
Interpreters

Announcements

Interpreting Scheme

The Structure of an Interpreter

4

Apply

Eval

Recursive calls:
• Eval(operator, operands) of call expressions
• Apply(procedure, arguments)
• Eval(sub-expressions) of special forms

Base cases:
• Primitive values (numbers)
• Look up values bound to symbols

Base cases:
• Built-in primitive procedures
Recursive calls:
• Eval(body) of user-defined procedures

Requires an
environment
for symbol

lookup

Creates a new
environment each time

a user-defined
procedure is applied

Project 4

Pairs in Project 4: Scheme

Tokenization/Parsing: Converts text into Python representation of Scheme expressions:

• Numbers are represented as numbers

• Symbols are represented as strings

• Lists are represented as instances of the Pair class (Demo)

Evaluation: Converts Scheme expressions to values while executing side effects:

• scheme_eval(expr, env) returns the value of an expression in an environment

• scheme_apply(procedure, args) applies a procedure to its arguments

• The Python function scheme_apply returns the return value of the procedure it applies

6

https://cs61a.org/proj/scheme/

(Demo)

Discussion Question: The Symbol of a Define Expression

Return the symbol of a define expression. There are two formats for define expressions:
(define x (+ 2 3)) or (define (f x) (+ x 3))
def symbol(exp):
 """Given a define expression exp, return the symbol defined.
 >>> def_x = read_line("(define x (+ 2 3))")
 >>> def_f = read_line("(define (f x) (+ x 3))")
 >>> symbol(def_x)
 'x'
 >>> symbol(def_f)
 'f'
 """
 assert exp.first == 'define' and exp.rest is not nil and exp.rest.rest is not nil
 signature = _________________
 if scheme_symbolp(signature):
 return signature
 else:
 return _________________

7

exp.rest.first

signature.first

Special Forms

Scheme Evaluation

The scheme_eval function choose behavior based on expression form:

• Symbols are looked up in the current environment

• Self-evaluating expressions are returned as values

• All other legal expressions are represented as Scheme lists, called combinations

(if <predicate> <consequent> <alternative>)

(define <name> <expression>)

(lambda (<formal-parameters>) <body>)

(<operator> <operand 0> ... <operand k>)

Special forms
are identified
by the first
list element

Any combination
that is not a
known special
form is a call

expression

(define (demo s) (if (null? s) '(3) (cons (car s) (demo (cdr s)))))

(demo (list 1 2))

9

Lambda Expressions

Lambda Expressions

Lambda expressions evaluate to user-defined procedures

(lambda (<formal-parameters>) <body>)

(lambda (x) (* x x))

class LambdaProcedure:

 def __init__(self, formals, body, env):

 self.formals = formals

 self.body = body

 self.env = env

11

A scheme list of symbols
A scheme list of expressions
A Frame instance

Frames and Environments

A frame represents an environment by having a parent frame

Frames are Python instances with methods lookup and define

In Project 4, Frames do not hold return values

g: Global frame

y
z

3
5

f1: [parent=g]

x
z

2
4

12

(Demo)

Lab 10

Lab 10: Extending the Calculator

Calculator is a subset of Scheme that doesn't have environments or special forms.

Lab 10 will have you:

• Fill in the eval function of a Calculator interpreter

• Add another procedure (floor division)

• Add a special form (and)

• Add a global frame to store bindings from symbols to values

14

(Demo)

