CS 61C RISC-V Pipelining and Hazards
Summer 2020 Discussion 8: July 15, 2020

1 Pre— Gheck

This section is designed as a conceptual check for you to determine if you conceptually
understand and have any misconceptions about this topic. Please answer true/false
to the following questions, and include an explanation:

Pipelining the CPU datapath results in instructions being executed with higher
latency and throughput.

True. Recall that latency is the time for one instruction to finish, while throughput
is the number of instructions processed per unit time. Pipelining results in a higher
throughput because more instructions are run at once. At the same time, latency
is also higher as each individual instruction may take longer from start to finish
because each cycle must last as long as the longest cycle. Additionally, hazards may

be introduced.

Without forwarding, data hazards will usually result in 3 stalls.

True. The next instruction must wait for the previous instruction to finish EX,
MEM, and WB, before it can begin its EX.

All data hazards can be resolved with forwarding.

False. Hazards following lw cannot be fully resolved with forwarding because the
output is not known until the MEM stage, making a stall necessary (normally

forwarding sends from the output of EX stage).

What are some techniques that can be used to resolve control hazards?

One way is stalling until the result of the branch instruction is determined. Another

is to predict which path the branch will take and if incorrect flush the pipeline.

2 Pipelining Registers

In order to pipeline, we add registers between the five datapath stages. Label each
of the five stages (IF, ID, EX, MEM, and WB) on the diagram attached at the end
of the worksheet.

2 RISC-V Pipelining and Hazards

What is the purpose of the new registers?

When we pipeline the datapath, the values from each stage need to be passed on at
each clock cycle. Each stage in the pipeline only operates on a small set of values,
but those values need to be correct with respect to the instruction that is currently
being processed. Say we use load word (lw) as an example: if it is in the EX stage,
then the EX stage should look like a snapshot of the single-cycle datapath. The
values on the rsl, rs2, immediate, and PC values should be as if Iw was the only
instruction in the entire path. This also includes the control logic: the instruction is
passed in at each stage, the appropriate control signals are generated for the stage

of interest, and that stage can execute properly.
Why do we add 44 to the PC again in the memory stage?

We add +4 to the PC again in the memory stage so we don’t need to pass both PC
and PC+4 along the whole pipeline.

Why do we need to save the instruction in a register multiple times?

We need to save the instruction in a register multiple times because each pipeline
stage needs to receive the right control signals for the instruction currently in that

stage.

3 Performance Analysis

Register clk-to-q 30 ps Branch comp. 75 ps Memory write 200 ps
Register setup 20 ps ALU 200 ps RegFile read 150 ps
Mux 25 ps Memory read 250 ps RegFile setup 20 ps

With the delays provided above for each of the datapath components, what would
be the fastest possible clock time for a single cycle datapath?

tek > tPC clk-to-q + tIMEM read + tRF read T tmux + tALU + tDMEM read + tmux + tRF setup
> 30 + 250 + 150 + 25 4 200 + 250 + 25 4 20
> 950 ps

1

—1.05 GH
950 ps z

Note that the delay of branch comparator is omitted because branch comparison is

done in parallel with RegFile/ALU, which takes much longer time.

What is the fastest possible clock time for a pipelined datapath?

RISC-V Pipelining and Hazards 3

IF : tpc clk-to-q + tIMEM read + tReg setup — 30 + 250 + 20 = 300 ps
ID: tR,eg clk-to-q + tRF read T tR.eg setup — 30 + 150 4+ 20 = 200 ps

EX: tReg clk-to-q + tmux + tALU + tReg setup + tmux = 30 + 25 + 200 + 20 + 25 = 300 ps

MEM : IReg clk-to-q T IDMEM read + tReg setup = 30 + 250 + 20 = 300 ps
WB: tReg‘ clk-to-q 1 trF setup — 30 + 25420 =75 ps

max(IF, ID, EX, MEM, WB) = 300 ps

NOTE: For the EX stage, the branch comparator time is overshadowed by the ALU
computation (The same would be true in the ID stage as well, but since there is no

mentioned time for Immediate Generator, we assumed here it is trivial):

Branch Comparator : tpe clk-to-q + {Branch comp. — 30+ 75 =105 ps

ALU Computation : tReg clk-to-q + tmux + tALU + tReg setup — 25 + 200 = 275 ps

What is the speedup from the single cycle datapath to the pipelined datapath? Why
is the speedup less than 57

950 ps
300 ps’

of adding pipeline registers, which have clk-to-q and setup times, and (2) the need

or a 3.2 times speedup. The speedup is less than 5 because of (1) the necessity

to set the clock to the maximum of the five stages, which take different amounts of

time.

Note: because of hazards, which require additional logic to resolve, the actual

speedup would likely be even less than 3.2 times.

4 Hazards

One of the costs of pipelining is that it introduces three types of pipeline hazards:
structural hazards, data hazards, and control hazards.

Structural Hazards

Structural hazards occur when more than one instruction needs to use the same
datapath resource at the same time. There are two main causes of structural hazards:

Register File The register file is accessed both during ID, when it is read, and
during WB, when it is written to. We can solve this by having separate
read and write ports. To account for reads and writes to the same register,
processors usually write to the register during the first half of the clock cycle,
and read from it during in the second half. This is also known as double

pumping.

Memory Memory is accessed for both instructions and data. Having a separate

4 RISC-V Pipelining and Hazards

instruction memory (abbreviated IMEM) and data memory (abbreviated
DMEM) solves this hazard.

Something to remember about structural hazards is that they can always be resolved

by adding more hardware.

Data Hazards

Data hazards are caused by data dependencies between instructions. In CS 61C,
where we will always assume that instructions are always going through the processor
in order, we see data hazards when an instruction reads a register before a previous

instruction has finished writing to that register.

