
CS 61C CALL, RISC-V Procedures
Summer 2020 Discussion 5: July 6, 2020

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 The compiler may output pseudoinstructions.

1.2 The main job of the assembler is to generate optimized machine code.

1.3 The object files produced by the assembler are only moved, not edited, by the linker.

1.4 The destination of all jump instructions is completely determined after linking.

2 CALL
The following is a diagram of the CALL stack detailing how C programs are built

and executed by machines:

2 CALL, RISC-V Procedures

C program: foo.c

Compiler

Assembly program: foo.a

Assembler

Object Code: foo.o

Linker lib.o

Executable a.out

(Machine Language)

Loader

Memory

2.1 What is the Stored Program concept and what does it enable us to do?

2.2 How many passes through the code does the Assembler have to make? Why?

2.3 Describe the six main parts of the object files outputted by the Assembler (Header,

Text, Data, Relocation Table, Symbol Table, Debugging Information).

2.4 Which step in CALL resolves relative addressing? Absolute addressing?

3 Assembling RISC-V
Let’s say that we have a C program that has a single function sum that computes

the sum of an array. We’ve compiled it to RISC-V, but we haven’t assembled the

RISC-V code yet.

1 .import print.s # print.s is a different file

2 .data

3 array: .word 1 2 3 4 5

4 .text

5 sum: la t0, array

6 li t1, 4

CALL, RISC-V Procedures 3

7 mv t2, x0

8 loop: blt t1, x0, end

9 slli t3, t1, 2

10 add t3, t0, t3

11 lw t3, 0(t3)

12 add t2, t2, t3

13 addi t1, t1, -1

14 j loop

15 end: mv a0, t2

16 jal ra, print_int # Defined in print.s

3.1 Which lines contain pseudoinstructions that need to be converted to regular RISC-V

instructions?

3.2 For the branch/jump instructions, which labels will be resolved in the first pass of

the assembler? The second?

Let’s assume that the code for this program starts at address 0x00061C00. The

code below is labelled with its address in memory (think: why is there a jump of 8

between the first and second lines?).

1 0x00061C00: sum: la t0, array

2 0x00061C08: li t1, 4

3 0x00061C0C: mv t2, x0

4 0x00061C10: loop: blt t1, x0, end

5 0x00061C14: slli t3, t1, 2

6 0x00061C18: add t3, t0, t3

7 0x00061C1C: lw t3, 0(t3)

8 0x00061C20: add t2, t2, t3

9 0x00061C24: addi t1, t1, -1

10 0x00061C28: j loop

11 0x00061C2C: end: mv a0, t2

12 0x00061C30: jal ra, print_int

3.3 What is in the symbol table after the assembler makes its passes?

3.4 What’s contained in the relocation table?

4 CALL, RISC-V Procedures

4 RISC-V Addressing
We have several addressing modes to access memory (immediate not listed):

1. Base displacement addressing adds an immediate to a register value to create

a memory address (used for lw, lb, sw, sb).

2. PC-relative addressing uses the PC and adds the immediate value of the

instruction (multiplied by 2) to create an address (used by branch and jump

instructions).

3. Register Addressing uses the value in a register as a memory address. For

instance, jalr, jr, and ret, where jr and ret are just pseudoinstructions that

get converted to jalr.

4.1 What is the range of 32-bit instructions that can be reached from the current PC

using a branch instruction?

4.2 What is the maximum range of 32-bit instructions that can be reached from the

current PC using a jump instruction?

4.3 Given the following RISC-V code (and instruction addresses), fill in the blank fields

for the following instructions (you’ll need your RISC-V green card!).

1 0x002cff00: loop: add t1, t2, t0 |________|________|________|________|________|__0x33__|

2 0x002cff04: jal ra, foo |__________________________|_________________|__0x6F__|

3 0x002cff08: bne t1, zero, loop |________|________|________|________|________|__0x63__|

4 ...

5 0x002cff2c: foo: jr ra ra =

	Pre-Check
	CALL
	Assembling RISC-V
	RISC-V Addressing

