
BFS, DFS and Implementations
Lecture 23 (Graphs 2)

1

CS61B, Spring 2024 @ UC Berkeley
Slides credit: Josh Hug

Lecture 23, CS61B, Spring 2024

The All Paths Problem
• Princeton Graphs API
• DepthFirstPaths Implementation
• The Adjacency List
• DepthFirstPaths Runtime

The All Shortest Paths Problem
• BreadthFirstPaths
• BreadthFirstPaths

Implementation
Graph Implementations and Runtime
Project 2B Note

Princeton Graphs
API

Graph Representations

To Implement a graph algorithm like DepthFirstPaths, we need:
● An API (Application Programming Interface) for graphs.

○ For our purposes today, these are our Graph methods, including their
signatures and behaviors.

○ Defines how Graph client programmers must think.
● A concrete data structure to represent our graphs.

Our choices can have profound implications on:
● Runtime.
● Memory usage.
● Difficulty of implementing various graph algorithms.

Set

TreeSetHashSet

Graph

????

API

Concrete

Graph API Decision #1: Integer Vertices

Common convention: Number nodes irrespective of “label”, and use number
throughout the graph implementation. To lookup a vertex by label, you’d need to
use a Map<Label, Integer>.

Austin

Dallas

Houston

0

1

2

Intended graph.
How you’d build it.

Map<String, Integer>:
 Austin: 0
 Dallas: 1
 Houston: 2

Graph API

The Graph API from Princeton’s algorithms textbook.

public class Graph {
 public Graph(int V): Create empty graph with v vertices
 public void addEdge(int v, int w): add an edge v-w
 Iterable<Integer> adj(int v): vertices adjacent to v
 int V(): number of vertices
 int E(): number of edges
...

Some features:
● Number of vertices must be specified in advance.
● Does not support weights (labels) on nodes or edges.
● Has no method for getting the number of edges for a vertex (i.e. its degree).

Graph API

The Graph API from our optional textbook.

Example client:

public class Graph {
 public Graph(int V): Create empty graph with v vertices
 public void addEdge(int v, int w): add an edge v-w
 Iterable<Integer> adj(int v): vertices adjacent to v
 int V(): number of vertices
 int E(): number of edges
...

/** degree of vertex v in graph G */
public static int degree(Graph G, int v) {

int degree = 0;
for (int w : G.adj(v)) {

 degree += 1;
 }

return degree; }

(degree = # edges)

degree(G, 1) = 2

0

2

13

Graph API

The Graph API from our optional textbook.

Challenge: Try to write a client method called print that prints out a graph.

public class Graph {
 public Graph(int V): Create empty graph with v vertices
 public void addEdge(int v, int w): add an edge v-w
 Iterable<Integer> adj(int v): vertices adjacent to v
 int V(): number of vertices
 int E(): number of edges
...

0

2

13

$ java printDemo
0 - 1
0 - 3
1 - 0
1 - 2
2 - 1
3 - 0

public static void print(Graph G) {
???

}

Graph API

The Graph API from our optional textbook.

Print client:

public class Graph {
 public Graph(int V): Create empty graph with v vertices
 public void addEdge(int v, int w): add an edge v-w
 Iterable<Integer> adj(int v): vertices adjacent to v
 int V(): number of vertices
 int E(): number of edges
...

public static void print(Graph G) {
for (int v = 0; v < G.V(); v += 1) {

 for (int w : G.adj(v)) {
 System.out.println(v + “-” + w);
 }
 }
}

0

2

13

$ java printDemo
0 - 1
0 - 3
1 - 0
1 - 2
2 - 1
3 - 0

Graph API and DepthFirstPaths

Our choice of Graph API has deep implications on the implementation of
DepthFirstPaths, BreadthFirstPaths, print, and other graph “clients”.
● Our choice of concrete implementation will affect runtimes and memory

usage.

Lecture 23, CS61B, Spring 2024

The All Paths Problem
• Princeton Graphs API
• DepthFirstPaths Implementation
• The Adjacency List
• DepthFirstPaths Runtime

The All Shortest Paths Problem
• BreadthFirstPaths
• BreadthFirstPaths

Implementation
Graph Implementations and Runtime
Project 2B Note

DepthFirstPaths
Implementation

Depth First Search Implementation

Common design pattern in graph algorithms: Decouple type from processing
algorithm.
● Create a graph object.
● Pass the graph to a graph-processing method (or constructor) in a client

class.
● Query the client class for information.

public class Paths {
 public Paths(Graph G, int s): Find all paths from G
 boolean hasPathTo(int v): is there a path from s to v?
 Iterable<Integer> pathTo(int v): path from s to v (if any)
}

Paths.java

Example Usage

Start by calling: Paths P = new Paths(G, 0);
● P.hasPathTo(3); //returns true
● P.pathTo(3); //returns {0, 1, 4, 3}

Paths.java

public class Paths {
 public Paths(Graph G, int s): Find all paths from G
 boolean hasPathTo(int v): is there a path from s to v?
 Iterable<Integer> pathTo(int v): path from s to v (if any)
}

DepthFirstPaths

Let’s review DepthFirstPaths by running the demo from last lecture again.

