
CS 61C OS & I/O
Summer 2020 Discussion 10: July 22, 2019

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 Polling and interrupts are only relevant concepts for low level programming.

False. Similar concepts apply to almost all types of applications, including web apps,

mobile apps, distributed systems, and so on.

1.2 Memory-mapped IO only works with polling.

False. The implementation backing the memory mapping can use interrupt-driven

IO (for example, reading files).

1.3 Responsibilities of the OS include loading programs, handling services, multiplexing

resources, and combining programs together for efficiency.

False. While the OS is responsible for loading programs, handling services (such

as the network stack and the file system), and multiplexing resources for multiple

programs, it is actually responsible for isolating programs from each other so that a

given program doesn’t interfere with another program’s memory or execution.

1.4 The purpose of supervisor mode is to isolate certain instructions and routines from

user programs.

True. In the case that a program is buggy or malicious, supervisor mode limits the

impact of the program on the computer, since the OS maintains control over all the

resources.

1.5 User programs call into OS routines using system calls.

True. System calls, or syscalls, allow user programs to execute the OS routine in

supervisor mode before switching back to user mode.



2 OS & I/O

2 Polling & Interrupts
2.1 Fill out this table that compares polling and interrupts.

Operation Definition Pro/Good for Con

Polling
Forces the hardware to

wait on ready bit (alter-

natively, if timing of de-

vice is known, the ready

bit can be polled at the

frequency of the device).

• Low Latency

• Low overhead when

data is available

• Good For: devices that

are always busy

or when you can’t

make progress until

the device replies

• Can’t do anything else

while polling

• Can’t sleep while

polling (CPU

always at full

speed)

Interrupts
Hardware fires an “excep-

tion” when it becomes

ready. CPU changes PC

register to execute code

in the interrupt handler

when this occurs.

• Can do useful work

while waiting for re-

sponse

• Can wait on many

things at once

• Good for: Devices that

take a long time to

respond, especially

if you can do other

work while waiting.

• Nondeterministic when

interrupt occurs

• interrupt handler has

some overhead (e.g.

saves all registers,

flush pipeline, etc.)

• Higher latency per

event

• Worse throughput

3 Memory Mapped I/O
3.1 For this question, the following addresses correspond to registers in some I/O devices

and not regular user memory.

• 0xFFFF0000—Receiver Control: LSB is the ready bit (in the context of polling),

there may be other bits set that we don’t need right now.

• 0xFFFF0004—Receiver Data: Received data stored at lowest byte.

• 0xFFFF0008—Transmitter Control: LSB is the ready bit (in the context of

polling), there may be other bit set that we don’t need right now.

• 0xFFFF000C—Transmitter Data: Transmitted data stored at lowest byte.

Recall that receiver will only have data for us when the corresponding ready bit

is 1, and that we can only write data to the transmitter when its ready bit is 1.

Write RISC-V code that reads byte from the receiver (busy-waiting if necessary)

and writes that byte to the transmitter (busy-waiting if necessary).

lui t0 0xffff0

receive_wait: lw t1 0(t0)

andi t1 t1 1 # poll on ready of receiver

beq t1 x0 receive_wait

lb t2 4(t0) # load data



OS & I/O 3

transmit_wait: lw t1 8(t0) # poll on ready of transmitter

andi t1 t1 1

beq t1 x0 transmit_wait # write to transmitter

sb t2 12(t0)

4 Forking
One of the many responsibilities of the OS is to load new programs, and in order

to do this it creates a new process and loads in the program to execute. In Linux,

the system call to create a new process is fork(). fork() creates a new process by

duplicating the calling process. The new process is referred to as the child process.

The calling process is referred to as the parent process. In the parent process, fork()

returns the process ID of the child or -1 if the fork has failed. In the child process,

it returns 0.

Use this information to complete the code block below, which creates a child process

to change the value of y while the parent process changes the value of x.

int x = 10;

int y = 0;

int pid = __________;

if(___________){

y++

}

else{

x--;

}

int x = 10;

int y = 0;

int pid = fork();

if(pid == 0){

y++

}

else{

x--;

}


	Pre-Check
	Polling & Interrupts
	Memory Mapped I/O
	Forking

