
CS 61C RISC-V Intro & Control Flow
Summer 2020 Discussion 4: July 1, 2020

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 After calling a function and having that function return, the t registers may have

been changed during the execution of the function, while a registers cannot.

False. a0 and a1 registers are often used to store the return value from a function,

so the function can set their values to the its return values before returning.

1.2 Let a0 point to the start of an array x. lw s0, 4(a0) will always load x[1] into s0.

False. This only holds for data types that are four bytes wide, like int or float.

For data-types like char that are only one byte wide, 4(a0) will return either the

fifth or the eighth character in the string, depending on whether or not the compiler

is little or big-endian.

1.3 Assuming no compiler or operating system protections, it is possible to have the

code jump to data stored at 0(a0) and execute instructions from there.

True. If your compiler/OS allows it (some do not, for security reasons), it is possible

for your code to jump to and execute instructions passed into the program via an

array. Conversely, it’s also possible for your code to treat itself as normal data

(search up self-modifying code if you want to see more details).

1.4 Adding the character ’d’ to the address of an integer array would get you the

element at index 25 of that array (assuming the array is large enough).

True. There is no fundamental difference between integers, strings, and memory

addresses in RISC-V (they’re all bags of bits), so it’s possible to manipulate data in

this way. (We don’t recommend it, though).

1.5 Calling jalr is a shorthanded expression for jal that jumps to the specified label

and does not store a return address anywhere.

2 RISC-V Intro & Control Flow

False. j label is the shorthand label for jal x0, label. jalr is used to return to

the memory address specified in the second argument.

1.6 Calling j label does the exact same thing as calling jal label.

False. As from the previous problem, j label is the shorthand label for jal x0,

label. jal label is the shorthand label for jal ra, label.

2 RISC-V: A Rundown
RISC-V is an assembly language, which is comprised of simple instructions that

each do a single task such as addition or storing a chunk of data to memory.

For example, on the left is a line of C code and on the right is a chunk of RISC-V

code that accomplishes the same thing.

int x = 5, y[2];

y[0] = x;

y[1] = x * x;

// x -> s0, &y -> s1

addi s0, x0, 5

sw s0, 0(s1)

mul t0, s0, s0

sw t0, 4(s1)

2.1 Can you figure out what each line in the RISC-V code is doing?

addi s0, x0, 5 evaluates to x = 5. sw s0, 0(s1) evaluates to y[0] = x. mul t0,

s0, s0 calculates x * x. sw t0, 4(s1) evaluates to y[1] = x * x.

3 Registers
In RISC-V, we have two methods of storing data: main memory and registers.

Registers are much faster than using main memory, but are very limited in space (32

bits each). Note that you should ALWAYS use the named registers (e.g. s0 rather

than x8).

Register(s) Alt. Description

x0 zero The zero register, always zero

x1 ra The return address register, stores where functions should return

x2 sp The stack pointer, where the stack ends

x5-x7, x28-x31 t0-t6 The temporary registers

x8-x9, x18-x27 s0-s11 The saved registers

x10-x17 a0-a7 The argument registers, a0-a1 are also return value

3.1 Can you convert each instruction’s registers to the other form?

add s0, zero, a1 -->

or x18, x1, x30 -->

add x8, x0, x11

or s2, ra, t5

RISC-V Intro & Control Flow 3

Note that you should ALWAYS use the named registers (e.g. s0 rather than x8).

4 Basic Instructions
For your reference, here are some of the basic instructions for arithmetic operations

and dealing with memory (Note: ARG1 is argument register 1, ARG2 is argument

register 2, and DR is destination register):

[inst] [destination register] [argument register 1] [argument register 2]

add Adds the two argument registers and stores in destination register

xor Exclusive or’s the two argument registers and stores in destination register

mul Multiplies the two argument registers and stores in destination register

sll Logical left shifts ARG1 by ARG2 and stores in DR

srl Logical right shifts ARG1 by ARG2 and stores in DR

sra Arithmetic right shifts ARG1 by ARG2 and stores in DR

slt/u If ARG1 < ARG2, stores 1 in DR, otherwise stores 0, u does unsigned comparison

[inst] [register] [offset]([register containing base address])

sw Stores the contents of the register to the address+offset in memory

lw Takes the contents of address+offset in memory and stores in the register

[inst] [argument register 1] [argument register 2] [label]

beq If ARG1 == ARG2, moves to label

bne If ARG1 != ARG2, moves to label

[inst] [destination register] [label]

jal Stores the next instruction’s address into DR and moves to label

You may also see that there is an “i” at the end of certain instructions, such as addi,

slli, etc. This means that ARG2 becomes an “immediate” or an integer instead of

using a register. There are also immediates in some other instructions such as sw

and lw. NOTE: The size of an immediate in any given instruction depends on what

type of instruction it is (more on this soon!).

