
CS 61C CALL, RISC-V Procedures
Summer 2020 Discussion 5: July 6, 2020

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 The compiler may output pseudoinstructions.

True. It is the job of the assembler to replace these pseudoinstructions.

1.2 The main job of the assembler is to generate optimized machine code.

False. That’s the job of the compiler. The assembler is primarily responsible for

replacing pseudoinstructions and resolving offsets.

1.3 The object files produced by the assembler are only moved, not edited, by the linker.

False. The linker needs to relocate all absolute address references.

1.4 The destination of all jump instructions is completely determined after linking.

False. Jumps relative to registers (i.e. from jalr instructions) are only known at

run-time. Otherwise, you would not be able to call a function from different call

sites.

2 CALL
The following is a diagram of the CALL stack detailing how C programs are built

and executed by machines:

2 CALL, RISC-V Procedures

C program: foo.c

Compiler

Assembly program: foo.a

Assembler

Object Code: foo.o

Linker lib.o

Executable a.out

(Machine Language)

Loader

Memory

2.1 What is the Stored Program concept and what does it enable us to do?

It is the idea that instructions are really just data, so we can treat them as such.

This enables us to write programs that can manipulate other programs without

modifying the physical hardware!

2.2 How many passes through the code does the Assembler have to make? Why?

Two, one to find all the label addresses, and another to convert all instructions while

using these label addresses to resolve any forward references.

2.3 Describe the six main parts of the object files outputted by the Assembler (Header,

Text, Data, Relocation Table, Symbol Table, Debugging Information).

• Header: Sizes and positions of the other parts

• Text: The machine code

• Data: Binary representation of any data in the source file

• Relocation Table: Identifies lines of code that need to be “handled” by the

Linker (jumps to external labels (e.g. lib files), references to static data)

• Symbol Table: List of file labels and data that can be referenced across files

• Debugging Information: Additional information for debuggers

2.4 Which step in CALL resolves relative addressing? Absolute addressing?

Assembler, Linker

CALL, RISC-V Procedures 3

3 Assembling RISC-V
Let’s say that we have a C program that has a single function sum that computes

the sum of an array. We’ve compiled it to RISC-V, but we haven’t assembled the

RISC-V code yet.

1 .import print.s # print.s is a different file

2 .data

3 array: .word 1 2 3 4 5

4 .text

5 sum: la t0, array

6 li t1, 4

7 mv t2, x0

8 loop: blt t1, x0, end

9 slli t3, t1, 2

10 add t3, t0, t3

11 lw t3, 0(t3)

12 add t2, t2, t3

13 addi t1, t1, -1

14 j loop

15 end: mv a0, t2

16 jal ra, print_int # Defined in print.s

3.1 Which lines contain pseudoinstructions that need to be converted to regular RISC-V

instructions?

5, 6, 7, 14, 15.

la becomes the auipc and addi instructions.

li becomes an addi instruction here (e.g. li t0, 4 → addi t0, x0, 4).

mv becomes an addi instruction (i.e. mv rd, rs → addi rd, rs, 0).

j becomes a jal instruction (e.g. j loop → jal x0, loop).

3.2 For the branch/jump instructions, which labels will be resolved in the first pass of

the assembler? The second?

Note: This answer assumes that the assembler goes from top to bottom. The

answer changes if it goes in reverse.

loop (in j loop) will be resolved in the first pass since it’s a backward reference.

Since the assembler will have kept note of where end is in the first pass, it will resolve

end in blt t1, x0, end in the second pass. (print_int in jal ra, print_int will

be resolved by the Linker.)

Let’s assume that the code for this program starts at address 0x00061C00. The

code below is labelled with its address in memory (think: why is there a jump of 8

between the first and second lines?).

There’s a jump of 8 because la is a pseudoinstruction that gets translated to two

regular RISC-V instructions!

4 CALL, RISC-V Procedures

1 0x00061C00: sum: la t0, array

2 0x00061C08: li t1, 4

3 0x00061C0C: mv t2, x0

4 0x00061C10: loop: blt t1, x0, end

5 0x00061C14: slli t3, t1, 2

6 0x00061C18: add t3, t0, t3

7 0x00061C1C: lw t3, 0(t3)

8 0x00061C20: add t2, t2, t3

9 0x00061C24: addi t1, t1, -1

10 0x00061C28: j loop

11 0x00061C2C: end: mv a0, t2

12 0x00061C30: jal ra, print_int

3.3 What is in the symbol table after the assembler makes its passes?

Label Address

sum 0x00061C00
or

Label Address

sum 0x00061C00

loop 0x00061C10

end 0x00061C2C

Normally, one would assume that both the loop and end labels would be included in

the symbol table—and that’s perfectly valid answer given that an isolated assembler

would have no way to tell the difference between the three labels.

