
CS 61C Number Representation
Summer 2020 Discussion 1: June 22th, 2020

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1

Depending on the context, the same sets of bits may represent different things.

1.2 It is possible to get an overflow error in Two’s Complement when adding numbers

of opposite signs.

1.3 If you interpret a N bit Two’s complement number as an unsigned number, negative

numbers would be smaller than positive numbers.

1.4 If you interpret an N bit Bias notation number as an unsigned number (assume

there are negative numbers for the given bias), negative numbers would be smaller

than positive numbers.

2 Unsigned Integers
2.1 If we have an n-digit unsigned numeral dn−1dn−2 . . . d0 in radix (or base) r, then

the value of that numeral is
∑n−1

i=0 ridi, which is just fancy notation to say that

instead of a 10’s or 100’s place we have an r’s or r2’s place. For the three radices

binary, decimal, and hex, we just let r be 2, 10, and 16, respectively.



2 Number Representation

Let’s try this by hand. Recall that our preferred tool for writing large numbers is

the IEC prefixing system:

Ki (Kibi) = 210

Mi (Mebi) = 220

Gi (Gibi) = 230

Ti (Tebi) = 240

Pi (Pebi) = 250

Ei (Exbi) = 260

Zi (Zebi) = 270

Yi (Yobi) = 280

(a) Convert the following numbers from their initial radix into the other two

common radices:

1. 0b10010011

2. 63

3. 0b00100100

4. 0

5. 39

6. 437

7. 0x0123

(b) Convert the following numbers from hex to binary:

1. 0xD3AD

2. 0xB33F

3. 0x7EC4

(c) Write the following numbers using IEC prefixes:

• 216

• 234

• 227

• 261

• 243

• 247

• 236

• 259

(d) Write the following numbers as powers of 2:

• 2 Ki

• 256 Pi

• 512 Ki

• 64 Gi

• 16 Mi

• 128 Ei

3 Signed Integers
3.1 Unsigned binary numbers work for natural numbers, but many calculations use

negative numbers as well. To deal with this, a number of different schemes have

been used to represent signed numbers, but we will focus on two’s complement, as it

is the standard solution for representing signed integers.

• Most significant bit has a negative value, all others are positive. So the value of

an n-digit two’s complement number can be written as
∑n−2

i=0 2idi − 2n−1dn−1.

• Otherwise exactly the same as unsigned integers.

• A neat trick for flipping the sign of a two’s complement number: flip all the

bits and add 1.



Number Representation 3

• Addition is exactly the same as with an unsigned number.

• Only one 0, and it’s located at 0b0.

For questions (a) through (c), assume an 8-bit integer and answer each one for the

case of an unsigned number, biased number with a bias of -127, and two’s complement

number. Indicate if it cannot be answered with a specific representation.

(a) What is the largest integer? What is the result of adding one to that number?

1. Unsigned?

2. Biased?

3. Two’s Complement?

(b) How would you represent the numbers 0, 1, and -1?

1. Unsigned?

2. Biased?

3. Two’s Complement?

(c) How would you represent 17 and -17?

1. Unsigned?

2. Biased?

3. Two’s Complement?

(d) What is the largest integer that can be represented by any encoding scheme

that only uses 8 bits?

(e) Prove that the two’s complement inversion trick is valid (i.e. that x and x + 1

sum to 0).

(f) Explain where each of the three radices shines and why it is preferred over

other bases in a given context.



4 Number Representation

4 Arithmetic and Counting
4.1 Addition and subtraction of binary/hex numbers can be done in a similar fashion as

with decimal digits by working right to left and carrying over extra digits to the

next place. However, sometimes this may result in an overflow if the number of bits

can no longer represent the true sum. Overflow occurs if and only if two numbers

with the same sign are added and the result has the opposite sign.

(a) Compute the decimal result of the following arithmetic expressions involving

6-bit Two’s Complement numbers as they would be calculated on a computer.

Do any of these result in an overflow? Are all these operations possible?

1. 0b011001 − 0b000111

2. 0b100011 + 0b111010

3. 0x3B + 0x06

4. 0xFF − 0xAA

(b) What is the least number of bits needed to represent the following ranges using

any number representation scheme.

1. 0 to 256

2. -7 to 56

3. 64 to 127 and -64 to -127

4. Address every byte of a 12 TiB chunk of memory


	Pre-Check
	Unsigned Integers
	Signed Integers
	Arithmetic and Counting