4.1 Assume we have an array in memory that contains int* arr = {1,2,3,4,5,6,0}.
Let register s0 hold the address of the element at index 0 in arr. You may assume

integers are four-bytes and our values are word-aligned. What do the snippets of

RISC-V code do? Assume that all the instructions are run one after the other in

the same context.

4 RISC-V Intro & Control Flow

a) lw t0, 12(s0) -->

b) sw t0, 16(s0) -->

b) slli t1, t0, 2

add t2, s0, t1

lw t3, 0(t2) -->

addi t3, t3, 1

sw t3, 0(t2)

c) lw t0, 0(s0)

xori t0, t0, 0xFFF -->

addi t0, t0, 1

Sets t0 equal to arr[3]

Stores t0 into arr[4]

Increments arr[t0] by 1

Sets t0 to -1 * arr[0]

RISC-V Intro & Control Flow 5

5 C to RISC-V
5.1 Translate between the C and RISC-V verbatim.

C RISC-V

// s0 -> a, s1 -> b

// s2 -> c, s3 -> z

int a = 4, b = 5, c = 6, z;

z = a + b + c + 10;

addi s0, x0, 4

addi s1, x0, 5

addi s2, x0, 6

add s3, s0, s1

add s3, s3, s2

addi s3, s3, 10

// s0 -> int * p = intArr;

// s1 -> a;

*p = 0;

int a = 2;

p[1] = p[a] = a;

sw x0, 0(s0)

addi s1, x0, 2

sw s1, 4(s0)

slli t0, s1, 2

add t0, t0, s0

sw s1, 0(t0)

// s0 -> a, s1 -> b

int a = 5, b = 10;

if(a + a == b) {

a = 0;

} else {

b = a - 1;

}

addi s0, x0, 5

addi s1, x0, 10

add t0, s0, s0

bne t0, s1, else

xor s0, x0, x0

jal x0, exit

else:

addi s1, s0, -1

exit:

// computes s1 = 2ˆ30

s1 = 1;

for(s0=0;s0<30;s++) {

s1 *= 2;

}

addi s0, x0, 0

addi s1, x0, 1

addi t0, x0, 30

loop:

beq s0, t0, exit

add s1, s1, s1

addi s0, s0, 1

jal x0, loop

exit:

6 RISC-V Intro & Control Flow

// s0 -> n, s1 -> sum

// assume n > 0 to start

for(int sum = 0; n > 0; n--) {

sum += n;

}

addi s1, x0, 0

loop:

beq s0, x0, exit

add s1, s1, s0

add s0, s0, -1

jal x0, loop

exit:

6 RISC-V with Arrays and Lists
Comment what each code block does. Each block runs in isolation. Assume that

there is an array, int arr[6] = {3, 1, 4, 1, 5, 9}, which starts at memory

address 0xBFFFFF00, and a linked list struct (as defined below), struct ll* lst,

whose first element is located at address 0xABCD0000. Let s0 contain arr’s address

0xBFFFFF00, and let s1 contain lst’s address 0xABCD0000. You may assume integers

and pointers are 4 bytes and that structs are tightly packed. Assume that lst’s last

node’s next is a NULL pointer to memory address 0x00000000.

struct ll {

int val;

struct ll* next;

}

6.1 lw t0, 0(s0)

lw t1, 8(s0)

add t2, t0, t1

sw t2, 4(s0)

Sets arr[1] to arr[0] + arr[2].

6.2 loop: beq s1, x0, end

lw t0, 0(s1)

addi t0, t0, 1

sw t0, 0(s1)

lw s1, 4(s1)

jal x0, loop

end:

Increments all values in the linked list by 1.