Will then discuss:
● Implementation.
● Runtime.

https://docs.google.com/presentation/d/1mr841rMgVAffqi-TfL--gZPmEjAM5rpBW7MzrmJPuaU/edit#slide=id.g25f3bf5f9c7_0_1020

public class DepthFirstPaths {
 private boolean[] marked;
 private int[] edgeTo;
 private int s;

 public DepthFirstPaths(Graph G, int s) {
 ...
 dfs(G, s);
 }
 private void dfs(Graph G, int v) {
 marked[v] = true;
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 edgeTo[w] = v;
 dfs(G, w);
 }
 }
 }
 ...
}

DepthFirstPaths, Recursive Implementation

marked[v] is true iff v connected to s
edgeTo[v] is previous vertex on path from s to v

find vertices connected to s.
not shown: data structure initialization

recursive routine does the work and stores results
in an easy to query manner!

Question to ponder: How would we write
pathTo(v) and hasPathTo(v)?
● Answer on next slide.

DepthFirstPaths, Recursive Implementation

public class DepthFirstPaths {
 private boolean[] marked;
 private int[] edgeTo;
 private int s;
 ...
 public Iterable<Integer> pathTo(int v) {
 if (!hasPathTo(v)) return null;
 List<Integer> path = new ArrayList<>();
 for (int x = v; x != s; x = edgeTo[x]) {
 path.add(x);
 }
 path.add(s);
 Collections.reverse(path);
 return path;
 }

 public boolean hasPathTo(int v) {
 return marked[v];
 }
}

marked[v] is true iff v connected to s
edgeTo[v] is previous vertex on path from s to v

To analyze the runtime, we
need to create a concrete
Graph Implementation.

Lecture 23, CS61B, Spring 2024

The All Paths Problem
• Princeton Graphs API
• DepthFirstPaths Implementation
• The Adjacency List
• DepthFirstPaths Runtime

The All Shortest Paths Problem
• BreadthFirstPaths
• BreadthFirstPaths

Implementation
Graph Implementations and Runtime
Project 2B Note

The Adjacency
List

Graph Representations

To Implement our graph algorithms like BreadthFirstPaths and DepthFirstPaths,
we need:
● An API (Application Programming Interface) for graphs.

○ For our purposes today, these are our Graph methods, including their
signatures and behaviors.

○ Defines how Graph client programmers must think.
● An underlying data structure to represent our graphs.

Our choices can have profound implications on:
● Runtime.
● Memory usage.
● Difficulty of implementing various graph algorithms.

Graph

????

API

Concrete

Graph Representations

Just as we saw with trees, there are many possible implementations we could
choose for our graphs.

Let’s review briefly some representations we saw for trees.

Tree Representations

w

x y z

1a: Fixed Number of Links (One Per Child)

w

zx y

We’ve seen many ways to represent the same tree. Example: 1a.

Tree Representations

w

zx y

We’ve seen many ways to represent the same tree. Example: 3.

w x y z

Key[] keys

3: Array of Keys

Uses much less memory
and operations will tend
to be faster.

… but only works for
complete trees.

Graph Representations

0

1

2

Graph Representation 1: Adjacency Matrix.

0 1 2

0 0 1 1

1 0 0 1

2 0 0 0

0

1

3

2

0 1 2 3

0 0 1 0 0

1 1 0 1 0

2 0 1 0 1

3 0 0 1 0

For undirected graph:
Each edge is
represented twice in the
matrix. Simplicity at the
expense of space.

s
t

v
w

More Graph Representations

Representation 2: Edge Sets: Collection of all edges.
● Example: HashSet<Edge>, where each Edge is a pair of ints.

0

1

2

{(0, 1), (0, 2), (1, 2)}

More Graph Representations

Representation 3: Adjacency lists.
● Common approach: Maintain array of lists indexed by vertex number.
● Most popular approach for representing graphs.

○ Efficient when graphs are “sparse” (not too many edges).
0

1

2
0
1
2

[1, 2]

[2]

Graph Representations

To Implement our graph algorithms like BreadthFirstPaths and DepthFirstPaths,
we need:
● An API (Application Programming Interface) for graphs.

○ For our purposes today, these are our Graph methods, including their
signatures and behaviors.

○ Defines how Graph client programmers must think.
● An underlying data structure to represent our graphs.

Our choices can have profound implications on:
● Runtime.
● Memory usage.
● Difficulty of implementing various graph algorithms.

Graph

??
Adjacency

List

API

Concrete

Graph Printing Runtime: http://yellkey.com/second

What is the order of growth of the running time of the print client if the graph uses
an adjacency-list representation, where V is the number of vertices, and E is the
total number of edges?
A. Θ(V)
B. Θ(V + E)
C. Θ(V2)
D. Θ(V*E)

Runtime to iterate over v’s neighbors?
●

How many vertices do we consider?
●

a

b

c

0
1
2

[1, 2]

[2]

for (int v = 0; v < G.V(); v += 1) {
 for (int w : G.adj(v)) {
 System.out.println(v + “-” + w);
 }
}

Graph Printing Runtime: http://yellkey.com/second

What is the order of growth of the running time of the print client if the graph uses
an adjacency-list representation, where V is the number of vertices, and E is the
total number of edges?
A. Θ(V)
B. Θ(V + E)
C. Θ(V2)
D. Θ(V*E)

Runtime to iterate over v’s neighbors? List can be between 1 and V items.
● Ω(1), O(V).

