
CS 61C Caches
Summer 2020 Discussion 9: July 20, 2020

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 For the same cache size and block size, a 4-way set associative cache will have fewer

index bits than a direct-mapped cache.

True. A direct mapped cache needs to index every line of the cache, whereas a 4-way

set associative cache needs to index every set of 4 lines. The 4-way set associative

cache will have 2 fewer index bits than the direct-mapped cache.

1.2 Any cache miss that occurs when the cache is full is a capacity miss.

False. When the cache is full, you can still get compulsory misses (when a block of

data is put in the cache for the first time) and conflict misses (if a fully associative

cache with LRU replacement wouldn’t have missed).

1.3 Increasing cache size by adding more blocks always improves (increases) hit rate.

False. Whether this improves the hit rate for a given program depends on the

characteristics of the program. As an example, it is possible for a program that only

consists of a loop that runs through an array once to have each access be separated

by more than one block (say, the block size is 8B, but we have an integer array and

accessing every fourth element, so our access are separated by 16B). This makes

every miss a compulsory miss, and there is no way for us to reduce the number of

compulsory misses just by adding more blocks to our cache.

2 Caches

2 Understanding T/I/O
When working with caches, we have to be able to break down the memory addresses

we work with to understand where they fit into our caches. There are three fields:

Tag - Used to distinguish different blocks that use the same index. Number of

bits: (# of bits in memory address) - Index Bits - Offset Bits

Index - The set that this piece of memory will be placed in. Number of bits:

log2(# of indices)

Offset - The location of the byte in the block. Number of bits: log2(size of block)

Given these definitions, the following is true:

log2(memory size) = address bit-width = # tag bits + # index bits + # offset bits

Another useful equality to remember is:

cache size = block size ∗ num blocks

2.1 Assume we have a direct-mapped byte-addressed cache with capacity 32B and block

size of 8B. Of the 32 bits in each address, which bits do we use to find the index of

the cache to use?

We can determine the number of index bits we need from the number of sets our

cache has. Since our cache is direct-mapped, the number of sets is the same as the

number of blocks, so we just need to figure out how many blocks our cache has.

Using the equality from above, we see that num blocks = cache size/block size, so

our cache has 32/8 = 4 blocks. We need log2(4) = 2 bits to differentiate the 4 blocks,

so we have 2 index bits.

In order to determine where exactly the index bits are, we need to calculate the

number of offset bits and tag bits we have. The number of offset bits is just

dependent on the block size, so since our blocks are size 8B, we need log2(8) = 3

bits to differentiate the 8 bytes in the block, so we have 3 offset bits.

our offset bits take up the least significant bits, with the index bits being the set of

next most significant bits. Denoting the most significant bit (MSB, on the left) as

31 and the least significant bit (LSB, on the right) as 0, having 3 offset bits means

our index bits start at bit 3, and thus we use bits 3 and 4 as the index bits.

2.2 Which bits are our tag bits? What about our offset?

The offset (in this case) is the 3 least significant bits, so reusing the convention from

the previous quesiton, the offset bits are bits 0, 1, and 2. Our tag is the remaining

high-order bits, so our tag bits are bits 5-31.

2.3 Classify each of the following byte memory accesses as a cache hit (H), cache miss

(M), or cache miss with replacement (R). Tip: Drawing out the cache can help you

see the replacements more clearly.

Caches 3

Address T/I/O Hit, Miss, Replace

0x00000004

0x00000005

0x00000068

0x000000C8

0x00000068

0x000000DD

0x00000045

0x00000004

0x000000C8

Ignore miss types (compulsory/conflict/capacity) until Q4.

0x00000004 Tag 0, Index 0, Offset 4: M, Compulsory

0x00000005 Tag 0, Index 0, Offset 5: H

0x00000068 Tag 3, Index 1, Offset 0: M, Compulsory

0x000000C8 Tag 6, Index 1, Offset 0: R, Compulsory

0x00000068 Tag 3, Index 1, Offset 0: R, Conflict

0x000000DD Tag 6, Index 3, Offset 5: M, Compulsory

0x00000045 Tag 2, Index 0, Offset 5: R, Compulsory

0x00000004 Tag 0, Index 0, Offset 4: R, Capacity

0x000000C8 Tag 6, Index 1, Offset 0: R, Capacity

Note that the M and R distinction here is for student understanding, and that the

cache doesn’t behave differently for these cases.

4 Caches

3 Cache Associativity
In the previous problem, we had a Direct-Mapped cache, in which blocks map to

specifically one slot in our cache. This is good for quick replacement and finding out

block, but not good for efficiency of space!

This is where we bring associativity into the matter. We define associativity as

the number of slots a block can potentially map to in our cache. Thus, a Fully-

Associative cache has the most associativity, meaning every block can go anywhere

in the cache.

For an N -way associative cache, the following is true:

N ∗ # sets = # blocks

3.1 Here’s some practice involving a 2-way set associative cache. This time we have

an 8-bit address space, 8 B blocks, and a cache size of 32 B. Classify each of the

following accesses as a cache hit (H), cache miss (M) or cache miss with replacement

(R). For any misses, list out which type of miss it is. Assume that we have an LRU

replacement policy (in general, this is not the case).