6.3 add t0, x0, x0

loop: slti t1, t0, 6

beq t1, x0, end

slli t2, t0, 2

add t3, s0, t2

lw t4, 0(t3)

sub t4, x0, t4

RISC-V Intro & Control Flow 7

sw t4, 0(t3)

addi t0, t0, 1

jal x0, loop

end:

Negates all elements in arr.

7 RISC-V Calling Conventions
7.1 How do we pass arguments into functions?

Use the 8 arguments registers a0 - a7.

7.2 How are values returned by functions?

Use a0 and a1 as the return value registers.

7.3 What is sp and how should it be used in the context of RISC-V functions?

sp stands for stack pointer, and it represents the boundary between stored data and

free space on the stack. Because the stack grows downward, we subtract from sp

to create more space (moving the stack pointer down), and add to sp to free space

(moving the stack pointer back up). The stack is mainly used to save (and later

restore) the value of registers that may be overwritten.

7.4 Which values need to saved by the caller, before jumping to a function using jal?

Registers a0 - a7, t0 - t6, and ra.

7.5 Which values need to be restored by the callee, before returning from a function?

Registers sp, gp (global pointer), tp (thread pointer), and s0 - s11. Note that we

don’t use gp and tp very often.

7.6 In a bug-free program, which registers are guaranteed to be the same after a function

call? Which registers aren’t guaranteed to be the same?

Registers a0 - a7, t0 - t6, and ra are not guaranteed to be the same after a function

call (which is why they must be saved by the caller). Registers sp, gp, tp, and s0

8 RISC-V Intro & Control Flow

- s11 are guaranteed to be the same after a function call (which is why the callee

must restore them before returning).

RISC-V Intro & Control Flow 9

8 Writing RISC-V Functions
8.1 Write a function sumSquare in RISC-V that, when given an integer n, returns the

summation below. If n is not positive, then the function returns 0.

n2 + (n− 1)2 + (n− 2)2 + . . . + 12

For this problem, you are given a RISC-V function called square that takes in a

single integer and returns its square.

First, let’s implement the meat of the function: the squaring and summing. We will

be abiding by the caller/callee convention, so in what register can we expect the

parameter n? What registers should hold square’s parameter and return value? In

what register should we place the return value of sumSquare?

add s0, a0, x0 # Set s0 equal to the parameter n

add s1, x0, x0 # Set s1 (accumulator) equal to 0

loop: beq s0, x0, end # Branch if s0 reaches 0

add a0, s0, x0 # Set a0 to the value in s0, setting up

args for call to function square

jal ra, square # Call the function square

add s1, s1, a0 # Add the returned value into s1

addi s0, s0, -1 # Decrement s0 by 1

jal x0, loop # Jump back to the loop label

end: add a0, s1, x0 # Set a0 to s1 (desired return value)

8.2 Since sumSquare is the callee, we need to ensure that it is not overriding any registers

that the caller may use. Given your implementation above, write a prologue and

epilogue to account for the registers you used.

prologue: addi sp, sp -12 # Make space for 3 words on the stack

sw ra, 0(sp) # Store the return address

sw s0, 4(sp) # Store register s0

sw s1, 8(sp) # Store register s1

epilogue: lw ra, 0(sp) # Restore ra

lw s0, 4(sp) # Restore s0

lw s1, 8(sp) # Restore s1

addi sp, sp, 12 # Free space on the stack for the 3 words

jr ra # Return to the caller

10 RISC-V Intro & Control Flow

9 More Translating between C and RISC-V
9.1 Translate between the RISC-V code to C. What is this RISC-V function computing?

Assume no stack or memory-related issues, and assume no negative inputs.

C RISC-V

// a0 -> x, a1 -> y,

// t0 -> result

// Function computes pow(x,y)

// Direct translation:

int power(int x, int y) {

int result = 1;

while (y != 0) {

result *= x;

y--;

}

return result;

}

Func: addi t0 x0 1

Loop: beq a1 x0 Done

mul t0 t0 a0

addi a1 a1 -1

jal x0 Loop

Done: add a0 t0 x0

jr ra

	Pre-Check
	RISC-V: A Rundown
	Registers
	Basic Instructions
	C to RISC-V
	RISC-V with Arrays and Lists
	RISC-V Calling Conventions
	Writing RISC-V Functions
	More Translating between C and RISC-V