How many vertices do we consider?
● V.

a

b

c

0
1
2

[1, 2]

[2]

for (int v = 0; v < G.V(); v += 1) {
 for (int w : G.adj(v)) {
 System.out.println(v + “-” + w);
 }
} Best case: Θ(V) Worst case: Θ(V2)

Graph Printing Runtime: http://yellkey.com/support

What is the order of growth of the running time of the print client if the graph uses
an adjacency-list representation, where V is the number of vertices, and E is the
total number of edges?
A. Θ(V)
B. Θ(V + E)
C. Θ(V2)
D. Θ(V*E)

Runtime to iterate over v’s neighbors? List can be between 1 and V items.
● Ω(1), O(V).

How many vertices do we consider?
● V.

a

b

c

0
1
2

[1, 2]

[2]

for (int v = 0; v < G.V(); v += 1) {
 for (int w : G.adj(v)) {
 System.out.println(v + “-” + w);
 }
} Best case: Θ(V) Worst case: Θ(V2)

?

?

? ?
?

Graph Printing Runtime: http://yellkey.com/support

What is the order of growth of the running time of the print client if the graph uses
an adjacency-list representation, where V is the number of vertices, and E is the
total number of edges?
A. Θ(V)
B. Θ(V + E)
C. Θ(V2)
D. Θ(V*E)

Best case: Θ(V) Worst case: Θ(V2)

All cases: Θ(V + E)
● v+=1 happens V times.
● Print happens 2E times.

0
1
2

[1, 2]

[2]

for (int v = 0; v < G.V(); v += 1) {
 for (int w : G.adj(v)) {
 System.out.println(v + “-” + w);
 }
}

Cost model in this analysis is
the sum of:

● v +=1 operations
● println calls

Θ(V + E) Interpretation

Runtime: Θ(V + E)

How to interpret: No matter what “family” of increasingly complex graphs we
generate, as V and E grow, the runtime will always grow exactly as Θ(V + E).
● Example shape 1: Very sparse graph where E grows very slowly, e.g. every

vertex is connected to its square: 2 - 4, 3 - 9, 4 - 16, 5 - 25, etc.
○ E is Θ(sqrt(V)). Runtime is Θ(V + sqrt(V)), which is just Θ(V).

● Example shape 2: Very dense graph where E grows very quickly, e.g. every
vertex connected to every other.
○ E is Θ(V2). Runtime is Θ(V + V2), which is just Θ(V2).

V is total number of vertices.

E is total number of edges in
the entire graph.

for (int v = 0; v < G.V(); v += 1) {
 for (int w : G.adj(v)) {
 System.out.println(v + “-” + w);
 }
}

More Θ(V + E) Interpretation

Runtime: Θ(V + E)

Θ(V + E) is the equivalent of Θ(max(V, E)).
● Both are technically correct, but the sum is used more often.

Note: We never formally defined asymptotics on multiple variables, and it turns
out to be somewhat poorly defined.
● See: https://people.cs.ksu.edu/~rhowell/asymptotic.pdf

V is total number of vertices.

E is total number of edges in
the entire graph.

for (int v = 0; v < G.V(); v += 1) {
 for (int w : G.adj(v)) {
 System.out.println(v + “-” + w);
 }
}

https://people.cs.ksu.edu/~rhowell/asymptotic.pdf

Lecture 23, CS61B, Spring 2024

The All Paths Problem
• Princeton Graphs API
• DepthFirstPaths Implementation
• The Adjacency List
• DepthFirstPaths Runtime

The All Shortest Paths Problem
• BreadthFirstPaths
• BreadthFirstPaths

Implementation
Graph Implementations and Runtime
Project 2B Note

DepthFirstPaths
Runtime

public class DepthFirstPaths {
 private boolean[] marked;
 private int[] edgeTo;
 private int s;

 public DepthFirstPaths(Graph G, int s) {
 ...
 dfs(G, s);
 }
 private void dfs(Graph G, int v) {
 marked[v] = true;
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 edgeTo[w] = v;
 dfs(G, w);
 }
 }
 }
 ...
}

DepthFirstPaths, Recursive Implementation

marked[v] is true iff v connected to s
edgeTo[v] is previous vertex on path from s to v

find vertices connected to s.
not shown: data structure initialization

recursive routine does the work and stores results
in an easy to query manner!

Question to ponder: How would we write
pathTo(v) and hasPathTo(v)?
● Answer on next slide.

DepthFirstPaths, Recursive Implementation

public class DepthFirstPaths {
 private boolean[] marked;
 private int[] edgeTo;
 private int s;
 ...
 public Iterable<Integer> pathTo(int v) {
 if (!hasPathTo(v)) return null;
 List<Integer> path = new ArrayList<>();
 for (int x = v; x != s; x = edgeTo[x]) {
 path.add(x);
 }
 path.add(s);
 Collections.reverse(path);
 return path;
 }

 public boolean hasPathTo(int v) {
 return marked[v];
 }
}

marked[v] is true iff v connected to s
edgeTo[v] is previous vertex on path from s to v

Runtime for DepthFirstPaths

Give a O bound for the runtime for the DepthFirstPaths constructor.

public class DepthFirstPaths {
 private boolean[] marked;
 private int[] edgeTo;
 private int s;
 public DepthFirstPaths(Graph G, int s) {
 ...
 dfs(G, s);
 }
 private void dfs(Graph G, int v) {
 marked[v] = true;
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 edgeTo[w] = v;
 dfs(G, w);
 }
 }
 } ...
}

Assume graph uses adjacency list!

