
CS 61C MR, Spark, WSC, RAID, ECC
Summer 2020 Discussion 14: August 10, 2020

1 Pre-Check
This section is designed as a conceptual check for you to determine if you conceptually

understand and have any misconceptions about this topic. Please answer true/false

to the following questions, and include an explanation:

1.1 MapReduce is more general than Spark since it is lower level.

False. Spark is higher level, but you can also do basic map reduce. It is easier to

express more complex computations in Spark.

For more information on higher level vs. lower level, visit https://en.wikipedia.org/wiki/High-

and low-level

1.2 The higher the PUE the more efficient the datacenter is.

False. The ideal PUE is 1.0.

1.3 Hamming codes can detect any type of data corruption.

False. They cannot detect all three bit errors.

1.4 All RAID levels improve reliability.

False. Raid 0 actually decreases reliability.

2 Hamming ECC
Recall the basic structure of a Hamming code. We start out with some bitstring,

and then add parity bits at the indices that are powers of two (1, 2, 8, etc.). We

don’t assign values to these parity bits yet. Note that the indexing convention

used for Hamming ECC is different from what you are familiar with. In

particular, the 1 index represents the MSB, and we index from left-to-right. The ith

parity bit P{i} covers the bits in the new bitstring where the index of the bit under

the aforementioned convention, j, has a 1 at the same position as i when represented

as binary. For instance, 4 is 0b100 in binary. The integers j that have a 1 in the

same position when represented in binary are 4, 5, 6, 7, 12, 13, etc. Therefore, P4

covers the bits at indices 4, 5, 6, 7, 12, 13, etc. A visual representation of this is:

2 MR, Spark, WSC, RAID, ECC

Source: https://en.wikipedia.org/wiki/Hamming code

2.1 How many bits do we need to add to 00112 to allow single error correction?

m parity bits can cover bits 1 through 2m − 1, of which 2m −m− 1 are data bits.

Thus, to cover 4 data bits, we need 3 parity bits.

2.2 Which locations in 00112 would parity bits be included?

Using P to represent parity bits: PP0P0112

2.3 Which bits does each parity bit cover in 00112?

Parity bit 1: 1, 3, 5, 7

Parity bit 2: 2, 3, 6, 7

Parity bit 3: 4, 5, 6, 7

2.4 Write the completed coded representation for 00112 to enable single error correction.

Assume that we set the parity bits so that the bits they cover have even parity.

10000112

2.5 How can we enable an additional double error detection on top of this?

Add an additional parity bit over the entire sequence.

2.6 Find the original bits given the following SEC Hamming Code: 01101112. Again,

assume that the parity bits are set so that the bits they cover have even parity.

Parity group 1: error

Parity group 2: okay

Parity group 4: error

To find the incorrect bit’s index, we simply sum up the indices of all the erroneous

bits.

Incorrect bit: 1 + 4 = 5, change bit 5 from 1 to 0: 01100112

01100112 → 10112

2.7 Find the original bits given the following SEC Hamming Code: 10010002

Parity group 1: error

Parity group 2: okay

Parity group 4: error

Incorrect bit: 1 + 4 = 5, change bit 5 from 1 to 0: 10011002

10011002 → 01002

https://en.wikipedia.org/wiki/Hamming_code

MR, Spark, WSC, RAID, ECC 3

3 RAID
3.1 Fill out the following table:

Configuration Pro/Good for Con/Bad for

RAID 0
Split data across multiple

disks

No overhead, fast read /

write

Reliability

RAID 1
Mirrored Disks: Extra

copy of data

Fast read / write, Fast re-

covery

High overhead → expen-

sive

RAID 2
Hamming ECC: Bit-level

striping, one disk per par-

ity group

Smaller overhead Redundant check disks

RAID 3
Byte-level striping with

single parity disk.

Smallest overhead to

check parity

Need to read all disks,

even for small reads, to

detect errors

RAID 4
Block-level striping with

single parity disk.

Higher throughput for

small reads

Still slow small writes (A

single check disk is a bot-

tleneck)

RAID 5
Block-level striping, par-

ity distributed across

disks.

Higher throughput of

small writes

The time to repair a disk

is so long that another

disk might fail in the

meantime.