Address T/I/O Hit, Miss, Replace

0b0000 0100

0b0000 0101

0b0110 1000

0b1100 1000

0b0110 1000

0b1101 1101

0b0100 0101

0b0000 0100

0b1100 1000

Since our cache is 2-way set associative, there are 2 blocks in a set. Our cache

dimensions are identical to the previous example, so we have 4 blocks. Thus, there

are 4/2 = 2 sets in our cache. We need log2(2) = 1 bit to differentiate the 2 sets, so

we have 1 index bit. Our block size is identical to the previous question, so we know

that we have 3 offset bits, and that the rest of our bits are our tag bits. Again, bits

0, 1, and 2 are our offset bits, but now the only index bit is bit 3, with bits 4-31

being the tag bits.

0b0000 0100 Tag 0000, Index 0, Offset 100 - M, Compulsory

0b0000 0101 Tag 0000, Index 0, Offset 101 - H

0b0110 1000 Tag 0110, Index 1, Offset 000 - M, Compulsory

0b1100 1000 Tag 1100, Index 1, Offset 000 - M, Compulsory

0b0110 1000 Tag 0110, Index 1, Offset 000 - H

0b1101 1101 Tag 1101, Index 1, Offset 101 - R, Compulsory

0b0100 0101 Tag 0100, Index 0, Offset 101 - M, Compulsory

0b0000 0100 Tag 0000, Index 0, Offset 100 - H

0b1100 1000 Tag 1100, Index 1, Offset 000 - R, Capacity

Caches 5

3.2 What is the hit rate of our above accesses?

3 hits
9 accesses = 1

3 hit rate

6 Caches

4 The 3 C’s of Cache Misses
4.1 Go back to questions 2 and 3 and classify each M and R as one of the 3 types of

misses described below:

1. Compulsory: First time you ask the cache for a certain block. A miss that must

occur when you first bring in a block. Reduce compulsory misses by having

longer cache lines (bigger blocks), which bring in the surrounding addresses

along with our requested data. Can also pre-fetch blocks beforehand using a

hardware prefetcher (a special circuit that tries to guess the next few blocks

that you will want).

2. Conflict: Occurs if, hypothetically, you went through the ENTIRE string of

accesses with a fully associative cache (with an LRU replacement policy) and

wouldn’t have missed for that specific access. Increasing the associativity or

improving the replacement policy would remove the miss.

3. Capacity: Capacity misses are independent of the associativity of your cache.

If you hypothetically ran the ENTIRE string of memory accesses with a fully

associative cache (with an LRU replacement policy) of the same size as your

cache, and it was a miss for that specific access, then this miss is a capacity

miss. The only way to remove the miss is to increase the cache capacity.

Note: The test you can use to see if a miss is a conflict miss is the same as the test

you can use to see if a miss is a capacity miss.

Note: There are many different ways of fixing misses. The name of the miss doesn’t

necessarily tell us the best way to reduce the number of misses.

See solutions for Q2 and Q3.

Caches 7

5 Code Analysis
Given the follow chunk of code, analyze the hit rate given that we have a byte-

addressed computer with a total memory of 1 MiB. It also features a 16 KiB

Direct-Mapped cache with 1 KiB blocks. Assume that your cache begins cold.

#define NUM_INTS 8192 // 2ˆ13

int A[NUM_INTS]; // A lives at 0x10000

int i, total = 0;

for (i = 0; i < NUM_INTS; i += 128) {

A[i] = i; // Line 1

}

for (i = 0; i < NUM_INTS; i += 128) {

total += A[i]; // Line 2

}

5.1 How many bits make up a memory address on this computer?

We take log2(1 MiB) = log2(220) = 20.

5.2 What is the T:I:O breakdown?

Offset = log2(1 KiB = log2(210) = 10

Index = log2(16 KiB
1 KiB) = log2(16) = 4

Tag = 20 − 4 − 10 = 6

5.3 Calculate the cache hit rate for the line marked Line 1:

The integer accesses are 4 ∗ 128 = 512 bytes apart, which means there are 2 accesses

per block. The first accesses in each block is a compulsory cache miss, but the

second is a hit because A[i] and A[i+128] are in the same cache block. Thus, we

end up with a hit rate of 50%.

5.4 Calculate the cache hit rate for the line marked Line 2:

The size of A is 8192 ∗ 4 = 215 bytes. This is exactly twice the size of our cache. At

the end of Line 1, we have the second half of A inside our cache, but Line 2 starts

with the first half of A. Thus, we cannot reuse any of the cache data brought in

from Line 1 and must start from the beginning. Thus our hit rate is the same as

Line 1 since we access memory in the same exact way as Line 1. We don’t have to

consider cache hits for total, as the compiler will most likely store it in a register.

Thus, we end up with a hit rate of 50%.

	Pre-Check
	Understanding T/I/O
	Cache Associativity
	The 3 C's of Cache Misses
	Code Analysis

