: If one argument, invert it. If more than one, divide the rest from the first.

10

(+ 5
 (* 2 3)
 (* 2 5 5))

Expression Expression Tree

+ 5

* 2 3 * 2 55

506

61

Evaluation

The Eval Function

The eval function computes the value of an expression, which is always a number

It is a generic function that dispatches on the type of the expression (primitive or call)

12

def calc_eval(exp):

 if isinstance(exp, (int, float)):

 return exp

 elif isinstance(exp, Pair):

 arguments = exp.rest.map(calc_eval)

 return calc_apply(exp.first, arguments)

 else:

 raise TypeError

A number evaluates...

A call expression evaluates...

 to its argument values

 to itself

'+', '-',
'*', '/'

A Scheme list
of numbers

Recursive call
returns a number
for each operand

 combined by an operator

Implementation Language Semantics

Applying Built-in Operators

The apply function applies some operation to a (Scheme) list of argument values

In calculator, all operations are named by built-in operators: +, -, *, /

13

def calc_apply(operator, args):
 if operator == '+':
 return reduce(add, args, 0)
 elif operator == '-':
 ...
 elif operator == '*':
 ...
 elif operator == '/':
 ...
 else:
 raise TypeError

 Sum of the arguments
+:

Implementation Language Semantics

 ...
-:

...

(Demo)

Interactive Interpreters

Read-Eval-Print Loop

The user interface for many programming languages is an interactive interpreter

1. Print a prompt

2. Read text input from the user

3. Parse the text input into an expression

4. Evaluate the expression

5. If any errors occur, report those errors, otherwise

6. Print the value of the expression and repeat

15

(Demo)

