CS 61C RISC-V Pipelining and Hazards
Summer 2020 Discussion 8: July 15, 2020

1 Pre—Check

This section is designed as a conceptual check for you to determine if you conceptually
understand and have any misconceptions about this topic. Please answer true/false
to the following questions, and include an explanation:

Pipelining the CPU datapath results in instructions being executed with higher
latency and throughput.

Without forwarding, data hazards will usually result in 3 stalls.

All data hazards can be resolved with forwarding.

What are some techniques that can be used to resolve control hazards?

2 Pipelining Registers

In order to pipeline, we add registers between the five datapath stages. Label each
of the five stages (IF, ID, EX, MEM, and WB) on the diagram attached at the end
of the worksheet.

What is the purpose of the new registers?

Why do we add +4 to the PC again in the memory stage?

Why do we need to save the instruction in a register multiple times?

2 RISC-V Pipelining and Hazards

3 Performance Analysis

Register clk-to-q 30 ps Branch comp. 75 ps Memory write 200 ps
Register setup 20 ps ALU 200 ps RegFile read 150 ps
Mux 25 ps Memory read 250 ps RegFile setup 20 ps

With the delays provided above for each of the datapath components, what would
be the fastest possible clock time for a single cycle datapath?

What is the fastest possible clock time for a pipelined datapath?

What is the speedup from the single cycle datapath to the pipelined datapath? Why
is the speedup less than 57

4 Hazards

One of the costs of pipelining is that it introduces three types of pipeline hazards:

structural hazards, data hazards, and control hazards.

Structural Hazards

Structural hazards occur when more than one instruction needs to use the same

datapath resource at the same time. There are two main causes of structural hazards:

Register File The register file is accessed both during ID, when it is read, and
during WB, when it is written to. We can solve this by having separate
read and write ports. To account for reads and writes to the same register,
processors usually write to the register during the first half of the clock cycle,
and read from it during in the second half. This is also known as double

pumping.

Memory Memory is accessed for both instructions and data. Having a separate
instruction memory (abbreviated IMEM) and data memory (abbreviated
DMEM) solves this hazard.

RISC-V Pipelining and Hazards 3

Something to remember about structural hazards is that they can always be resolved
by adding more hardware.

Data Hazards

Data hazards are caused by data dependencies between instructions. In CS 61C,
where we will always assume that instructions are always going through the processor
in order, we see data hazards when an instruction reads a register before a previous

instruction has finished writing to that register.

Forwarding

Most data hazards can be resolved by forwarding, which is when the result of the
EX or MEM stage is sent to the EX stage for a following instruction to use.

Look for data hazards in the code below, and figure out how forwarding could be

used to solve them.

| Instruction [c1 o2 o3 Joao o5 o6 |cr |
1. addi to, a0, -1 [IF [ID [EX |MEM|WB
2. and s2, t0, a@ IF [ID |EX |MEM|WB
3. sltiu a0, te, 5 IF [ID |EX |MEM|WB

Imagine you are a hardware designer working on a CPU’s forwarding control logic.

How many instructions after the addi instruction could be affected by data hazards

created by this addi instruction?

Stalls

Look for data hazards in the code below. One of them cannot be solved with

forwarding—why? What can we do to solve this hazard?

| Instruction [c1 Jo2 Je3 Jca o5 |6 [cr |8
1. addi se, so, 1 [[IF [ID |[EX | MEM | WB
2. addi te, to, 4 IF [ID |EX |MEM | WB
3. 1w t1, 0(t0) IF [ID |[EX |MEM|WB
4. add t2, t1, x0 IF [ID |[EX |MEM|WB

Say you are the compiler and can re-order instructions to minimize data hazards

while guaranteeing the same output. How can you fix the code above?

4 RISC-V Pipelining and Hazards

Detecting Data Hazards

Say we have the rsl, rs2, RegWW En, and rd signals for two instructions (instruction
n and instruction n + 1) and we wish to determine if a data hazard exists across the
instructions. We can simply check to see if the rd for instruction n matches either
rsl or rs2 of instruction n + 1, indicating that such a hazard exists (think, why does

this make sense?).

We could then use our hazard detection to determine which forwarding paths/number
of stalls (if any) are necessary to take to ensure proper instruction execution. In

pseudo-code, this could look something like the following:

if (rs1i(n + 1) == rd(n) || rs2(n + 1) == rd(n) && RegWen(n) == 1) {
forward ALU output of instruction n

Control Hazarcls

Control hazards are caused by jump and branch instructions, because for all
jumps and some branches, the next PC is not PC + 4, but the result of the
computation completed in the EX stage. We could stall the pipeline for control

hazards, but this decreases performance.

Besides stalling, what can we do to resolve control hazards?

Extra for Experience
Given the RISC-V code above and a pipelined CPU with no forwarding, how many
hazards would there be? What types are each hazard? Consider all possible hazards

from all pairs of instructions.

How many stalls would there need to be in order to fix the data hazard(s)? What
about the control hazard(s)?

Instruction [c1 Jc2 o3 oo o5 e ot [cs |09
1. sub t1, so, s1 || IF ID EX MEM | WB

2. or s0, t0, t1 IF D EX MEM | WB

3. sw s1, 100(s0) IF D EX MEM | WB

4. bgeu s0, s2, 1 IF 1D EX MEM | WB

5. add t2, x0, x0 IF D EX MEM | WB

5

RISC-V Pipelining and Hazards

21807
Jos3u0)

19sam

13NV

[o:1ghsur
mmm
m&
unig
Toum._w:wud
3|qeu3
AUM
E
eyeq -
UM
eleg 3jm ke —
a3ndu; 0
4 Emumn_ Kioway
e o SS3UppY uomndNAsu|
3 peay andino :
nv| o u
0 0 (757 peay & ereq
vand Y ssal|
3 peay fozvzhsu pesy PPY
> i sy
vod eleq 189y | :
UM peay |[sL6Lhsur
o]
l qm

	Pre-Check
	Pipelining Registers
	Performance Analysis
	Hazards

