
CS 61C Coherency and Atomics,TLP
Summer 2020 Discussion 13: August 5, 2020

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 Each hardware thread in the CPU uses a shared cache.

1.2 Atomicity can only be guaranteed within a single RISC-V instruction.

1.3 The amount of speedup is directly proportional to the increase in number of threads.

2 Coherency and Atomics
The benefits of multi-threading programming come only after you understand

concurrency. Here are two of the most common concurrency issues:

1. Cache-incoherence: each hardware thread has its own cache, hence data

modified in one thread may not be immediately reflected in the other. This

can often be solved by bypassing the cache and writing directly to memory,

i.e. using volatile keywords in many languages.

2. Read-modify-write: Read-modify-write is a very common pattern in pro-

gramming. In the context of multi-threading programming, the interleaving

of R, M, W stages often produces a lot of issues.

In order to solve the problems created by Read-modify-write, we have to rely on the

idea of uninterrupted execution, also known as atomic execution.

In RISC-V, we have two categories of atomic instructions:

1. Load-reserve, store-conditional: allows us to have uninterrupted execution

across multiple instructions

2. Amo.swap: allows for uninterrupted memory operations within a single

instruction

Both of these can be used to achieve atomic primitives. Here are examples for each:

2 Coherency and Atomics,TLP

Test-and-set

Start: addi t0 x0 1 # Locked = 1

amoswap.w.aq t1 t0 (a0)

bne t1 x0 Start

If the lock is not free, retry

... # Critical section

amoswap.w.rl x0 x0 (a0) # Release lock

Compare-and-swap

a0 holds address of memory location

a1 holds expected value

a2 holds desired value

a0 holds return value, 0 if successful, !0

otherwise

cas:

lr.w t0, (a0) # Load original value.

bne t0, a1, fail # Doesnt match, so fail.

sc.w a0, a2, (a0) # Try to update.

jr ra # Return.

fail:

li a0, 1 # Set return to failure.

jr ra # Return.

Instruction definitions:

1. Load-reserve: Loads the four bytes at M[R[rs1]], writes them to R[rd], sign-

extending the result and registers a reservation on that word in memory.

2. Store-conditional rd, rs2, (rs1): Stores the four bytes in register R[rs2] to

M[R[rs1]], provided there exists a load reservation on that memory address.

Writes 0 to R[rd] if the store succeeded, or a nonzero error code otherwise.

3. Amoswap rd, rs2, (rs1): Atomically, puts the sign-extended word located

at M[R[rs1]] into R[rd] and puts R[rs2] into M[R[rs1]].

Explanations for both methodologies:

1. Test-and-set: We have a lock stored at the address specified by a0. We

utilize amoswap to put in 1 and get the old value. If the old value was a 1, we

would not have changed the value of the lock and we will realize that someone

currently has the lock. If the old value was a 0, we will have just ”locked” the

lock and can continue with the critical section. When we are done, we put a 0

back into the lock to ”unlock” it.

2. Compare-and-swap: CAS tries to first reserve the memory and gets the

value stored and compares it to the expected value. If the expected value

and the value that was stored do not match, the entire process fails and we

must restart to update based on the new information. Otherwise, we register

a reservation on the memory and try to store the new value. If the exit code

is nonzero, something went wrong with the store and we must retry the entire

LR/SC process. Otherwise with a zero exit code, we continue into the critical

section, then release the lock.

2.1 Why do we need special instructions for these operations? Why can’t we use normal

load and store for lr and sc? Why can’t we expand amoswap to a normal load and

store?

Coherency and Atomics,TLP 3

2.2 Now that we have atomic operations, let’s try to experiment with them. Let us

try to implement an algorithm that enforces ordered thread execution. This means

that if we have four threads, thread 0 goes first, thread 1 goes next, etc. For this

problem assume that a1 holds the location of a piece of memory we have access to

for the entire duration of our algorithm. Also, we can assume there exists a label

get thread num that returns the thread’s number in a0. Try to fill in the blanks

below. Please use LR/SC for this problem:

1 addi t0, x0, 0

2

3 ________________________________ # Setup for the first (0-th) thread

4 ...

5 # Assume we now spawn 4 threads in this code

6 ...