Runtime for DepthFirstPaths

Give a O bound for the runtime for the DepthFirstPaths constructor.

public class DepthFirstPaths {
 private boolean[] marked;
 private int[] edgeTo;
 private int s;
 public DepthFirstPaths(Graph G, int s) {
 ...
 dfs(G, s);
 }
 private void dfs(Graph G, int v) {
 marked[v] = true;
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 edgeTo[w] = v;
 dfs(G, w);
 }
 }
 } ...
}

O(V + E)
● Each vertex is visited at

most once (O(V)).
● Each edge is considered at

most twice (O(E)).

edge considerations, each constant time
 (no more than 2E calls)

vertex visits (no more than V calls)

Cost model in analysis above is the sum of:
● Number of dfs calls.
● marked[w] checks.Assume graph uses adjacency list!

Runtime for DepthFirstPaths

Very hard question: Could we say the runtime is O(E)?

public class DepthFirstPaths {
 private boolean[] marked;
 private int[] edgeTo;
 private int s;
 public DepthFirstPaths(Graph G, int s) {
 ...
 dfs(G, s);
 }
 private void dfs(Graph G, int v) {
 marked[v] = true;
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 edgeTo[w] = v;
 dfs(G, w);
 }
 }
 } ...
}

Argument: Can only visit a vertex
if there is an edge to it.
● # of DFS calls is bounded

above by E.
● So why not just say O(E)?

Assume graph uses adjacency list!

Runtime for DepthFirstPaths

Very hard question: Could we say the runtime is O(E)? No.

public class DepthFirstPaths {
 private boolean[] marked;
 private int[] edgeTo;
 private int s;
 public DepthFirstPaths(Graph G, int s) {
 ...
 dfs(G, s);
 }
 private void dfs(Graph G, int v) {
 marked[v] = true;
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 edgeTo[w] = v;
 dfs(G, w);
 }
 }
 } ...
}

Can’t say O(E)!
● Constructor has to create

an all false marked array.
● This marking of all vertices

as false takes Θ(V) time.

Our cost model earlier (dfs calls
+ marked checks) does not
provide a tight bound.

Assume graph uses adjacency list!

Graph Problems

Problem Problem Description Solution Efficiency (adj. list)

s-t paths Find a path from s to every
reachable vertex.

DepthFirstPaths.java
Demo

O(V+E) time
Θ(V) space

Runtime is O(V+E)
● Based on cost model: O(V) dfs calls and O(E) marked[w] checks.
● Can’t say O(E) because creating marked array
● Note, can’t say Θ(V+E), example: Graph with no edges touching source.

Space is Θ(V).
● Need arrays of length V to store information.

https://docs.google.com/presentation/d/1mr841rMgVAffqi-TfL--gZPmEjAM5rpBW7MzrmJPuaU/edit#slide=id.g25f3bf5f9c7_0_1020

Lecture 23, CS61B, Spring 2024

The All Paths Problem
• Princeton Graphs API
• DepthFirstPaths Implementation
• The Adjacency List
• DepthFirstPaths Runtime

The All Shortest Paths Problem
• BreadthFirstPaths
• BreadthFirstPaths

Implementation
Graph Implementations and Runtime
Project 2B Note

BreadthFirstPaths

Tree and Graph Traversals

Just as there are many tree traversals:
● Preorder: DBACFEG
● Inorder: ABCDEFG
● Postorder: ACBEGFD
● Level order: DBFACEG

A C

B

D

E

F

G

1

2

3

4

5

6

7

8

0
s

So too are there many graph traversals, given some source:

● DFS Preorder: 012543678 (dfs calls).
● DFS Postorder: 347685210 (dfs returns).
● BFS order: Act in order of distance from s.

○ BFS stands for “breadth first search”.
○ Analogous to “level order”. Search is wide, not deep.
○ 0 1 24 53 68 7

Shortest Paths Challenge (Video Viewers Only)

Goal: Given the graph above, find the shortest path from s to all other vertices.
● Give a general algorithm.
● Hint: You’ll need to somehow visit vertices in BFS order.
● Hint #2: You’ll need to use some kind of data structure.
● Hint #3: Don’t use recursion.

0

1

2

3

4

5

6

7

s

BFS Answer

Breadth First Search.
● Initialize a queue with a starting vertex s and mark that vertex.

○ A queue is a list that has two operations: enqueue (a.k.a. addLast) and
dequeue (a.k.a. removeFirst).

○ Let’s call this the queue our fringe.
● Repeat until queue is empty:

○ Remove vertex v from the front of the queue.
○ For each unmarked neighbor n of v:

■ Mark n.
■ Set edgeTo[n] = v (and/or distTo[n] = distTo[v] + 1).
■ Add n to end of queue.

A queue is the opposite of a stack. Stack
has push (addFirst) and pop (removeFirst).

Do this if you want to track distance value.