4 MapReduce
For each problem below, write pseudocode to complete the implementations. Tips:

• The input to each MapReduce job is given by the signature of map().

• emit(key k, value v) outputs the key-value pair (k, v).

• for var in list can be used to iterate through Iterables or you can call

the hasNext() and next() functions.

• Usable data types: int, float, String. You may also use lists and custom

data types composed of the aforementioned types.

• intersection(list1, list2) returns a list of the common elements of list1,

list2.

4 MR, Spark, WSC, RAID, ECC

4.1 Given a set of coins and each coin’s owner in the form of a list of CoinPairs, compute

the number of coins of each denomination that a person has.

CoinPair:

String person

String coinType

1 map(CoinPair pair):

map(CoinPair pair):

emit(pair, 1)

1 reduce(________________, ________________):

reduce(CoinPair pair, Iterable<int> count):

total = 0

for num in count:

total += num

emit(pair, total)

4.2 Using the output of the first MapReduce, compute each person’s amount of money.

valueOfCoin(String coinType) returns a float corresponding to the dollar value of

the coin.

1 map(tuple<CoinPair, int> output):

map(tuple<CoinPair, int> output):

pair, amount = output

emit(pair.person,

valueOfCoin(pair.coinType) * amount)

1 reduce(________________, ________________):

reduce(String person, Iterable<float> values):

total = 0

for amount in values:

total += amount

emit(person, total)

5 Spark
Resilient Distributed Datasets (RDD) are the primary abstraction of a dis-

tributed collection of items

Transforms RDD → RDD

map(f) Return a new transformed item formed by calling f on a source element.

flatMap(f) Similar to map, but each input item can be mapped to 0 or more

output items (so f should return a sequence rather than a single item).

reduceByKey(f) When called on a dataset of (K,V) pairs, returns a dataset

of (K,V) pairs where the values for each key are aggregated using the

given reduce function f , which must be of type (V, V)→ V .

Actions RDD → V alue

reduce(f) Aggregate the elements of the dataset regardless of keys using a

function f .

Call sc.parallelize(data) to parallelize a Python collection, data.

MR, Spark, WSC, RAID, ECC 5

5.1 Given a set of coins and each coin’s owner, compute the number of coins of each

denomination that a person has. Then, using the output of the first result, compute

each person’s amount of money. Assume valueOfCoin(coinType) is defined and

returns the dollar value of the coin.

The type of coinPairs is a tuple of (person, coinType) pairs.

1 coinData = sc.parallelize(coinPairs)

out1 = coinData.map(lambda (k1, k2): ((k1, k2), 1))

.reduceByKey(lambda v1, v2: v1 + v2)

out2 = out1.map(lambda (k, v): (k[0], v * valueOfCoin(k[1])))

.reduceByKey(lambda v1, v2: v1 + v2)

5.2 Given a student’s name and course taken, output their name and total GPA.

CourseData:

int courseID

float studentGrade // a number from 0-4

The type of students is a list of (studentName, courseData) pairs.

1 studentsData = sc.parallelize(students)

out = studentsData.map(lambda (k, v): (k, (v.studentGrade, 1)))

.reduceByKey(lambda v1, v2: (v1[0] + v2[0], v1[1] + v2[1]))

.map(lambda (k, v): (k, v[0] / v[1]))

6 Warehouse-Scale Computing
Sources speculate Google has over 1 million servers. Assume each of the 1 million

servers draw an average of 200W, the PUE is 1.5, and that Google pays an average

of 6 cents per kilowatt-hour for datacenter electricity.

6.1 Estimate Google’s annual power bill for its datacenters.

1.5 · 106 servers · 0.2kW/server · $0.06/kW-hr · 8760 hrs/yr ≈ $157.68 M/year

6.2 Google reduced the PUE of a 50,000-machine datacenter from 1.5 to 1.25 without

decreasing the power supplied to the servers. What’s the cost savings per year?

PUE = Total building power
IT equipment power =⇒ Savings ∝ (PUEold−PUEnew)∗IT equipment power

(1.5−1.25) ·50000 servers ·0.2kW/server ·$0.06/kW-hr ·8760hrs/yr ≈ $1.314 M/year

	Pre-Check
	Hamming ECC
	RAID
	MapReduce
	Spark
	Warehouse-Scale Computing

