
CS 61C OS & I/O
Summer 2020 Discussion 10: July 22, 2019

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 Polling and interrupts are only relevant concepts for low level programming.

1.2 Memory-mapped IO only works with polling.

1.3 Responsibilities of the OS include loading programs, handling services, multiplexing

resources, and combining programs together for efficiency.

1.4 The purpose of supervisor mode is to isolate certain instructions and routines from

user programs.

1.5 User programs call into OS routines using system calls.



2 OS & I/O

2 Polling & Interrupts
2.1 Fill out this table that compares polling and interrupts.

Operation Definition Pro/Good for Con

Polling

Interrupts

3 Memory Mapped I/O
3.1 For this question, the following addresses correspond to registers in some I/O devices

and not regular user memory.

• 0xFFFF0000—Receiver Control: LSB is the ready bit (in the context of polling),

there may be other bits set that we don’t need right now.

• 0xFFFF0004—Receiver Data: Received data stored at lowest byte.

• 0xFFFF0008—Transmitter Control: LSB is the ready bit (in the context of

polling), there may be other bit set that we don’t need right now.

• 0xFFFF000C—Transmitter Data: Transmitted data stored at lowest byte.

Recall that receiver will only have data for us when the corresponding ready bit

is 1, and that we can only write data to the transmitter when its ready bit is 1.

Write RISC-V code that reads byte from the receiver (busy-waiting if necessary)

and writes that byte to the transmitter (busy-waiting if necessary).



OS & I/O 3

4 Forking
One of the many responsibilities of the OS is to load new programs, and in order

to do this it creates a new process and loads in the program to execute. In Linux,

the system call to create a new process is fork(). fork() creates a new process by

duplicating the calling process. The new process is referred to as the child process.

The calling process is referred to as the parent process. In the parent process, fork()

returns the process ID of the child or -1 if the fork has failed. In the child process,

it returns 0.

Use this information to complete the code block below, which creates a child process

to change the value of y while the parent process changes the value of x.

int x = 10;

int y = 0;

int pid = __________;

if(___________){

y++

}

else{

x--;

}


	Pre-Check
	Polling & Interrupts
	Memory Mapped I/O
	Forking