BreadthFirstPaths Demo

1

2

3

4

5

6

7

8

0
s

marked edgeTo distTo
0 F - 0
1 F - -
2 F - -
3 F - -
4 F - -
5 F - -
6 F - -
7 F - -
8 F - - Queue: []

Goal: Find shortest path between s and every other vertex.
● Initialize the fringe (a queue with a starting vertex s) and mark that vertex.
● Repeat until fringe is empty:

○ Remove vertex v from fringe.
○ For each unmarked neighbor n of v: mark n, add n to fringe,

set edgeTo[n] = v, set distTo[n] = distTo[v] + 1.

BreadthFirstPaths Demo

1

2

3

4

5

6

7

8

0
s

Queue: [0]

marked edgeTo distTo
0 T - 0
1 F - -
2 F - -
3 F - -
4 F - -
5 F - -
6 F - -
7 F - -
8 F - -

Goal: Find shortest path between s and every other vertex.
● Initialize the fringe (a queue with a starting vertex s) and mark that vertex.
● Repeat until fringe is empty:

○ Remove vertex v from fringe.
○ For each unmarked neighbor n of v: mark n, add n to fringe,

set edgeTo[n] = v, set distTo[n] = distTo[v] + 1.

BreadthFirstPaths Demo

1

2

3

4

5

6

7

8

0

Queue: []

v

s

marked edgeTo distTo
0 T - 0
1 F - -
2 F - -
3 F - -
4 F - -
5 F - -
6 F - -
7 F - -
8 F - -

Goal: Find shortest path between s and every other vertex.
● Initialize the fringe (a queue with a starting vertex s) and mark that vertex.
● Repeat until fringe is empty:

○ Remove vertex v from fringe.
○ For each unmarked neighbor n of v: mark n, add n to fringe,

set edgeTo[n] = v, set distTo[n] = distTo[v] + 1.

BreadthFirstPaths Demo

1

2

3

4

5

6

7

8

0

Queue: [1]

v

s

marked edgeTo distTo
0 T - 0
1 T 0 1
2 F - -
3 F - -
4 F - -
5 F - -
6 F - -
7 F - -
8 F - -

Goal: Find shortest path between s and every other vertex.
● Initialize the fringe (a queue with a starting vertex s) and mark that vertex.
● Repeat until fringe is empty:

○ Remove vertex v from fringe.
○ For each unmarked neighbor n of v: mark n, add n to fringe,

set edgeTo[n] = v, set distTo[n] = distTo[v] + 1.

BreadthFirstPaths Demo

1

2

3

4

5

6

7

8

0

Queue: []

v

s

marked edgeTo distTo
0 T - 0
1 T 0 1
2 F - -
3 F - -
4 F - -
5 F - -
6 F - -
7 F - -
8 F - -

Goal: Find shortest path between s and every other vertex.
● Initialize the fringe (a queue with a starting vertex s) and mark that vertex.
● Repeat until fringe is empty:

○ Remove vertex v from fringe.
○ For each unmarked neighbor n of v: mark n, add n to fringe,

set edgeTo[n] = v, set distTo[n] = distTo[v] + 1.

BreadthFirstPaths Demo

1

2

3

4

5

6

7

8

0

Queue: [2, 4]

v

s

marked edgeTo distTo
0 T - 0
1 T 0 1
2 T 1 2
3 F - -
4 T 1 2
5 F - -
6 F - -
7 F - -
8 F - -

Goal: Find shortest path between s and every other vertex.
● Initialize the fringe (a queue with a starting vertex s) and mark that vertex.
● Repeat until fringe is empty:

○ Remove vertex v from fringe.
○ For each unmarked neighbor n of v: mark n, add n to fringe,

set edgeTo[n] = v, set distTo[n] = distTo[v] + 1.

BreadthFirstPaths Demo

1

2

3

4

5

6

7

8

0

Queue: [4]

v
s

marked edgeTo distTo
0 T - 0
1 T 0 1
2 T 1 2
3 F - -
4 T 1 2
5 F - -
6 F - -
7 F - -
8 F - -

Goal: Find shortest path between s and every other vertex.
● Initialize the fringe (a queue with a starting vertex s) and mark that vertex.
● Repeat until fringe is empty:

○ Remove vertex v from fringe.
○ For each unmarked neighbor n of v: mark n, add n to fringe,

set edgeTo[n] = v, set distTo[n] = distTo[v] + 1.

BreadthFirstPaths Demo

1

2

3

4

5

6

7

8

0

Queue: [4, 5]

v
s

marked edgeTo distTo
0 T - 0
1 T 0 1
2 T 1 2
3 F - -
4 T 1 2
5 T 2 3
6 F - -
7 F - -
8 F - -

Goal: Find shortest path between s and every other vertex.
● Initialize the fringe (a queue with a starting vertex s) and mark that vertex.
● Repeat until fringe is empty:

○ Remove vertex v from fringe.
○ For each unmarked neighbor n of v: mark n, add n to fringe,

set edgeTo[n] = v, set distTo[n] = distTo[v] + 1.

BreadthFirstPaths Demo

1

2

3

4

5

6

7

8

0

Queue: [5]

v

s

marked edgeTo distTo
0 T - 0
1 T 0 1
2 T 1 2
3 F - -
4 T 1 2
5 T 2 3
6 F - -
7 F - -
8 F - -

Goal: Find shortest path between s and every other vertex.
● Initialize the fringe (a queue with a starting vertex s) and mark that vertex.
● Repeat until fringe is empty:

○ Remove vertex v from fringe.
○ For each unmarked neighbor n of v: mark n, add n to fringe,

set edgeTo[n] = v, set distTo[n] = distTo[v] + 1.