7

8 Check: jal ____________________________ # Get the current thread number

9 # Get the ID of the next thread that should operate

10 ________________________________ # (make sure this can't get interfered with)

11

12 ________________________________

13 Done: addi t0, t0, 1

14

15 ________________________________ # Set which thread is next to run

16

17 bne ____________________________

18 ...

19 # Assume we now join the 4 threads in this code

20 ...

21 jr ra

3 Thread-Level Parallelism
As powerful as data level parallelization is, it can be quite inflexible, as not all

applications have data that can be vectorized. Multithreading, or running a single

piece of software on multiple hardware threads, is much more powerful and versatile.

4 Coherency and Atomics,TLP

OpenMP provides an easy interface for using multithreading within C programs.

Some examples of OpenMP directives:

• The parallel directive indicates that each thread should run a copy of the

code within the block. If a for loop is put within the block, every thread will

run every iteration of the for loop.

#pragma omp parallel

{

...

}

NOTE: The opening curly brace needs to be on a newline or else there

will be a compile-time error!

• The parallel for directive will split up iterations of a for loop over various

threads. Every thread will run different iterations of the for loop. The

following two code snippets are equivalent.

#pragma omp parallel for

for (int i = 0; i < n; i++) {

...

}

#pragma omp parallel

{

#pragma omp for

for (int i =0; i < n; i++) { ... }

}

There are two functions you can call that may be useful to you:

• int omp_get_thread_num() will return the number of the thread executing

the code

• int omp_get_num_threads() will return the number of total hardware threads

executing the code

3.1 For each question below, state and justify whether the program is sometimes

incorrect, always incorrect, slower than serial, faster than serial, or none

of the above. Assume the default number of threads is greater than 1. Assume

no thread will complete before another thread starts executing. Assume arr is an

int[] of length n.

(a)

// Set element i of arr to i

#pragma omp parallel

{

for (int i = 0; i < n; i++)

arr[i] = i;

}

(b)

// Set arr to be an array of Fibonacci numbers.

Coherency and Atomics,TLP 5

arr[0] = 0;

arr[1] = 1;

#pragma omp parallel for

for (int i = 2; i < n; i++)

arr[i] = arr[i-1] + arr[i - 2];

(c)

// Set all elements in arr to 0;

int i;

#pragma omp parallel for

for (i = 0; i < n; i++)

arr[i] = 0;

3.2 What potential issue can arise from this code?

1 // Decrements element i of arr. n is a multiple of omp_get_num_threads()

2 #pragma omp parallel

3 {

4 int threadCount = omp_get_num_threads();

5 int myThread = omp_get_thread_num();

6 for (int i = 0; i < n; i++) {

7 if (i % threadCount == myThread) arr[i] -= 1;

8 }

9 }

3.3

1 // Assume n holds the length of arr

2 double fast_product(double *arr, int n) {

3 double product = 1;

4 #pragma omp parallel for

5 for (int i = 0; i < n; i++) {

6 product *= arr[i];

7 }

8 return product;

9 }

(a) What is wrong with this code?

(b) Fix the code using #pragma omp critical

6 Coherency and Atomics,TLP

(c) Fix the code using #pragma omp reduction(operation: var).

4 Amdahl’s Law
In the programs we write, there are sections of code that are naturally able to be

sped up. However, there are likely sections that just can’t be optimized any further

to maintain correctness. In the end, the overall program speedup is the number that

matters, and we can determine this using Amdahl’s Law:

True Speedup =
1

S + 1−S
P

where S is the non-sped-up part and P is the speedup factor (determined by the

number of cores, threads, etc.).

4.1 You are going to run a convolutional network to classify a set of 100,000 images

using a computer with 32 threads. You notice that 99% of the execution of your

project code can be parallelized on these threads. What is the speedup?

4.2 You run a profiling program on a different program to find out what percent of this

program each function takes. You get the following results:

Function % Time

f 30%

g 10%

h 60%

(a) We don’t know if these functions can actually be parallelized. However, assuming

all of them can be, which one would benefit the most from parallelism?

(b) Let’s assume that we verified that your chosen function can actually be paral-

lelized. What speedup would you get if you parallelized just this function with

8 threads?

	Pre-Check
	Coherency and Atomics
	Thread-Level Parallelism
	Amdahl's Law