Forwarding

Most data hazards can be resolved by forwarding, which is when the result of the

EX or MEM stage is sent to the EX stage for a following instruction to use.

Look for data hazards in the code below, and figure out how forwarding could be
used to solve them.

| Instruction [c1 Jc2 o3 [ca o5 Jos [cr |
1. addi te, a@, -1 || IF D EX | MEM | WB
2. and s2, t0, a0 IF D EX | MEM | WB
3. sltiu a0, to, 5 IF D EX | MEM | WB

There are two data hazards, between instructions 1 and 2, and between instructions
1 and 3. The first could be resolved by forwarding the result of the EX stage in
C3 to the beginning of the EX stage in C4, and the second could be resolved by
forwarding the result of the EX stage in C3 to the beginning of the EX stage in C5.

Imagine you are a hardware designer working on a CPU’s forwarding control logic.
How many instructions after the addi instruction could be affected by data hazards

created by this addi instruction?

Three instructions. For example, with the addi instruction, any instruction that uses
t0 that has its ID stage in C3, C4, or C5 will not have the result of addi’s writeback
in C5. If, however, we are allowed to assume double-pumping (write-then-read to
registers), then it would only affect two instructions since the ID stage of instruction
4 would be allowed to line up with the WB stage of intruction 1. (Side note: how
is this implemented in hardware? We add 2 wires: one from the beginning of the
MEM stage for the output of the ALU and one from the beginning of the WB stage.

Both of these wires will connect to the A mux in the EX stage.)

Stalls

Look for data hazards in the code below. One of them cannot be solved with

forwarding—why? What can we do to solve this hazard?

RISC-V Pipelining and Hazards 5

Instruction [c1 Jo2 Je3 Jca o5 o6 [T |8
1. addi s, se, 1[[IF [ID |EX |[MEM |WB

2. addi te, to, 4 IF [ID |EX |MEM|WB

3. 1w t1, 0(t0) IF [ID |[EX |MEM|WB

4. add t2, t1, x0 IF [ID |[EX |MEM|WB

There are two data hazards in the code. The first hazard is between instructions
2 and 3, from t0, and the second is between instructions 3 and 4, from t1. The
hazard between instructions 2 and 3 can be resolved with forwarding, but the hazard
between instructions 3 and 4 cannot be resolved with forwarding. This is because
even with forwarding, instruction 4 needs the result of instruction 3 at the beginning
of C6, and it won’t be ready until the end of C6.

We can fix this by inserting a nop (no-operation) between instructions 3 and 4.

Say you are the compiler and can re-order instructions to minimize data hazards

while guaranteeing the same output. How can you fix the code above?

Reorder the instructions 2-3-1-4, because instruction 1 has no dependencies.

Detecting Data Hazards

Say we have the rsl, rs2, RegWW En, and rd signals for two instructions (instruction
n and instruction n + 1) and we wish to determine if a data hazard exists across the
instructions. We can simply check to see if the rd for instruction n matches either
rsl or rs2 of instruction n + 1, indicating that such a hazard exists (think, why does

this make sense?).

We could then use our hazard detection to determine which forwarding paths/number
of stalls (if any) are necessary to take to ensure proper instruction execution. In
pseudo-code, this could look something like the following:

if (rs1i(n + 1) == rd(n) || rs2(n + 1) == rd(n) && RegWen(n) == 1) {
forward ALU output of instruction n

Control Hazards

Control hazards are caused by jump and branch instructions, because for all
jumps and some branches, the next PC is not PC + 4, but the result of the
computation completed in the EX stage. We could stall the pipeline for control

hazards, but this decreases performance.

Besides stalling, what can we do to resolve control hazards?

6 RISC-V Pipelining and Hazards

We can predict which way branches will go, and when this prediction is incorrect,
“flush” the pipeline and continue with the correct instruction. (The most naive

prediction method is to simply predict that branches are always not taken).

Extra for Experience
Given the RISC-V code above and a pipelined CPU with no forwarding, how many
hazards would there be? What types are each hazard? Consider all possible hazards

from all pairs of instructions.

How many stalls would there need to be in order to fix the data hazard(s)? What
about the control hazard(s)?

Instruction [c1 Jc2 o3 oo Jos e ot [cs |9
1. sub t1, s@, s1 || IF D EX MEM | WB

2. or s0, t0, tI IF D EX MEM | WB

3. sw s1, 100(s0) IF D EX MEM | WB

4. bgeu s0, s2, 1 IF D EX MEM | WB

5. add t2, x0, x0 IF D EX MEM | WB

There are four hazards: between instructions 1 and 2 (data hazard from t1), instruc-
tions 2 and 3 (data hazard from s0), instructions 2 and 4 (from s0), and instructions

4 and 5 (a control hazard).

Assuming that we can read and write to the RegFile on the same cycle, two stalls are
needed between instructions 1 and 2, and two stalls are needed between instructions
2 and 3. No stalls are needed for the control hazard, because it can be handled with
branch prediction/flushing the pipeline.

7

RISC-V Pipelining and Hazards

21807
J013u0d
pom E s EE 19SDd
[o:Lehsut
mmw
m&
unJg
138234
a|qeuz
AUM
Kowsy
= 3|qeu3
3 UM
e1eq ALM Wy
0
i)) Ffowspy
(p4) uomdNsy|
ol 89y [f:1ihsul
pecd WM
zeleq
0 <7 peay Mww_yv_ eleg
3 peay [0z:pZhsull pe3y Ssa.ppY
d Leleq
(1s1)
pesy eleq 189y
3IM peay |[[SLi6Lhsul

	Pre-Check
	Pipelining Registers
	Performance Analysis
	Hazards