BreadthFirstPaths Demo

1

2

3

4

5

6

7

8

0

Queue: [5, 3]

v

s

marked edgeTo distTo
0 T - 0
1 T 0 1
2 T 1 2
3 T 4 3
4 T 1 2
5 T 2 3
6 F - -
7 F - -
8 F - -

Goal: Find shortest path between s and every other vertex.
● Initialize the fringe (a queue with a starting vertex s) and mark that vertex.
● Repeat until fringe is empty:

○ Remove vertex v from fringe.
○ For each unmarked neighbor n of v: mark n, add n to fringe,

set edgeTo[n] = v, set distTo[n] = distTo[v] + 1.

BreadthFirstPaths Demo

1

2

3

4

5

6

7

8

0

Queue: [3]

v
s

marked edgeTo distTo
0 T - 0
1 T 0 1
2 T 1 2
3 T 4 3
4 T 1 2
5 T 2 3
6 F - -
7 F - -
8 F - -

Goal: Find shortest path between s and every other vertex.
● Initialize the fringe (a queue with a starting vertex s) and mark that vertex.
● Repeat until fringe is empty:

○ Remove vertex v from fringe.
○ For each unmarked neighbor n of v: mark n, add n to fringe,

set edgeTo[n] = v, set distTo[n] = distTo[v] + 1.

BreadthFirstPaths Demo

1

2

3

4

5

6

7

8

0

Queue: [3, 6, 8]

v
s

marked edgeTo distTo
0 T - 0
1 T 0 1
2 T 1 2
3 T 4 3
4 T 1 2
5 T 2 3
6 T 5 4
7 F - -
8 T 5 4

Note: distance to all items on queue is
always k or k + 1 for some k. Here k = 3.

Goal: Find shortest path between s and every other vertex.
● Initialize the fringe (a queue with a starting vertex s) and mark that vertex.
● Repeat until fringe is empty:

○ Remove vertex v from fringe.
○ For each unmarked neighbor n of v: mark n, add n to fringe,

set edgeTo[n] = v, set distTo[n] = distTo[v] + 1.

BreadthFirstPaths Demo

1

2

3

4

5

6

7

8

0

Queue: [6, 8]

v

s

marked edgeTo distTo
0 T - 0
1 T 0 1
2 T 1 2
3 T 4 3
4 T 1 2
5 T 2 3
6 T 5 4
7 F - -
8 T 5 4

Goal: Find shortest path between s and every other vertex.
● Initialize the fringe (a queue with a starting vertex s) and mark that vertex.
● Repeat until fringe is empty:

○ Remove vertex v from fringe.
○ For each unmarked neighbor n of v: mark n, add n to fringe,

set edgeTo[n] = v, set distTo[n] = distTo[v] + 1.

BreadthFirstPaths Demo

1

2

3

4

5

6

7

8

0

Queue: [6, 8]

v

Nothing to add!

s

marked edgeTo distTo
0 T - 0
1 T 0 1
2 T 1 2
3 T 4 3
4 T 1 2
5 T 2 3
6 T 5 4
7 F - -
8 T 5 4

Goal: Find shortest path between s and every other vertex.
● Initialize the fringe (a queue with a starting vertex s) and mark that vertex.
● Repeat until fringe is empty:

○ Remove vertex v from fringe.
○ For each unmarked neighbor n of v: mark n, add n to fringe,

set edgeTo[n] = v, set distTo[n] = distTo[v] + 1.

Goal: Find shortest path between s and every other vertex.
● Initialize the fringe (a queue with a starting vertex s) and mark that vertex.
● Repeat until fringe is empty:

○ Remove vertex v from fringe.
○ For each unmarked neighbor n of v: mark n, add n to fringe,

set edgeTo[n] = v, set distTo[n] = distTo[v] + 1.

BreadthFirstPaths Demo

1

2

3

4

5

6

7

8

0

Queue: [8]

v

s

marked edgeTo distTo
0 T - 0
1 T 0 1
2 T 1 2
3 T 4 3
4 T 1 2
5 T 2 3
6 T 5 4
7 F - -
8 T 5 4

BreadthFirstPaths Demo

1

2

3

4

5

6

7

8

0

Queue: [8, 7]

v

s

marked edgeTo distTo
0 T - 0
1 T 0 1
2 T 1 2
3 T 4 3
4 T 1 2
5 T 2 3
6 T 5 4
7 T 6 5
8 T 5 4

Goal: Find shortest path between s and every other vertex.
● Initialize the fringe (a queue with a starting vertex s) and mark that vertex.
● Repeat until fringe is empty:

○ Remove vertex v from fringe.
○ For each unmarked neighbor n of v: mark n, add n to fringe,

set edgeTo[n] = v, set distTo[n] = distTo[v] + 1.

BreadthFirstPaths Demo

1

2

3

4

5

6

7

8

0

Queue: [7]

v

s

marked edgeTo distTo
0 T - 0
1 T 0 1
2 T 1 2
3 T 4 3
4 T 1 2
5 T 2 3
6 T 5 4
7 T 6 5
8 T 5 4

Goal: Find shortest path between s and every other vertex.
● Initialize the fringe (a queue with a starting vertex s) and mark that vertex.
● Repeat until fringe is empty:

○ Remove vertex v from fringe.
○ For each unmarked neighbor n of v: mark n, add n to fringe,

set edgeTo[n] = v, set distTo[n] = distTo[v] + 1.