However, we stated at the beginning of this problem that this file is compiled from

C code. If we have a integrated compiler, assembler, and linker (e.g. gcc), then it

will know from the compilation phase which labels are for functions and which ones

aren’t. As such, it will only put the function labels in the symbol table since those

are the only ones that other files can reference.

3.4 What’s contained in the relocation table?

array and print_int.

Since array is defined in the static portion of memory, there’s no way the assembler

could know where it will be located (relative to the program counter) until the

program actually executes. We recall that the static portion of memory is above the

code portion of memory. Since we haven’t linked other files with this one yet (that’s

done in the linker phase!), we don’t know how much code we’ll have, so we don’t

know where the static portion of memory will begin! Also, other files may declare

items in static memory, and the assembler won’t know how these are specifically

ordered when the program is finally loaded.

Similarly, print_int is defined in a different file, so the assembler doesn’t know

where it will be in the final executable. That will be decided in the linking stage.

4 RISC-V Addressing
We have several addressing modes to access memory (immediate not listed):

CALL, RISC-V Procedures 5

1. Base displacement addressing adds an immediate to a register value to create

a memory address (used for lw, lb, sw, sb).

2. PC-relative addressing uses the PC and adds the immediate value of the

instruction (multiplied by 2) to create an address (used by branch and jump

instructions).

3. Register Addressing uses the value in a register as a memory address. For

instance, jalr, jr, and ret, where jr and ret are just pseudoinstructions that

get converted to jalr.

4.1 What is the range of 32-bit instructions that can be reached from the current PC

using a branch instruction?

The immediate field of the branch instruction is 12 bits. This field only references

addresses that are divisible by 2, so the immediate is multiplied by 2 before being

added to the PC. Since it is signed, the branch immediate can therefore move the PC

in the range of [−212, 212 − 1] bytes. If we’re in a version of RISC-V that has 2-byte

instructions, then this corresponds to a range of [−2−11, 211 − 1] instructions. The

instructions we use, however, are 4 bytes so they reside at addresses that are divisible

by 4 not 2. Therefore, we can only reference half as many 4-byte instructions as

2-byte instructions, and the range of 4-byte instructions is [−210, 210 − 1]

4.2 What is the maximum range of 32-bit instructions that can be reached from the

current PC using a jump instruction?

The immediate field of the jal instruction is 20 bits, while that of the jalr instruction

is only 12 bits, so jal can reach a wider range of instructions. Similar to above,

this 20-bit immediate is multiplied by 2 and added to the PC to get the final

address. Since the immediate is signed, we have a range of [−220, 220 − 1] bytes,

or [−219, 219 − 1] 2-byte instructions. As we actually want the number of 4-byte

instructions, we can reference those within [−218, 218 − 1] instructions of the current

PC.

4.3 Given the following RISC-V code (and instruction addresses), fill in the blank fields

for the following instructions (you’ll need your RISC-V green card!).

1 0x002cff00: loop: add t1, t2, t0 |________|________|________|________|________|__0x33__|

2 0x002cff04: jal ra, foo |__________________________|_________________|__0x6F__|

3 0x002cff08: bne t1, zero, loop |________|________|________|________|________|__0x63__|

4 ...

5 0x002cff2c: foo: jr ra ra =

1 0x002cff00: loop: add t1, t2, t0 | 0 | 5 | 7 | 0 | 6 | 0x33 | → 0x00538333

2 0x002cff04: jal ra, foo | 0 | 0x14 | 0 | 0 | 1 | 0x6F | → 0x028000ef

3 0x002cff08: bne t1, zero, loop | 1 | 0x3F | 0 | 6 | 1 | 0xC | 1 | 0x63 | → 0xfe031ce3

4 ...

5 0x002cff2c: foo: jr ra ra = 0x002cff08

	Pre-Check
	CALL
	Assembling RISC-V
	RISC-V Addressing