BreadthFirstPaths Demo

1

2

3

4

5

6

7

8

0

Queue: [7]

vNothing to add!

s

marked edgeTo distTo
0 T - 0
1 T 0 1
2 T 1 2
3 T 4 3
4 T 1 2
5 T 2 3
6 T 5 4
7 T 6 5
8 T 5 4

Goal: Find shortest path between s and every other vertex.
● Initialize the fringe (a queue with a starting vertex s) and mark that vertex.
● Repeat until fringe is empty:

○ Remove vertex v from fringe.
○ For each unmarked neighbor n of v: mark n, add n to fringe,

set edgeTo[n] = v, set distTo[n] = distTo[v] + 1.

BreadthFirstPaths Demo

1

2

3

4

5

6

7

8

0

Queue: []

v

s

marked edgeTo distTo
0 T - 0
1 T 0 1
2 T 1 2
3 T 4 3
4 T 1 2
5 T 2 3
6 T 5 4
7 T 6 5
8 T 5 4

Goal: Find shortest path between s and every other vertex.
● Initialize the fringe (a queue with a starting vertex s) and mark that vertex.
● Repeat until fringe is empty:

○ Remove vertex v from fringe.
○ For each unmarked neighbor n of v: mark n, add n to fringe,

set edgeTo[n] = v, set distTo[n] = distTo[v] + 1.

BreadthFirstPaths Demo

1

2

3

4

5

6

7

8

0

Queue: []

v

Nothing to add!

s

marked edgeTo distTo
0 T - 0
1 T 0 1
2 T 1 2
3 T 4 3
4 T 1 2
5 T 2 3
6 T 5 4
7 T 6 5
8 T 5 4

Goal: Find shortest path between s and every other vertex.
● Initialize the fringe (a queue with a starting vertex s) and mark that vertex.
● Repeat until fringe is empty:

○ Remove vertex v from fringe.
○ For each unmarked neighbor n of v: mark n, add n to fringe,

set edgeTo[n] = v, set distTo[n] = distTo[v] + 1.

Lecture 23, CS61B, Spring 2024

The All Paths Problem
• Princeton Graphs API
• DepthFirstPaths Implementation
• The Adjacency List
• DepthFirstPaths Runtime

The All Shortest Paths Problem
• BreadthFirstPaths
• BreadthFirstPaths

Implementation
Graph Implementations and Runtime
Project 2B Note

BreadthFirstPaths
Implementation

BreadthFirstPaths Implementation

marked[v] is true iff v connected to s
edgeTo[v] is previous vertex on path from s to v

set up starting vertex

for freshly dequeued vertex v, for each neighbor
that is unmarked:

● Enqueue that neighbor to the fringe.
● Mark it.
● Set its edgeTo to v.

public class BreadthFirstPaths {
 private boolean[] marked;
 private int[] edgeTo;
 ...

 private void bfs(Graph G, int s) {
 Queue<Integer> fringe =
 new Queue<Integer>();
 fringe.enqueue(s);
 marked[s] = true;
 while (!fringe.isEmpty()) {
 int v = fringe.dequeue();
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 fringe.enqueue(w);
 marked[w] = true;
 edgeTo[w] = v;
 }
 }
 }
}

Graph Problems

Problem Problem Description Solution Efficiency (adj. list)

s-t paths Find a path from s to every
reachable vertex.

DepthFirstPaths.java
Demo

O(V+E) time
Θ(V) space

s-t shortest
paths

Find a shortest path from s to
every reachable vertex.

BreadthFirstPaths.java
Demo

O(V+E) time
Θ(V) space

Runtime for shortest paths is also O(V+E)
● Based on same cost model: O(V) .next() calls and O(E) marked[w] checks.

Space is Θ(V).
● Need arrays of length V to store information.

https://docs.google.com/presentation/d/1mr841rMgVAffqi-TfL--gZPmEjAM5rpBW7MzrmJPuaU/edit#slide=id.g25f3bf5f9c7_0_1020

Lecture 23, CS61B, Spring 2024

The All Paths Problem
• Princeton Graphs API
• DepthFirstPaths Implementation
• The Adjacency List
• DepthFirstPaths Runtime

The All Shortest Paths Problem
• BreadthFirstPaths
• BreadthFirstPaths

Implementation
Graph Implementations and Runtime
Project 2B Note

Graph
Implementations
and Runtime

Our Graph API and Implementation

Our choice of how to implement the Graph API has profound implications on
runtime.
● Example: Saw that print on Adjacency Lists was O(V + E).

Our Graph API and Implementation

Our choice of how to implement the Graph API has profound implications on
runtime.
● What happens to print runtime if we use an adjacency matrix?

Graph Representations

0

1

3

2

0 1 2 3

0 0 1 0 0

1 1 0 1 0

2 0 1 0 1

3 0 0 1 0

v
w

G.adj(2) returns an iterator
that will ultimately provide
1, then 3.

Graph Representation 1: Adjacency Matrix.
● G.adj(2) would return an iterator where we can call next() up to two times

○ next() returns 1
○ next() returns 3

● Total runtime to iterate over all neighbors of v is Θ(V).
○ Underlying code has to iterate through entire array to handle next() and

hasNext() calls.

Graph Printing Runtime: http://yellkey.com/pretty

What is the order of growth of the running time of the print client from before if the
graph uses an adjacency-matrix representation, where V is the number of vertices,
and E is the total number of edges?
A. Θ(V)
B. Θ(V + E)
C. Θ(V2)
D. Θ(V*E)
Runtime to iterate over v’s neighbors?
●

How many vertices do we consider?
●

0 1 2 3

0 0 1 0 0

1 1 0 1 0

2 0 1 0 1

3 0 0 1 0

0

1

3

2

for (int v = 0; v < G.V(); v += 1) {
 for (int w : G.adj(v)) {
 System.out.println(v + “-” + w);
 }
}

Graph Printing Runtime

What is the order of growth of the running time of the print client from before if the
graph uses an adjacency-matrix representation, where V is the number of vertices,
and E is the total number of edges?
A. Θ(V)
B. Θ(V + E)
C. Θ(V2)
D. Θ(V*E)
Runtime to iterate over v’s neighbors?
● Θ(V).

How many vertices do we consider?
● V times.

0 1 2 3

0 0 1 0 0

1 1 0 1 0

2 0 1 0 1

3 0 0 1 0

0

1

3

2

for (int v = 0; v < G.V(); v += 1) {
 for (int w : G.adj(v)) {
 System.out.println(v + “-” + w);
 }
}

Runtime for DepthFirstPaths

Give a tight O bound for the runtime for the DepthFirstPaths constructor.

public class DepthFirstPaths {
 private boolean[] marked;
 private int[] edgeTo;
 private int s;
 public DepthFirstPaths(Graph G, int s) {
 ...
 dfs(G, s);
 }
 private void dfs(Graph G, int v) {
 marked[v] = true;
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 edgeTo[w] = v;
 dfs(G, w);
 }
 }
 } ...
}

Assume graph uses adjacency matrix!

This is a lot to digest!
● If you are feeling lost

on this problem, don’t
feel bad.

● But do work on trying
to understand the ideas
here!

Runtime for DepthFirstPaths

Give a tight O bound for the runtime for the DepthFirstPaths constructor.

public class DepthFirstPaths {
 private boolean[] marked;
 private int[] edgeTo;
 private int s;
 public DepthFirstPaths(Graph G, int s) {
 ...
 dfs(G, s);
 }
 private void dfs(Graph G, int v) {
 marked[v] = true;
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 edgeTo[w] = v;
 dfs(G, w);
 }
 }
 } ...
}

O(V2)
● In the worst case, we iterate

over the neighbors of all
vertices.

We create ≤ V iterators.
● Each one takes a total of Θ

(V) time to iterate over.

Essentially, iterating over the entire
adjacency matrix takes O(V2) time.

Assume graph uses adjacency matrix!

Graph Problems for Adjacency Matrix Based Graphs

Problem Problem Description Solution Efficiency (adj. matrix)

s-t paths Find a path from s to every
reachable vertex.

DepthFirstPaths.java
Demo

O(V2) time
Θ(V) space

s-t shortest
paths

Find a shortest path from s to
every reachable vertex.

BreadthFirstPaths.java
Demo

O(V2) time
Θ(V) space

If we use an adjacency matrix, BFS and DFS become O(V2).
● For sparse graphs (number of edges << V for most vertices), this is terrible

runtime.
● Thus, we’ll always use adjacency-list unless otherwise stated.

https://docs.google.com/presentation/d/1mr841rMgVAffqi-TfL--gZPmEjAM5rpBW7MzrmJPuaU/edit#slide=id.g25f3bf5f9c7_0_1020

Lecture 23, CS61B, Spring 2024

The All Paths Problem
• Princeton Graphs API
• DepthFirstPaths Implementation
• The Adjacency List
• DepthFirstPaths Runtime

The All Shortest Paths Problem
• BreadthFirstPaths
• BreadthFirstPaths

Implementation
Graph Implementations and Runtime
Project 2B Note

Project 2B Note

Project Note

On project 2B, you cannot import the Princeton Graphs library.
● We want you to design your own graph API that has just the operations you

need of the project.

Note: You may not need a separate Graph class. Whether you have one is up to
you.

Summary

Graph API: We used the Princeton algorithms book API today.
● This is just one possible graph API. We’ll see other graph APIs in this class.

○ You’ll decide on your own graph API in project 2B.
● Choice of API determines how client needs to think in order to write code.

○ e.g. Getting the degree of a vertex requires many lines of code with this
choice of API.

○ Choice may also affect runtime and memory of client programs.

public class Graph {
 public Graph(int V): Create empty graph with v vertices
 public void addEdge(int v, int w): add an edge v-w
 Iterable<Integer> adj(int v): vertices adjacent to v
 int V(): number of vertices
 int E(): number of edges ...

Summary

Graph Implementations: Saw three ways to implement our graph API.
● Adjacency matrix.
● List of edges.
● Adjacency list (most common in practice).

BFS: Uses a queue instead of recursion to track what work needs to be done.

Choice of implementation has big impact on runtime and memory usage!
● DFS and BFS runtime with adjacency list: O(V + E)
● DFS and BFS runtime with adjacency matrix: O(V2)

